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Abstract: This paper proposes a genetic algorithm (GA)-based fixed-structure H∞ loop shaping technique 
to design a robust power system stabilizer (PSS). The fixed-structure of designed PSS is a 2nd-order lead-
lag compensator. In the design, system uncertainties are modeled by a normalized coprime factor. The 
performance and robust stability conditions of the designed system satisfying the H∞ loop shaping are 
formulated as the objective function in the optimization problem. The GA is applied to solve an 
optimization problem and to achieve control parameters of PSS. The performance and robustness against 
system uncertainties of the designed PSS are investigated in the single-machine infinite bus system in 
comparison with a conventional PSS and a PSS designed by H∞ loop shaping. Simulation results show that 
the robustness and damping effect of the proposed PSS are almost the same as those of the PSS with high-
order controller designed by H∞ loop shaping method. 

Keywords: Control system design, modeling, operation and control of power systems, robust control 
applications. 

 

1. INTRODUCTION 

The lack of damping of the electromechanical oscillation 
modes usually causes severe problems of low frequency 
oscillations in power systems. To solve this problem, a power 
system stabilizer (PSS) has been selected as a cost effective 
device to provide the additional damping via the excitation 
system (DeMello et al., 1969), (Larsen et al., 1981). Several 
approaches based on modern control theories have been 
successfully applied to design PSSs, such as eigenvalue 
assignment (Zhou et al., 1992), linear quadratic regulator 
(Aldeen et al., 1995) etc. Since these techniques do not take 
the presence of system uncertainties e.g. system nonlinear 
characteristics, variations of system configuration due to 
unpredictable disturbances, loading conditions etc. into 
consideration in the system modelling, the robustness of these 
PSSs against uncertainties can not be guaranteed. 

To overcome these problems, H∞ control has been applied to 
design of robust PSS (Chen et al., 1995), (Yan, 1997) etc. In 
these works, the designed H∞  PSS via mixed sensitivity 
approach have confirmed the significant performance and 
high robustness. In this approach, however, due to the trade-
off relation between sensitivity function and complementary 
sensitivity function, the weighting functions in H∞  control 
design can not be selected easily. Moreover, the order of 
H∞ controller depends on that of the plant. This leads to the 
complex structure PSS which is different from the 
conventional lead/lag PSS. Despite the significant potential of 
control techniques mentioned above, power system utilities 
still prefer the conventional lead/lag PSS structure. This is due 
to the ease of implementation, the long-term reliability, etc.  

On the other hand, much research on a conventional lead/lag 
PSS design has paid attentions to tuning of PSS parameters. 
The parameters of a lead/lag PSS are optimized under various 
operating conditions by heuristic methods such as tabu search 
(Abdel-Magid et al., 2001), genetic algorithm (Abdel-Magid 
et al., 1999),  and simulated annealing (Abido, M. A. 2000). 
In these studies, however, the uncertainty model is not 
embedded in the mathematical model of the power system. 
Furthermore, the robust stability against system uncertainties 
is not taken into consideration in the optimisation process. 
Therefore, the robust stability margin of the system in these 
works may not be guaranteed in the face of several 
uncertainties. 

To solve this problem, this paper proposes the robust PSS 
design by the H∞  loop shaping technique and GA. The 
configuration of PSS is a fixed structure with a conventional 
2nd-order lead/lag PSS. The normalized coprime factor (NCF) 
is used to model system uncertainties (Mcfarlane D.C. and K. 
Glover, 1990). By the advent of NCF approach, the selection 
of weighting function is significantly simplified. To optimize 
the control parameters, the performance and robust stability 
conditions in the H∞ loop shaping technique are formulated as 
the objective function. Then, the GA is applied to solve the 
optimization problem. Simulation study in a single machine 
infinite bus system is carried out to evaluate the robustness of 
the designed PSS in comparison with the PSS with high-order 
designed by H ∞  loop shaping method. 
This paper is organized as follows. First, system modelling is 
explained in section 2. Next, section 3 presents the proposed 
design procedure for optimization of PSS parameters by GA. 
Subsequently, section 4 shows the simulation results. Finally, 
the conclusion is given.
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2. SYSTEM MODEL 
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Fig. 1: System configuration of SMIB 

A single machine infinite bus system (SMIB) is shown in 
Fig. 1. The generator is fitted with the automatic voltage 
regulator (AVR), an excitation system, and the PSS. A 
linearized system in Fig. 1 is represented by the Heffron-
Phillips model as shown in Fig. 2 (De Mello et al., 1969). 
This system is represented by a forth-order model with the 
small deviation of the power angle δΔ , the rotor speed ωΔ , 
the internal voltage of generator  and the field voltage 

