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Abstract: In the domain of industrial process modeling and control, Hammerstein model has been used 

widely to describe a class of nonlinear systems. Goethals et al. (2005) proposed a method based on Least 

Squares Support Vector Machines (LSSVM) to identify the input-output relationship of the Hammerstein 

model. Unfortunately, as the data points grow, this kernel learning approach costs much time 

correspondingly. Besides, Goethals’s technique is not suitable for the on-line identification. To this end, a 

recursive nonlinear identification method is proposed in this paper. The basic idea is to get the recursive 

form of the parts of the high-dimensional matrix arisen from the optimization derivation, and get the 

estimation with the trick of sub-inverse matrix. With this new LSSVM approach, the Hammerstein model 

can be obtained recursively and much quickly, which is crucial to industrial applications that require on-

line estimation and prediction. The simulation illustrates the validity and feasibility of the developed 

online identification method.  

1. INTRODUCTION  

Throughout the last few decades, the identification methods of 

the linear systems have been explored intensively. But in the 

field of nonlinear systems, the modelling issue is more 

complicated and harder. As one of common solutions, the 

linearization technique near the working point was utilized to 

transform the nonlinear system to a linear one, with the loss of 

the some accuracy. Some special nonlinear model structures 

such as Hammerstein model and Wiener model were also 

proposed, which are generally, composed of a nonlinear static 

and a linear dynamic subsystems. Here our topic is concerned 

with online identification problem of Hammerstein model, 

using the Kernel learning theory (Vapnik, 1995; Suykens et al., 

2002). Related researches have shown that the Hammerstein 

systems can be used successfully for modelling biological 

process (Westwick and Kearney, 2000), chemical engineering 

(Eskinat et al., 1991)(for example, distillation column, heat 

exchanger and PH neutralization), bio-fermentation(Golden 

and Ydsite, 1989) and so on. 

The structure of Hammerstein model is shown in Figure 1. It 

contains two parts: one is a static nonlinear system which is 

described using a nonlinear, function f, and the other is a 

dynamic linear system. In this issue, we use discrete-time 

transfer function G(z) to express the linear part.  
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Fig. 1 The structure of Hammerstein model 
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where the symbols m and  n are the order of numerator and 

denominator of the transfer function, respectively; vector 

elements , 1, ,
i

a i n= ⋯ , , 1, ,
j

b j m= ⋯  are the corresponding 

parameters. 

Since linear identification algorithms and standard toolboxes 

are easily available, the researchers focus their attention to the 

modelling of the nonlinear part. Known approaches include 

the expansion of the nonlinearity as a low-order polynomials 

(Eskinat et al., 1991), a sum of orthogonal (or non-orthogonal) 

basis functions (Narendra and Gallman,1966), a finite number 

of cubic spline functions (Dempsey and Westwick, 2004), 

piecewise linear functions (Van Pelt and Bernstein, 2000)
 
and 

neural networks (Al-Duwaish and Karim, 1997). Most of 

them treat the linear part as a linear ARX model 

(AutoRegressive with eXogeneous input). No matter what 

method is chosen, there are some disadvantages: 

� When there are only small datasets, these methods will 

get poor performances. 

� The methods using low-order polynomials or piecewise 

linear functions, obviously have to sacrifice some 

precision and thus only get relative poor accuracy. 

� Most are based on maximum-likelihood principle, 

resulting in a non-convex optimization problem. Most 

times, one can’t get the global optimum estimation 

except that there is a proper initialization. 
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All the difficulties listed above show that a new identification 

algorithm is needed in the engineering applications. The 

kernel learning approach is one of the methods which meet 

the demand. The kernel learning theory, including Ridge 

Regression, Support Vector Machines (SVM) and so on, is 

such an identification method of nonlinear systems under 

small samples. According to the kernel trick, the input data is 

mapped into a high dimensional feature space which may be 

infinite dimensional. A construction of the linear separating 

hyperplane (in the classification problem) or linear function 

estimation (in the regression problem) is done in the high-

dimensional feature space. Often, the technique of mapping 

into the feature space such as Fisher Discriminant Analysis 

(FDA), may cause a problem named dimension disaster. But 

with the kernel trick, no explicit construction of the nonlinear 

mapping is needed. Computations are done in another space 

without dimension disaster. For example, in the case of SVM 

or Least Squares SVM (LSSVM), one starts from a 

formulation in the prime space with a high-dimensional 

feature space by applying the nonlinear mapping, and solves 

the problem in the dual space. For detail, please refer to the 

work of Vapnik (1995) and Suykens et al. (2002). 

Till now, there are only few algorithms using the kernel 

method to identify the Hammerstein model. In the work of 

Goethals et al. (2005), a new method based on was proposed 

to identify the ARX model of the Hammerstein systems. 

