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Abstract: The problem of access and service rate control as a general optimization problem
for controlled Markov process with finite state space is considered. By using the dynamic
programming approach we obtain the explicit form of the optimal control in the case of
minimizing cost given as a mixture of an average queue length, number of lost jobs, and service
resources. The problem is considered on a finite time interval in the case of non stationary
input flow. In this case we suggest the general procedure of the numerical solution which can
be applied to a problems with constraints.

1. INTRODUCTION

Effective control of data flows is one of the most important
problems of the Internet of the next generation, which
conform both to new realities of super speed networks
(according to the present concepts) with integral servic-
ing. Even though there exists a number of empirical and
engineering approach, the theoretical basis of data trans-
mission control is still restricted by stationary methods of
analysis. Moreover, most existing approaches are based on
asymptotic methods, which give only a qualitative descrip-
tion of network behavior, but do not correspond to real-
time control and design of real network control algorithms,
like various Active Queue Management (AQM) schemes
(see Vasenin & Simonova [2005]).

Here we consider the non-stationary feedback type con-
trols. These problems are inherent to queuing systems
on finite horizon under restricted control resources. We
underline that these problem are different from usually
considered ones in infinite time interval (see, for example
Hordijk & Spiekma [1989], Kelly et al. [1998], Low et al.
[2002] Piunovskiy [2004], Serfozo [1981]). First, in the case
of infinite horizon one have to provide the stability, in other
words the service rate must be greater or equal to the rate
of demands arriving. Another disadvantage concerns the
necessity of stationary data which is not a case for real
service systems. Moreover, the optimization of a stationary
phase does not take into account the cost of transient
phases and resources which are needed for their realization.

One of the most general problem statement is given in
Hordijk & Spiekma [1989], where a queueing system can
be controlled by restricting arrivals. Different settings of
optimization problems related with stochastic networks
are given in Kelly et al. [1998], where the approach to
solution is also based on optimization techniques of con-
vex mathematical programming. In Piunovskiy [2004] the
problem of the input stream control arising in commu-
? This work was supported in part by Russian Basic Research
Foundation Grant 05-01-00508

nication networks is also considered and reduced to a
convex programming problem. It is worth to underline that
in the problems with long-run average type criteria and
stationary controls the optimal solution is very often has
a threshold form.

Meanwhile, in the case of finite horizon the threshold type
controls are inherent to settings with affine dependence on
control action. In control of communication networks this
result has been obtained, probably first in Bremaud [1979],
where the problem of optimal thinning of a point process
has been solved in the case of non-stationary input flow
with deterministic intensity rate.

General approach to these problems is based on the mar-
tingale description of the process evolution (see Bremaud
[1981], Elliott et al. [1995], Liptser & Shiryaev [2005]).
The existence of the optimal solution had been proved
in in Davis & Elliott [1977] Wan & Davis [1979]. In El-
liott [1992], Elliott et al. [1995] the general optimization
problem for jump Markov process had been considered and
the reduction to a problem with complete information had
been proposed for a wide class of optimal control problems.
In Miller et al. [2005] we extend this approach to a flow
control with state-control dependent rate.

In this article we consider some typical problems of net-
work control in non stationary case. We extend the ap-
proach of Bremaud [1979] to more wide class of the optimal
control problems with complete information and prove the
existence and characterization of the optimal control with
the aid of dynamic programming approach. In this case
the dynamic programming equation can be reduced to the
system of ordinary differential equations. Then we apply
these result to a problem of access and service rate control
in the case of finite time horizon and finite buffer size.

We demonstrate that for a wide class of criteria the
optimal control problem can be reduced to the solution
of the system of ordinary differential equations. Moreover,
the optimal control exists within the class of Markov
strategies and therefore can be calculated in “program
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form” for each possible state of controlled Markov chain.
The structure of the article is as follows. In the next
section we provide some necessary results from the theory
of controlled Markov chains. In Section III apply these
results to the simultaneous access and service rate control.
In Section IV we give some examples.

2. CONTROLLED MARKOV CHAIN

In this section we extend the approach of P. Bremaud
(see Bremaud [1979]) to a more general class of controlled
Markov chains basing on their martingale description (see
Aggoun & Elliott [2004], Elliott et al. [1995]). This section
presents a slight generalization of well-known result of
Bruce Miller [1968] who considered the controls taking
values in a finite set. It had been shown that the optimal
control exists within the class of piece-wise constant poli-
cies. Generally it is not always true for an arbitrary class
of cost functions, however, for the most examples arising
in network optimization it is still valid.

