
 
Stable Learning Algorithm Approaches for ANFIS as an Identifier

Abstract- This study suggests new learning laws for Adaptive 
Network based Fuzzy Inference System that is structured on 
the basis of TSK type III as a system identifier. Stable learning 
algorithms for consequence parts of TSK type III rules are 
proposed on the basis of the Lyapunov stability theory and 
some constraints are obtained. Simulation results are given to 
validate the results. It is shown that instability will not occur 
for learning rates in the presence of constraints. The learning 
rate can be calculated online from the input–output data, and 
an adaptive learning for the Adaptive Network based Fuzzy 
Inference System structure can be provided.  
 
Key words: Learning Rate, Optimization, TSK fuzzy System, 
ANFIS, Lyapunov Theory, Identification and Stability 
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I. Introduction  
Fuzzy systems and neural networks are both very 

popular techniques that have seen increasing interest 
in recent years. At first glance, they seem to be 
totally different areas with marginal connections to 
each other. However, both methodologies belong to 
the soft computing area. Soft computing includes 
approaches to human reasoning that try to make use 
of the human tolerance for incompleteness, 
uncertainty, imprecision, and fuzziness in a decision 
making process. Many different structures for Fuzzy 
neural Networks (FNNs) have been proposed [1]. 
Among them, Adaptive Network based Fuzzy 
Inference System (ANFIS) is a neural network based 
on fuzzy approach, in which the learning procedures 
are performed by interleaving the optimization of the 
antecedent and consequent part parameters. In this 
study, the parameter adaptation procedures for the 
consequent parameters in ANFIS employ gradient–
descent (GD) methods to adjust the membership 
functions’ (MFs’) parameters. The consequent 
parameters are very important and they could lead 
ANFIS to instability easily, but the antecedent 
parameters have a little impress on ANFIS instability. 
The gradient techniques have the advantage of being 
less computationally expensive for a given size 
network topology; a factor that becomes significant 
for larger networks. However, one problem inherent 
in them is their convergence to local minima and the 
user set parameters are sensitive to the learning [2]. 
The stability problem of fuzzy neural network 
identification is very important in applications.  
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It is well known that normal identification training 
algorithms (e.g., gradient descent and least square) 
are stable in ideal conditions. In the presence of 
unmodeled dynamics, they might become unstable 
[3]. The learning procedure of fuzzy neural networks 
can be regarded as a type of parameter identification. 

The backpropagation (BP) learning of the FNN 
model, on the basis of GD technique is stable, if FNN 
models can match nonlinear plants exactly [3]. 

The stability of GD algorithms for fuzzy neural 
networks using type I and II TSK’s rules has been 
discussed in many studies [3–9], but there is no work 
on stability of ANFIS as a fuzzy neural network 
using type III TSK’s rules. 

Recently, the stability of type III systems has 
attracted considerable interest in the fuzzy literature 
[10–14] but they did not focus on ANFIS structure. 

Some studies have been made on the stability of 
fuzzy neural network with TSK type II rules and the 
popular method is Lyapunov stability theorem [4, 6, 
15]. Most of these results require the existence of 
common quadratic Lyapunov function, [10–13]. 
Sonbol and Fadali [14] proposed a new method of 
stability without using Lyapunov theorem for 
stability of type III fuzzy systems. Nevertheless there 
are few studies on stability analysis using the 
convergence of learning algorithm. Yu and Li [3] 
used input to state stability (ISS) techniques for 
Mamdani and TSK fuzzy neural networks but the 
stability of ANFIS as an identifier has not been 
studied. In this study, the Lyapunov stability 
approach is applied to system identification via 
ANFIS as TSK’s type III. The GD update rule for 
consequent is considered. The new stable algorithm 
with time varying learning rate is applied to ANFIS. 

The rest of article is organized as follows: in 
Section II ANFIS structure and learning algorithms 
are reviewed. In Section III ANFIS stability analysis 
are discussed and stability constraints found. 
Simulation and application of this method to 
nonlinear identification is presented in Section IV. 
Section V presents conclusions. 
 