LSSVM is especially suitable for identification issues with 

only small datasets available, and just need to solve a group of 

(high-dimensional) linear equations during the computation, 

so it does not suffer from the above mentioned problems. On 

the other hand, the technique from Goethals et al. (2005) still 

can not be applied to on-line estimation. In this paper, we 

explore an on-line recursive method to overcome this problem. 

 

2. HAMMERSTEIN MODEL IDENTIFICATION 

2.1  Least Squares Support Vector Machines for Function 

Estimation  

Suykens, Van Gestel et al. proposed a modification named 

LSSVM (Suykens et al., 2002) to the SVM theory (Vapnik, 

1995). Compare to SVM, LSSVM keeps the advantage such 

as great generalization, small datasets identification, and 

changes the inequation constrains to equation constrains. So 

LSSVM only need to solve a set of linear equations, much 

easier than quadratic programs in SVM. During the modelling 

process, we do not use classification at all, so our attention 

will focus on the function estimation problems.  

Let{ }
1

( , )
N

t t t=
u y  be the set of given input/output training data 

with input n

t
∈u R  and output

t
∈y R . Consider the regression 

model: 
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T
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where ω  and c are a weight vector and the bias 

respectively;
t

e  is the residual. 

According to the statistical learning theory, it can be 

represented as the following optimization problem: 
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where γ  is a positive real constant. The following Lagrangian 

should be considered then: 
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with Lagrange multipliers 0
t

≥α .The conditions for 

optimality are given as: 
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→

=1 ⋯ , with ( )K ,∗ ∗  the positive 

definite kernel functions. According to (8), we are get [c; α] 

easily. The resulting LSSVM model for function estimation 

can be evaluated at a new point 
t

u  as: 
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According to (8), we can find that a matrix inversion is 

needed. When the training samples increases, it will cost 

much more time. To overcome this problem, a recursive 

LSSVM is proposed in the issue (Chi and Ersoy, 2003). 

2.2  Identification of Nonlinear ARX Hammerstein Models 

The aim of Hammerstein identification is to model the 

nonlinearity and to estimate the parameters of the linear 

systems from the input/output measurements. We first 

consider SISO (single input-single output) systems, and then 

extend to MIMO (multiple input-multiple output) systems. 

For the linear dynamic part, we will assume a model structure 

of the ARX form (Goethals et al., 2005): 

                      ( )
1 0

f
n m

t i t i j t j t

i j

y a y b u e− −
= =

= + +∑ ∑                    (10) 

with { }
1

( , )
N

t t t=
u y  a set of given input/output measurements. 

We apply the LSSVM function estimation form (5) to (10): 
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with 
T T

j j
b=ω ω , 

0

m

j

j

d b
=

=∑ c . 

Similar to (6), (7), (11) can be considered as an optimization 

problem (Goethals et al., 2005): 
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 Also, resorting to a Lagrangian and solving the conditions for 

optimality, we get: 
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 is a column vector of 

length (N-r+1) with elements 1.  

The projection of obtained model onto (10) goes as follows. 

The estimations for the parameters [ ]1

T

n
a a= ⋯a  can be 

directly obtained form (13). Furthermore, the estimation of the 

nonlinear part can be obtained from: 
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with ( ) ( )
0

m

j

j

u u d b
∧

=

= + ∑f f . Using SVD decomposition to 

get , 0,1, ,
j

b j m= ⋯  and ( )u
∧

f , then we get the approximate 

form of the nonlinear part ( )uf . 

For the MIMO systems, the structure can be assumed as: 
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As one can see, a MIMO system can be described as a set of 

MISO systems; meanwhile it is well known that LSSVM can 

treat MISO system straightforwardly as SISO case, thus the 

method for SISO systems can extend to MIMO systems as 

well. Please refer to the work of Goethals et al. (2005) for 

more details. 

 

3. ON-LINE RECURSIVE METHOD 

Obviously, the method mentioned above is suitable to off-line 

identification. But in most industrial applications, there are 

only litter data points. Therefore, we should take full 

advantage of every point. According to (Goethals et al., 2005), 

when a new data point is obtained, the (n+m+1+N) 

dimensional matrix L of (13) should be reconstructed (with m 

and n, the order of numerator and denominator of the transfer 

function of the linear part respectively, and N the number of 

training datasets), and need to do a matrix inversion operation 

of L. Obviously, it costs too much time. To overcome this 

shortcoming, a new recursive updating method based on sub-

matrix inverse calculation is proposed in this paper. During 

the recursive process, we will only need to do a matrix inverse 

calculation of a (m+1) dimensional square matrix instead of a 

high-dimensional matrix L (usually, m N≪ ).  
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In the section, a SISO system is taken as an example, and the 

RBF kernel is chosen. When there are N training data points, 

the matrix LN is: 
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with [ ]; ;=S 0 0 K  a column vector. Also, when a new data 

point is obtained, the matrix LN+1 will change to the form 

below: 
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According to (13), we can get the recursive form as follows: 
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Then we can get 
1N +A  and 

1N +L  in turn. Based on the 

thought of sub-inverse matrix, 
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The final recursive algorithm for Hammerstein identification 

based on LSSVM can be summarized as follows: 
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Fig. 2. The flowchart of the proposed method 

It should be noted that m, n, γ  and the kernel parameter have 

an important effect on the precision of the result, and we 

should determine them by prior knowledge. 