2.1 Martingale representation of controlled Markov chain

Assume that all processes are defined on a probability
space {Ω,F , P}. Consider a process {Xt, t ∈ [0, T ]}
which is a controlled jump Markov process with piecewise
constant right-continuous trajectories. The state space of
the process is the set of unit vectors ei ∈ Rn: Xt ∈ S =
{e1, . . . , en}.
Assumption 2.1. The matrix A(t, u) with elements aij(t, u)
is a time-dependent family of generators, such that the
probability column vector pt = (p1

t , ..., p
n
t )∗, where pi

t =
P (Xt = ei) satisfies the Kolmogorov forward equation

dpt

dt
= A(t, u)pt. (1)

Here the control parameter u ∈ U, where U is some com-
pact set in complete metric space and A(t, u) is continuous
on [0, T ]× U .

Introduce the following right-continuous sets of complete
σ-algebras generated by Xt

FX
t = σ{Xs : s ∈ [0, t]}.

Assumption 2.2. We assume that the set U of admissible
controls {u(·)} is the set of FX

t -predictable processes with
values in U. This means that, if Nt is the number of the
state changes, Xt

0 is the series of states occurred from the
origin at t = 0 until the current time t ∈ [0, T ], that is

Xt
0 = {(X0, 0), (Xτ1 , τ1), . . . , (XτNt

, τNt
)}

is the set of states and jump times, then for τNt < t ≤
τNt+1 the control ut = u(t, Xt

0) is a function of Xt
0 and the

current time t (see Bremaud [1981], Elliott et al. [1995]).

For each control function u(·) ∈ U the process {Xt}
satisfies the following system of stochastic differential
equations:

Xt = X0 +

t∫
0

A(s, us)Xs ds + Mt, (2)

where X0 is the initial condition, and Mt := {M1
t , . . . ,Mn

t }
is a square integrable (FX

t , P ) martingales with the fol-

lowing quadratic variations 1 (see Bremaud [1981], Elliott
et al. [1995], Liptser & Shiryaev [2005]):〈

M
〉

t

= −
t∫

0

[
A(s, us)(diag Xs) + (diag Xs)A∗(s, us)

]
ds+

t∫
0

diag (A(s, us)Xs) ds,

(3)
where diag X denotes the matrix with diagonal entries
X1, . . . , Xn and A∗ denotes the transposed matrix of A.
Remark 2.3. In other words process X(t) is a solution of
martingale problem (2),(3) for controlled Markov chain
(see Elliott et al. [1995]).

2.2 Performance criterion

The optimization goal is to minimize some cost function
of the Markov chain states and controls. This function
could take into account the average queue length, which
is related with the average time of service, or/and the
price of rejected (thinned) demands, since they have to
either repeatedly queue or choose another service center.
Moreover, in the case of finite time horizon the final
state of Markov chain is also very important, like in the
case of congestion resolution. So we consider the following
performance criterion

J [u(·)] = E

φ0(XT ) +

T∫
0

f0(s, us, Xs)ds

 → min
u(·)

, (4)

with
φ0(X) = 〈φ0, X〉, f0(s, u,X) = 〈f0(s, u), X〉,

where 〈·, ·〉 is a sign of scalar product and
φ0 ∈ Rn,

f∗0 (s, u) = (f0(s, u, e1), . . . , f0(s, u, en))
and each f0(s, · , ei) is a cost function when the Markov
chain is in state ei at time s ∈ [0, T ].
Assumption 2.4. Each of functions f0(s, · , ei) is continu-
ous on [0, T ]× U and bounded below.

2.3 Dynamic programming and optimal control

Define the value function
V (t, X) = inf

u(·)
J [u(·)|Xt = X], (5)

where
J [u(·)|Xt = X] =

E

φ0(XT ) +

T∫
t

f0(s, us, Xs)ds

∣∣∣∣∣∣ Xt = X

 .
(6)

Moreover, according to Assumption 2.4 the infimum in (5)
exists, and function V (t,X) admits the representation

V (t, X) = 〈φ(t), X〉,
with some continuous vector-valued function φ(t) =
(φ1(t), ..., φn(t))∗ ∈ Rn.

1
〈
M

〉
t

is the quadratic variation of a martingale M , and
〈
M, N

〉
t

is the mutual quadratic variation of martingales Mt and Nt.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3684



Consider the following equation (dynamic programming
equation) with respect to vector-valued function φ(t)

〈φ
′
(t), X〉+min

u∈U
[〈φ(t), A(t, u)X〉+ 〈f0(t, u), X〉] = 0, (7)

with terminal condition

φ(T ) = φ0.