II. The Concept of ANFIS 
A.  ANFIS Structure 
Here, type III ANFIS topology and the learning 
method used for this neuro-fuzzy network are 
presented. Both Neural Network and Fuzzy Logic 
[16] are model-free estimators and share the common 
ability to deal with the uncertainties and noise. Both 
of them encode the information in parallel and 
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distribute architecture in a numerical framework. 
Hence, it is possible to convert fuzzy logic 
architecture to a neural network and vice versa. This 
makes it possible to combine the advantages of 
neural network and fuzzy logic. A network obtained 
in this way could be used with excellent training 
algorithms that neural networks have at their 
disposal, to obtain the parameters that would not have 
been possible in fuzzy logic architecture. Moreover, 
the network obtained in this way would not remain a 
black box, because this network would have fuzzy 
logic capabilities to interpret in terms of linguistic 
variables [17]. 
The ANFIS combines the two approaches of neural 
network and fuzzy systems. If both these two 
intelligent approaches are combined, it will achieve 
good reasoning in quality and quantity.  In other 
words, both fuzzy reasoning and network calculation 
will be available simultaneously. For m-dimensional 
neuro-fuzzy identifiers which implement an m-to-one 
mapping, the number of fuzzy rules or parameters 
exponentially increases with the number of input 
variables. This is the problem known as curse of 
dimensionality [24]. For this reason, it can be 
difficult to design and implement a high-dimensional 
neuro-fuzzy identifier when the number of input 
variables is large [25]. 

The ANFIS’s network is composed of two parts 
similar to fuzzy systems. The first part is the 
antecedent and the second part is the consequent, 
which are connected to each other by rules. The 
ANFIS structure can be viewed as a multilayered 
neural network as shown in Fig. 1. The first layer 
executes a fuzzification process, the second layer 
executes the fuzzy AND (product) of the antecedent 
part of the fuzzy rules, the third layer normalizes the 
membership functions (MFs), the fourth layer 
executes the consequent part of the fuzzy rules, and 
the last layer computes the output of fuzzy system by 
summing up the outputs of layer four. The 
feedforward equations of the ANFIS with two inputs 
and two labels for each input shown in Fig. 1 are as 
follows: 

( ) ( ), 1, 2.
i ii A Bw x y iμ μ= × =   (1) 

1 2
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i
w

w i
w w
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To model complex nonlinear systems, the ANFIS 
model carries out input space partitioning that splits 
the input space into many local regions, from which 
simple local models (linear functions or even 
adjustable coefficients) are employed. The ANFIS 
uses fuzzy MFs for splitting each input dimension; 
the input space is covered by MFs with overlapping; 
that is, several local regions can be activated 
simultaneously by a single input. As simple local 

models are adopted in the ANFIS model, the ANFIS 
has a high ability of approximation that will depend 
on the resolution of the input space partitioning. Input 
space partitioning is determined by the number of 
MFs in the antecedent part of ANFIS. Usually, the 
MFs are used as bell-shaped with maximum grade 
equal to 1 and minimum grade equal to zero such as: 
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Where { }iii cba ,,  are the parameters of MFs which 
affects the shape of MFs. 
 

 
Figure 1: The equivalent structure of ANFIS (type III 

ANFIS) 
 
B.  Learning Algorithms 

Subsequent to the development of ANFIS 
approach, a number of methods have been proposed 
for learning rules and for obtaining an optimal set of 
rules. For example, Mascioli et al. [18] have 
proposed to merge Min-Max and ANFIS model to 
obtain neuro-fuzzy network and determine an optimal 
set of fuzzy rules. Jang and Mizutani [19] have 
presented application of Levenberg-Marquardt 
method, which is essentially a nonlinear least-squares 
technique, for learning the ANFIS parameters. Jang 
[20] has presented a scheme for input selection and 
Kumar and Garg [17] have used Kohonen’s map for 
training. 

Jang [21] introduced four methods to update the 
parameters of the ANFIS structure, as listed below 
according to their computation complexities: 
1. Gradient decent (GD) only: all parameters are 

updated by the gradient descent. 
2. Gradient decent only and one pass of least mean 

square error (LSE): the LSE is a technique applied 
only once at the very beginning to get the initial 
values of the consequent parameters and then the 
gradient decent takes over to update all parameters. 