, as the state variables. The initial condition used as the 

design condition of the proposed PSS is  = 0.8 p.u., = 
0.2 p.u. from (Rao, et al. 1999). The state equation of system 
in Fig. 2 can be expressed as 

'
qeΔ

fdEΔ

eP ex

pssX A X B uΔ = Δ + Δ&             (1) 

pssuDXCY Δ+Δ=Δ             (2) 

ωΔ=Δ )(sKu pss            (3) 

Where the state vector , the output 

vector 
[ ]Tfdq EeX ΔΔΔΔ=Δ 'ωδ

[ ]Y ωΔ = Δ , pssuΔ is the control output signal of the 
PSS ( ), which uses only the angular velocity deviation 
(

)(sK
ωΔ ) as a feedback input signal. Note that the system (1) is 

a single-input single-output (SISO) system. The proposed 
GA-based fixed-structure H∞ loop shaping is applied to 
design a robust PSS K(s). The system (1) is referred to as the 
nominal plant G.  
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Fig. 2 : Linearized  model of SMIB system   

3. GENETIC ALGORITHM-BASED FIXED-STRUCTURE 
H∞ LOOP SHAPING CONTROL DESIGN 

In this section, the design procedure of a fixed-structure 
controller using H∞ loop shaping and GA is explained. The 
flow chart of the proposed design is shown in Fig. 3. 

Step 1. Selection of Weighting functions W1 and  W2 

Is          =4?

Is Gen=max Gen?

Start

Stop

Step 5. Initialize the search parameters for GA 

Gen=1

Step 8. Select the best individual in the current 
generation

Step 9. Gen=Gen+1

Step 10.  Genetic operator create the new 
population by selection, cross over and mutation.

No

Yes

Yes

No

Step 6. Randomly generate the initial solutions 

Step 7. Evaluate Objective function of each individual

Step 3. Evaluate  the robust stability margin  
of the system

Step 2. Formulate the shaped plant Gs

Step 4. Generate the objective function for GA

minγ

 
Fig. 3 : Flow chart of the proposed design 

Step 1 Selection of weighting functions 

As in the conventional H∞ loop shaping design, the shaped 
plant is established by weighting functions. Because the 
nominal plant is an SISO system, the weighting functions  

 and  are chosen as  1W 2W

bs
asKW W +

+
=1

 and                     (4) IW =2
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Where , and  are positive values. Because, the low 
frequency oscillation is in the vicinity of 1-2 Hz,  is set as a 
high-pass filter .  

wK a b

1W
( )a b<

Step 2  Formulate the shaped plant .  sG

As shown in Fig. 4, a pre-compensator  and a post-
compensator 2 , are employed to form the shaped plant 

, which is enclosed by a solid line. The designed 
robust controller 

1W
W

12GWWGs =

1 2K W K W∞=  is enclosed by a dotted line 
where K∞  is the H∞ controller.   

Fig. 4 : Shaped plant and designed robust controller K sG

Step 3 Evaluate the robust stability margin of the system 
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Fig. 5 :  robust stabilization problem ∞H
 
A shaped plant sG  is expressed in form of normalized left 
coprime factor , when the perturbed plant Gsss NMG 1−= Δ

 is 
defined as  

[ ]{ }γ/1:)()( 1 ≤ΔΔΔ+Δ+=
∞

−
Δ ssssss MNNNMMG     (5) 

Where , and are stable unknown transfer functions 
which represent uncertainties in the nominal plant model G.  
Based on this definition, the  robust stabilization problem 
can be established by G  and K as depicted in Fig. 5. The 
objective of robust control design is to stabilize not only the 
nominal plan G but also the family of perturbed plantG

sMΔ sNΔ

∞H

Δ

Δ
. In 

(5), 1/ γ  is defined as the robust stability margin. The 
maximum stability margin in the face of system uncertainties 
is given by the lowest achievable value of γ , i.e. minγ . Hence, 

minγ  implies the largest size of system uncertainties that can 
exist without destabilizing the closed-loop system in Fig. 4. 
The value of  can be easily calculated from  minγ

)(1 maxmin XZλγ +=                                           (6) 

Where )(max XZλ denotes the maximum eigenvalue of . 
For minimal state-space realization (A, B, C, D) of ,  the 
values of X and Z are unique positive solutions to the 
generalized control algebraic Riccati equation 

XZ

sG

1 1 1( ) ( )T T T T TA BS D C X X A BS D C XBS B X C R C− − − 1 0−− + − − + =  (7) 

and the generalized filtering algebraic Riccati equation  

1 2K W K W∞=

2 1SG WGW=

1W G

K ∞

2W
1 1 1( ) ( )T T T TA BS D C Z Z A BS D C ZC R CZ BS B− − − 1 0T−− + − − + =    (8) 

where TDDIR +=  and . Note that no iteration 
on

DDIS T+=
γ  is needed to solved for . To ensure the robust 

stability of the nominal plant, the weighting function is 
selected so that  (Skogestad, 1996). If min

minγ

0.4min ≤γ γ  is not 
satisfied, then go to step 1, adjust the weighting function. 