Since the function

H(φ, t, u, X) = 〈φ,A(t, u)X〉+ 〈f0(t, u), X〉,
is continuous with respect to (t, u) and affine with respect
to φ, then for any (t, X) ∈ [0, T ]× S function

H(φ, t, X) = min
u∈U

H(φ, t, u, X)

is Lipshitz in φ. Next result follows immediately from
above considerations.

Proposition 1. Let the Assumptions 2.1, 2.4 hold. Then the
equation (7) has the unique solution on [0, T ].
Remark 2.5. Equation (7) can be written as a system of
ordinary differential equations

dφi(t)
dt

= −H(φ(t), t, ei), i = 1, ..., n (8)

which can be obtained by substituting X = ei, i =
1, ..., n.

Theorem 2.6. Assume that:

φ(t) is the solution of system (8) and there exists
u0(t, X) ∈ U such that at each (t, X) ∈ [0, T ]×S the value
on the right-hand side of (7) and function H(φ(t), t, u, X)
achieves the minimum at u0(t, X).

Then there exists û(t,Xt
0) in the class of FX

t predictable
controls which is the optimal control and V (t,X) =
J [û(·)|Xt = X].

3. ACCESS AND SERVICE RATE CONTROL MODEL

We consider a queueing system that can be controlled by
restricting arrivals and by changing of the service rate. We
assume that the jobs flow constitute a counting process
with deterministic rate λ(t) ≥ 0. The number of jobs in
the system is bounded by some constant N < ∞ and the
service rate is µ ∈ [µ, µ], where µ > 0. Control u(t) ∈ [0, 1]
is a probability to accept the job at time t ∈ [0, T ]. So the
part of arriving jobs can be rejected and the performance
criterion takes into account the number of rejected jobs
and the average queue time for the accepted jobs. Our
model is motivated by Hordijk & Spiekma [1989], where
this problem is considered in infinite time horizon in the
class of stationary controls of threshold or thinning types.

3.1 Controlled Markov chain model

Assume that the state X is a number of jobs in the system,
so the number of states is N + 1, and the corresponding
state space S consists of vectors {e0, ..., eN}.
Proposition 2. (N + 1) × (N + 1) matrix A(t, u, µ) has a
form

A(t, u, µ) =
−λ(t)u µ 0 . . . 0 0 0
λ(t)u −µ− λ(t)u µ . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . λ(t)u −µ− λ(t)u µ
0 0 0 . . . 0 λ(t)u −µ

 ,

(9)
where control (u, µ) ∈ [0, 1]× [µ, µ].

Proof:

Take some FX
t - predictable controls u(t), µ(t). Let Nt ∈

{0, ..., N} is a current number of jobs in the system. This
number changes due to the action of two flows: flow of
arrivals and departure flow of outcome completed jobs. We
assume that the arrival flow forms a counting process with
intensity λ(t) ≥ 0, so the number of demands Na

t arriving
to the system from origin at t = 0 until current time can
be represented as follows Liptser & Shiryaev [2005]

Na
t =

t∫
0

λ(s)ds + Ma
t ,

where Ma
t is a square integrable martingale with quadratic

variation 〈
Ma

〉
t
=

t∫
0

λ(s)ds.

The departure flow is a counting process with state-
dependent rate µ(t)I{Nt > 0}, where I{·} is an indicator
function. Therefore, departure flow Nd

t admits the repre-
sentation

Nd
t =

t∫
0

µ(s)I{Ns > 0}ds + Md
t ,

where Md
t is a square integrable martingale with quadratic

variation 〈
Md

〉
t
=

t∫
0

µ(s)I{Ns > 0}ds.

We suppose, that Na
t and Nd

t are independent and do not
have jumps at the same time, it means that the mutual
quadratic variation

〈
Ma,Md

〉
t
= 0.

As shown by P. Bremaud (see Lemma 1 in Bremaud
[1979]) the access control can be represented as a control of
intensity of the arrival flow. So if W (t) is an access control,
that is it is a random variable, taking values in {0, 1} and
such that controlled arrival flow is equal to

Na,c
t =

∑
τ≤t

I{Nτ < N}I{W (τ) = 1}∆Na
τ ,

then
E{I{W (t) = 1}I{Nt < N}|FX

t }

= u(t)I{Nt < N} = u(t)I{Xt 6= eN},
(10)

and u(t) ∈ [0, 1] is FX
t predictable process.

Then,
∆Nt = ∆Na,c

t −∆Nd
t .