3. Gradient decent only and LSE: this is the hybrid 
learning. 

4. Sequential LSE: using extended Kalman filter to 
update all parameters. 
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These methods update antecedent parameters by 
using GD or Kalman filtering. These methods have a 
high complexity. The other method that can be 
mentioned here is the use of hybrid optimization 
method like PSO for antecedent part and GD for 
consequent part [22]. Chen [2] compares several 
popular training algorithms in tuning parameters of 
fuzzy membership functions (MFs). The algorithms 
compared are GD, Resilient propagation (RPROP), 
Quickprop (QP), and Levenberg-Marquardt (LM) 
algorithms. These algorithms are combined with 
RLSE (Recursive Least Squares Estimate) to improve 
the efficiency of ANFIS. 

 
III. System Stability Analysis 
Suppose an ANFIS with n  inputs and for each 

input there are 1k  , 2k , … and nk  membership 
functions, respectively. The feed forward algorithm 
of ANFIS is: 

( ) ( ) ( )1 2
1 2

1 2i i in
n

i nAA Aw x x xμ μ μ= × × ×    (6) 

where  { }1, 2 , , , 1,2,...,j ji k j n∈ =  
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              (8)     

Now, the feedback algorithm is defined in the 
following steps. The objective function is defined as: 

( ) ( ) ( ) ( )2
,

2d
e k

e k y k O k E= − =      (9) 

where, ( )dy k  and ( )O k  are the desired and 
ANFIS outputs, respectively. 

Now some matrices and vectors are defined. The 
input vector is: 

( ) ( ) ( ) ( )1 2[ , , , , 1]nX k x k x k x k=  (10) 
The consequent weights are defined as follows: 
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Now, A  is defined as follows: 
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The output in  (8) will be: 
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The antecedent part parameters are defined by two 
types of parameters; the first type is the means of the 
MFs: 

1 21 2 1 2
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The second type is the standard deviations of the 
MFs: 
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and the vector form of (15) is defined as: 
1 2[ ]T T T

nS S S S=  (16) 
Now a discrete Lyapunov function is defined as 

follows: 

( )21( ) ( )
2

V k E k e k= =    (17) 

Then, the change of Lyapunov function at each 
iteration will be: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )

2 211 1
2

1 1 1
2
1 12
2 2

V k V k V k e k e k

e k e k e k e k

e k e k e k e k e k e k

Δ = + − = + −

= + − + +

⎛ ⎞= Δ Δ + = Δ Δ +⎜ ⎟
⎝ ⎠

     (18) 
The change of error caused by the parameters can 

be approximated by:  
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(19) 

where, the ( ).tr is the trace of matrices. Here we 
just train the consequent parameters so: 

 ( ) ( )0 , 0k kα β= =                      (20) 
From equations (18), (19) and (20) the following 

equation is obtained: 
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2
k

V k k e k
γ

γ
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Now consider (19, 21): 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7048



 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

2

1
2

T T

k
V k k e k

e k e k
tr A k e k tr A k

A k A k

γ
γ

⎛ ⎞
Δ = ⎜ + ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= Δ × + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

      
     (22) 
by using the chain rule: 
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where Aη  is the learning rate that is used to adjust 
consequent parameters and let F⋅  be the 
Frobenius norm. 

Considering (23), (22) can be rewritten as follows: 
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is obtained: 

( )( ) ( )( )2 21 2
2A A A A AF F

D k D kη η
⎛ ⎞

Λ ≥ −⎜ ⎟⎜ ⎟
⎝ ⎠

(27) 

For stability condition, change of the Lyapunov 
function must be less than zero and from (24–27) the 
following equation is derived: 
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(28) is an adaptive constraint where, the learning 
rate stability condition changes in each iteration. 
Thus, this constraint can be used easily for online 
training. 

From (25 and 28): 

( )2max

20 A

AD
η< <          (29) 

where equation (29) is a conservative constraint and 
cannot be calculated in online identification. 

The following equation can be written by using the 
chain rule: 
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               (30) 

At each learning step, the learning rate of consequent 
part is selected to satisfy equation (30) to ensure that 
our identifier is stable. This adaptive method is 
performed online during system operation. The 
simulation result of a system is shown in the next 
section. 
 