It is also noticed that the matrix should be full-rank when 

using a trick of sub-inverse. Obviously, the kernel method and 

the parameter γ would ensure the matrix non-singular on the 

theoretic aspect. But during the computation, it may be 

singular which will cause an additional error. A method using 

sparse LSSVM or re-initialization may be helpful.  

 

4. ILLUSTRATIVE EXAMPLE 

Consider the Hammerstein system in issue (Espinoza et al., 

2004) as follows: 

                     
( ) ( )

1 1 2 2 3 3

0 1 1
sin sin

t t t t

t t

y a y a y a y

b c u b c u

− − −

−

= + +

+ +
          (28) 

with [ a1  ,a2, a3, b0, b1 ] = [ 0.6, 0.2, 0.1, 0.4, 0.2 ]. A white 

Gaussian input sequence u with length 200, zero mean and 

standard deviation 2 was generated and fed into the system. 
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Based on the prior knowledge, we choose the parameters n=3, 

m=1, the initial training dataset of N0 samples, and a total step 

Nt. 

In this paper, following three techniques were used for 

identification: 

1 The method in (Goethals et al., 2005): the initial dataset was 

used as training set, and the set of the later data points was 

used as testing set. No new data was added into the training 

set. 

2 The method in (Goethals et al., 2005) and updating the 

training dataset: A matrix inverse operation was needed when 

any new data was added to the training set. We mentioned it 

as the naive method. 

3 The recursive technique proposed in this paper. 

In the naive implementation, one should identify the model 

t
N  times, each time adding a new data to the training set. 

This implementation involves the solutions of Nt linear 

systems of dimensions 
0

3N m n r+ + − +  to 

0
3

t
N N n m r+ + + − +  respectively. Note that the complexity 

of solving a linear system with dimensions d is 31

3
d  in 

general, the complexity of the naive method is 

( )
3

0

0

1
3

3

tN

i

N m n r i
=

+ + − + +∑ . On the other hand, the proposed 

algorithm involves one inverse of a 
0

3N m n r+ + − +  square 

matrix, and Nt inverses of a (m+1) square matrix. Hence, the 

complexity of the proposed method is 

( ) ( )
3 3

0

1 1
3 1

3 3
t

N m n r N m + + − + + +
 

. 

Obviously, the naive method is much less efficient than the 

proposed implementation. Here, we use the CPU time to 

indicate the complexity. Table 1 shows the indication of 

different steps Nt with N0=10, while Table 2 lists the CPU 

time with different initial training dataset of a fixed pair of  γ 

and σ. All the time listed in Tab. 1 and 2 includes the time of 

estimation of the parameters and the predictions. It is obtained 

from a computer with PIII-800MHz and 512M memory. 

Table 1.  The average CPU time (seconds) of the proposed and 

naive implementation of different steps with a initial dataset of 

10 points for one pair of σ  and γ  

t
N  50 100 150 200 250 

Naive 1.048 5.685 19.732 54.919 128.428 

Proposed 0.270 1.028 3.175 7.905 16.310 

Also, in this issue, the Root Mean Squared Errors (RMSE) of 

the prediction was calculated, with  

                     

2

1

N

k kk
RMSE y y N

=

 
= − 

 
∑

∼

                     (29) 

where 
k

y
∼

 is the estimation of 
k

y . 

Table 2.  The average CPU time (seconds) of 100 steps of the 

proposed and naive implementation with different initial data 

points for one pair of σ  and γ  

0
N  10 20 40 80 100 

Naive 5.685 7.521 12.034 28.300 41.430 

Proposed 1.028 1.289 1.973 4.326 6.025 

Here, we choose a dataset of 210 data points, the first 10 of 

which used as the initial training set and the rest as the new 

coming data. The kernel parameter and the regularization 

constant are chosen according to RMSE on the initial training 

set. For each new data, we first predict the output, then add 

the data into the training set, retrain again to get new 

estimation of the parameters. The predictions and the 

predictive errors are showed in Fig. 2. The estimations of the 

static nonlinearity of different algorithm are showed in Fig. 3.  

 

 Fig. 3. The one-step-ahead prediction                                         

and predictive error of three different methods 

 

Fig. 4. The Estimations of the static                     

nonlinearity with three different algorithms.  
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Also, the mean of the estimation of the parameters a, the 

RMSE were listed in Table 3. 