Step 4 Generate the objective function for GA optimization. 

In this study, the performance and robust stability conditions 
in H∞ loop shaping design approach is adopted to design a 
robust PSS. The conventional PSS with a 2nd-order lead-lag 
controller is represented by 

31

2 4

11
( )

1 1c
sTsT

K s K
sT sT

⎛ ⎞ ⎛ ⎞++
= ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

                                      (9) 

The control parameters , , , T and T are optimized 
by GA based on the following concept. As shown in Fig. 4, 
the designed robust controller  can be written as 

cK 1T 2T 3 4

)(sK

21)( WKWsK ∞=              (10) 

Because W =I ,   controller can be written as 2 ∞K

)(1
1 sKWK −

∞ =                              (11) 

As given in (Skogestad, 1996), the necessary and sufficient 
condition of the robust controller  is  )(sK

[ ] γ≤−⎥
⎦

⎤
⎢
⎣

⎡

∞

−
∞

∞
ss GIKGI

K
I 1)(                       (12) 

By substituting (11) into (12), the robust controller can be 
written as shown in (13). 

[ ] γ≤−⎥
⎦

⎤
⎢
⎣

⎡

∞

−−
− ss GIsKWGI

sKW
I 11

11
1

))((
)(

         (13) 

This condition can be formulated as the objective function in 
the optimization problem as 
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            (14) 

Subject to     

                                                                  (15) ,min ,max

1,min 1 1,max

2,min 2 2,max

3,min 3 3,max

4,min 4 4,max

spec

spec

c c cK K K
T T T
T T T
T T T
T T T

ζ ζ

σ σ

≥

≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

Where ζ  and 
specζ are actual and desired damping ratio, 

respectively, σ  and specσ  are actual and desired real part of 
the electromechanical mode,  and are minimum and 
maximum gains of PSS,  and  , are minimum 
and maximum time constants of PSS. The optimization 
problem is solved by GA.  

,mincK ,maxcK

,miniT ,maxiT 1,.., 4i =

Step 5 Initialize the search parameters for GA. Define genetic 
parameters such as population size, crossover, mutation rate, 
and maximum generation. 

Step 6 Randomly generate the initial solution. 

Step 7 Evaluate objective function of each individual in (14).  

Step 8 Select the best individual in the current generation. 
Check the maximum generation. 

Step 9 Increase the generation. 

Step 10 While the current generation is less than the 
maximum generation, create new population using genetic 
operators and go to step 7. If the current generation is the 
maximum generation, then stop. 

4. PERFORMANCE SIMULATION AND RESULTS  

In this section, simulation studies in SMIB system are carried 
out. Based on (4), the weighting functions are selected as. 

19
161681 +

+
=

s
sW ,              (16) IW =2

Fig. 6 shows the weighting function . Accordingly, the 
shaped plant  can be established. As a result, 

1W

sG minγ  = 2.35. 
In the optimization, the ranges of search parameters and GA 
parameters are set as follows: [1 60]cK ∈ , , , and 

, 
1T 2T 3T

4T ]10001.0[∈ 4.0=specζ , = -0.5, arithmetic 
crossover, uniform mutation, population size is 100 and 
maximum generation  is 100. Consequently, the convergence 
curve of the objective function can be shown in Fig. 7. 
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Fig. 6 : Weighting function  1W
 

 
Fig. 7 : Objective function versus iteration 
 

 
  
Fig. 8 : Bode diagram of CH_PSS and proposed PSS 
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Fig. 9 : Plant with and without  CH_PSS and proposed PSS 

Table.1 Comparison of oscillation modes  

Desired Specification Without PSS Proposed PSS 
Eigenvalues -0.1281±j9.134 -0.707±j 0.7436

Damping ratio 0.014 0.689 
 
The eigenvalues corresponding to the electromechanical mode 
without PSS and the proposed PSS are listed in Table 1. 
Clearly, the desired damping ratio and the desired real part of 
the oscillation mode are achieved by the proposed PSS. In 
simulation studies, the performance and robustness of the 
proposed controllers are compared with those of the PSS 
designed by conventional H∞ loop shaping method with 
weighting function in (16), that is  

5 4

5 4

0.00022 0.0189 0.574( _ ) ( ) 100
0.000145 0.0094 0.364

3

3

s s sCH PSS K s
s s s
+ +

=
+ +

  

                                                       (18) 
2

2

7.27 31.72 57.4
8.083 75.9 5.88

s s
s s

+ + −
+ + +

and the conventional lead-lag controller (CPSS) obtained 
from (Rao P.S and Sen I, 1999), that is 

( )
( )2

2

0577.01
1732.015.5)()(

s
ssKCPSS

+
+

=                (19) 

Fig. 8 shows the bode diagram of the proposed PSS and 
CH_PSS. In the vicinity of oscillation mode frequency (1-2 
Hz), the magnitude and phase plots of both PSSs have almost 
the same characteristic.  