IV. Simulation and results 
In this section, the suggested stable learning 
algorithm from (30) is applied to a function 
approximation problem and identification of a chaos 
system. The objective of this section is to show the 
truth of (30) constraints. In this section, it is shown 
that if learning rate are chosen from the proposed 
constraints, the stability of identifier will be 
guaranteed. Consider using ANFIS with stable 
training algorithms to a 2-input nonlinear Sinc model 
equation as: 
   sin( ) sin( )sinc( , ) x yz x y

x y
= = ×                 (31) 

From the grid points of the range ]10,10[]10,10[ −×−  
within the input space of the above equation, 121 
training data pairs were first obtained. The ANFIS 
used here contains 16 rules, with four MFs for each 
of the inputs and uses 72 data for testing. The initial 
values for MF’s parameters are chosen in such a way 
that partition input range in equal parts. 
  The consequent parameters ( A ) were trained. It 
means that the 0M SΔ = Δ = , in this and next example 
the MF’s means are choose normally from input 
range and variances are fix and equal. 
   Figures 2, 3, 4, and 5 explicitly show how the 
obtained constraints provide stability for the whole 
learning process in ANFIS architecture. It can be 
seen that the upper boundary is truly calculated and 
the criterion is very sensitive, hence, a slight change 
of 0.01% will bring the condition from stability to 
instability and vice versa. From Figures 5, 6, 7, and 8, 
it can be concluded that the upper boundaries are 
obtained true and that   (28) is exactly true. 
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Figure 2: Training error RMS-epochs for the case, 

( )( )2
2 0.99A

A F
D k

η = ×  

 
Figure 3: Training error RMS-epochs for the case, 

( )( )2
2
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Figure 4: Training error RMS-epochs for the case, 

( )( )2
2 1.001A

A F
D k

η = ×  

 
Figure 5: Training error RMS-epochs for the case, 

( )( )2
2 1.0001A

A F
D k

η = ×  

  The second example is to predict future values of 
a chaotic time series, which is generated by 

( )
( )

( )10
0.2

0.1
1

x t
x x t

x t

τ

τ

−
= −

+ −
   (32) 

 (32) is also known as the chaotic Mackey-Glass 
differential delay equation [23]. The initial conditions 

for ( )0x  and τ  are 1.2 and 17, respectively. Here, 
500 data are used, which are similar to the training 
data (because the test data results will be similar to 
training data and these constrains will be shown in 
training data clearly). The ANFIS used here contains 
16 rules, four inputs with two MFs for each of the 
inputs. The inputs and outputs are chosen as follows: 

[ ( 18), ( 12), ( 6), ( )]
[ ( 6)]

inputs x t x t x t x t
output x t

= − − −
= +

  (58) 

For this example, Figures 6, 7, 8 and 9 explicitly 
show how the obtained constraints provide stability 
for the whole learning process in ANFIS architecture. 
The upper boundary is truly calculated and the 
criterion is very sensitive again, hence, a slight 
change of 0.01% will bring the condition from 
stability to instability, and vice versa. 

 
Figure 6: Training error RMS-epochs for the case, 

( )( )2
2 0.99A

A F
D k

η = ×
 

 
Figure 7: Training error RMS-epochs for the case, 

( )( )2
2

A

A F
D k
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Figure 8: Training error RMS-epochs for the case, 

( )( )2
2 1.001A

A F
D k

η = ×  
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Figure 9: Training error RMS-epochs for the case, 

( )( )2
2 1.0001A

A F
D k

η = ×  

V. Conclusion 
This study applies Lyapunov stability approaches to 
ANFIS fuzzy neural networks for the first time and 
proposes stable learning algorithms that can 
guarantee the stability during the training process. 
The proposed algorithms are effective and are tested 
in several simulations. The main contributions are as 
follows: 

 The Lyapunov stability approach provides a certain 
criterion for learning rates of ANFIS consequent 
structure that guarantees the stability of the 
algorithm through the learning process. 
  In this study, the effective learning rate in different 
simulations was obtained. 
 In a future work, it might be possible to find the 
best learning rate from this range and ensure that 
the system will be stable in the identification 
process. 

Therefore, using Lyapunov stability approach, stable 
updating laws for the membership functions, and 
consequent parameters of ANFIS are proposed, and 
this will ascertain stability during the training 
process.  
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