Table 3. The average of the estimations by three different 

methods. With a 10 initial training data points and running 200 

steps. The final estimation by the naive and proposed algorithm 

are 
1

0.6001a = , 
2

0.1998a =  and 
3

0.1000a = . 

 System Method 1 Naive Proposed 

a1 0.6 0.8117 0.6129 0.6129 

a2 0.2 -0.2453 0.1832 0.1832 

a3 0.1 -0.0517 0.0995 0.0995 

RMSE  0.3605 0.0164 0.0164 

From Table 1 and 2, it seems that the proposed algorithm is 

approximately 4~8 times as efficient as the naive method. It is 

also interesting to note that the ratio increases with increasing 

Nt. It seems to be more efficient with more training dataset. 

Also, from Figure 3 and Figure 4, the prediction of method 1 

is much worse than that of the naive, which means it is 

necessary to adding new samples when there is litter data. 

With the updating of training set, the obtained prediction by 

either of the naive method or the proposed algorithm will be 

more accurate. It is noted that the prediction of some points 

are no so accurate, just because the training points near the 

new data are not enough.  

On the other hand, though the naive method can get an 

accurate estimation as the proposed, it costs too much times 

because of the matrix inverse operation. So, it needs a much 

faster algorithm, just like the proposed. According to the 

proposed method, the inverse of the whole matrix L can be 

obtained from an inverse of a (m+1) squared matrix and some 

multiplications, which can save much time. The simulation 

shows that it does get a good approximation of the 

Hammerstein model and can be applied in the on-line 

identification. 

 

5. CONCLUSIONS 

In this paper, a recursive algorithm based on LSSVM is 

developed for the identification of Hammerstein ARX systems. 

The proposed method uses the trick of sub-inverse matrix and 

got a recursive form of the matrix L, which can reduce the 

complexity of the computation and save much time. By this 

manner, an on-line nonlinear identification approach is 

derived and both SISO and MIMO cases are explored.  

To illustrate its performance, the method was compared to the 

result of two existed algorithms. It is obviously observed that 

the proposed one could get a more accurate estimation than 

the method without adding new samples, and was much faster 

than the naive algorithm. In a word, the proposed method gets 

the best performance among the three. But there are still some 

difficulties such as the adaptive choice of the kernel 

parameters, lack of sparsity, recursive estimation of the 

nonlinear part for the on-line identification and deserves 

further studies. 

REFERENCES 

AL-DUWAISH, H. and M.N. KARIM (1997). A new method 

for the Identification of Hammerstein Model. In:  

Automatica, 33(10): 1871-1875. 

Chi, H.M., O.K. Ersoy (2003). Recursive update algorithm for 

least squares support vector machines. In: Neural 

Processing Letters, 17(2): 165-173. 

Dempsey, E.J. and D.T. Westwick (2004). Identification of 

Hammerstein models with cubic spline nonlinearities. In:  

IEEE Transactions on Biomedical Engineering, 51(2): 

237-245. 

Eskinat, E., S.H. Johnson and W.L. Luyben (1991). Use of 

Hammerstein models in identification of nonlinear 

systems. In: AICHE Journal. 37(2): 255-268. 

Espinoza, M., J.A.K. Suykens, and B. De Moor (2004). 

Partially linear models and least squares support vector 

machines. In: 43rd IEEE Conference on Decision and 

Control. Atlantis, Paradise Island, Bahamas. 

Goethals, I., K. Pelckmans, J.A.K. Suykens et al. (2005). 

Identification of MIMO Hammerstein models using least 

squares support vector machines. In: Automatica, 41(7): 

1263~1272. 

Golden, M.P. and B.E. Ydsite (1989). Adaptive extremum 

control using approximate process models. In: AICHE 

Journal, 35(7): 1157-1169 

Narendra, K. and P. Gallman (1966). An iterative method for 

the identification of nonlinear systems using a 

Hammerstein model. In: IEEE Transactions on Automatic 

Control , 11(3): 546-550. 

Suykens, J.A.K, T. Van Gestel, J. De Brabanter et al. (2002). 

Least squares support vector machines. Singapore: World 

Scientific. 

Van Pelt, T.H. and D.S. Bernstein (2000). Nonlinear system 

identification using Hammerstein and nonlinear feedback 

models with piecewise linear static maps. 1. Theory. In:  

American Control Conference, Chicago. 

Vapnik, V. (1995). The nature of statistical learning theory. 

New York: Spring. 

Westwick, D. T. and R. Kearney (2000). Identification of a 

Hammerstein model of the stretch reflex EMG using 

separable least squares. In: Proceeding pf the World 

Congress on Medicine Physics and Biomedical 

Engineering, Chicago. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4998