Table 2 Operating Conditions. 
System 

Parameters 
(a) Normal 
Condition 

(b) Weak 
Line  

(c)Heavy Load 
&Weak line 

P(p.u) 0.8 0.8 0.95
Q(p.u) 0.4 0.4 0.4 
xe (p.u) 0.2 0.8 0.8 

 
Fig. 9 depicts the bode plots of the systems without PSS, with 
CH_PSS and with the proposed PSS. Without PSS, the peak 
resonance of the oscillation mode occurs at frequency about  1 
Hz. For system with each PSS, the peak resonance is reduced 
significantly. This signifies the stabilizing effects of both 
PSSs. In simulation studies, the limit on each PSS output 

( pssuΔ ) is ±0.05 p.u and the limit on fdEΔ  is ±6.0 p.u. The 
system responses with PSSs are examined under three case 
studies as in Table 2, while a small disturbance of  5 % (0.05 
p.u.) step response of  is applied to the system at   t = 0 s.  refVΔ

 

Fig. 10 : Simulation results of case a 

 

Fig. 11 : Simulation results of case b 

 

Fig. 12 : Simulation results of case c 
Fig. 10 shows the responses of electrical power output 
deviation in case a. CPSS, CH_PSS and the proposed PSS are 
able to damp power oscillations. Nevertheless, the overshoot 
and setting time of power oscillations in cases of CH_PSS and 
the proposed PSS are much lower than those of CPSS. In case 
b as shown in Fig. 11, the damping effect of CPSS is 
deteriorated by the increase in transmission line reactance. On 
the other hand, the power oscillations are effectively 
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stabilized by CH_PSS and the proposed PSS. Both PSSs are 
rarely sensitive to the weak line condition. In addition to the 
weak line condition in case b, the electrical power output is 
increased in case c. Fig. 12 shows that the CPSS fails to damp 
power system. The power oscillation gradually increases and 
diverges. In contrast, the CH_PSS and the proposed PSS can 
tolerate this situation. The power oscillations are significantly 
damped.  
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Fig. 13: Variation of IAE against variations of power 
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Fig. 14 : Variation of IAE against variation of reactance 

Next, the robustness of the proposed PSS against the 
variations of system parameters is evaluated by an integral 
absolute error (IAE). For 3 s. of simulation study, the IAE of 
electrical power output deviation ePΔ is defined as. 

IAE of ∫ Δ=Δ
3

0
dtPP ee                        (20) 

Fig. 13 shows the variation of IAE when the electrical power 
is varied from 0.4 to 1.4 p.u. The IAE in case of CPSS 
considerably increases as the electrical power becomes larger. 
This shows that the CPSS is very sensitive to variations of 
electrical power output. On the other hand, the IAEs in case of 
CH_PSS and the proposed PSS are much lower than those of 
CPSS and rarely change. This signifies that the CH_PSS and 
the proposed PSS are robust to the heavy loading condition.  

Fig. 14 shows the variation of IAE when the line reactance xe 
is increased from 0.2 p.u to 1.0 p.u. Clearly, the CPSS is very 
sensitive to the variation of reactance. The values of IAE 
become larger when the reactance increases. On the contrary, 
the values of IAE in case of CH_PSS and the proposed PSS 
are much lower and almost constant. These results confirm 
that both CH_PSS and the proposed PSS have very high 
robustness to weak line condition. Nevertheless, the proposed 
PSS is much easier to realize in practical power system than 
the CH_PSS due to the advantage of low-order controller. 

5.  CONCLUSION 

In this study, a robust GA-based fixed-structure controller 
design of PSS using H∞ loop shaping technique has been 
proposed. The performance and stability conditions of H∞ 
loop shaping technique have been applied as the objective 
function in the optimization problem. The GA has been used 
to tune the control parameters of PSS. The designed PSS is 
based on the conventional 2nd-order lead-lag compensator. 
Accordingly, it is easy to implement in real systems. The 
damping effects and robustness of the proposed PSS have 
been evaluated in the SMIB system. Simulation results 
confirm that the proposed PSS is very robust against various 
uncertainties. With lower order, the stabilizing effect and 
robustness of the proposed PSS are almost the same as those 
of the PSS with high-order designed by H∞ loop shaping 
technique. For future development, the proposed method will 
be applied to design PSSs in a multi-machine power system. 
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