Taking into account the relation
I{Nt = i} = I{Xt = ei}
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one can write
∆Xt = A+Xt−∆Na,c

t + A−Xt−∆Nd
t ,

where (N + 1)× (N + 1) matrices A+, A− have a form

A+ =


−1 0 0 . . . 0 0
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 0
0 0 0 . . . 1 0

 ,

A− =


0 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 1
0 0 0 . . . 0 −1

 .

Then, by using the relation

Xt = X0 +
∑
τ≤t

∆Xτ ,

and taking into account that of Na,c
t and Nd

t are counting
processes we obtain

Xt = X0 +
∑
τ≤t

[A+Xτ−∆Na,c
τ + A−Xτ−∆Nd

τ ]

= X0 +

t∫
0

A+Xs−dNa,c
s +

t∫
0

A−Xs−dNd
s .

Finally, we have to substitute the martingale representa-
tion of Na,c

t and Nd
t into above equation and by taking

the conditional expectation with respect to FX
t we obtain

that

Xt = X0 +

t∫
0

[A+λ(s)u(s) + A−µ(s)]Xsds + Mu,µ
t

=

t∫
0

A(s, u(s), µ(s))Xsds + Mu,µ
t ,

where Mu,µ
t is a square integrable FX

t martingale with
quadratic variation〈

Mu,µ
〉

t

=

t∫
0

[A+XsX
∗
s (A+)∗λ(s)u(s) + A−XsX

∗
s (A−)∗µ(s)]ds.

Routine calculation shows that this expression coincides
with (3).

3.2 The performance criterion

As we mention above the performance criterion takes into
account the average time in queue, which can be estimated
as follows

J1 = E


T∫

0

Ns

µ(s)
ds

 = E


T∫

0

〈l, Xs〉
µ(s)

ds,


where

l∗ = (0, 1, 2, ..., N) ∈ RN+1.

Another criterion to be minimized is an average number
of rejected jobs, which can be calculated with the aid of

the integral representation given by Wong and Hajek (see
[Wong & Hajek, 1985, p. 261, Lemma 3.2]) and by using
the relation (10) as follows

J2 = E{Na
T −Na,c

T }

= E


T∫

0

[1− u(τ)〈1, Xτ 〉]λ(τ)dτ

 ,

where
1∗ = (1, 1, ..., 1, 0) ∈ RN+1.

Third criterion represents the service resources spent dur-
ing the control interval

J3 =

T∫
0

µ(τ)〈I, Xτ 〉dτ,

where
I∗ = (0, 1, ..., 1) ∈ RN+1,

Further we consider the performance criterion which is a
mixture of J1, J2 and J3, that is

J = k1J1 + k2J2 + k3J3,

where ki ≥ 0, i = 1..3.

3.3 Dynamic programming equation and optimal control

So we have to solve the equation (7), where A(t, u, µ) is
defined by (9), and cost function is defined by the function
f0(t, u, µ,X)

f0(t, u, µ,X) = k1
〈l, X〉

µ
+k2[1−u〈1, X〉]λ(t)+k3µ〈I, X〉.

The Hamiltonian H(φ, t, u, µ, X) is affine in u, i.e.

H(φ, t, u, X) = H0(φ, t, µ, X) + uH1(φ, t, X)

then the dynamic programming equation has a form of the
following system of ordinary differential equation

0 =
dφi(t)

dt
+ min(

u ∈ [0, 1]

µ ∈ [µ, µ]

) [H0(φ, t, µ, ei) + uH1(φ, t, ei)]

=
dφi(t)

dt
+ min

u∈[0,1]
[ min
µ∈[µ,µ]

H0(φ, t, µ, ei) + uH1(φ, t, ei)]

for i = 0, ..., N, where,

H0(φ, t, µ, ei) = µ〈φ,A−ei〉+ k1
li
µ

+ k2λ(t) + k3µIi,

H1(φ, t, ei) = λ(t)[〈φ,A+ei〉 − k21i].
Functions φi can be found from the system of equations

dφi(t)
dt

=
−min{min

µ
H0(φ, t, µ, ei),min

µ
H0(φ(t), t, µ, ei)+

H1(φ(t), t, ei)}, φi(T ) = φi
0,

(11)

and the optimal control µ(t, ei) is equal
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µ(t, ei) =



√
a

b
if

√
a

b
∈ [µ, µ], b > 0,

µ if
√

a

b
< µ, b > 0,

µ if
√

a

b
> µ, b > 0,

µ if b ≤ 0,

(12)

where
a(t, ei) = k1li ≥ 0, b(t, ei) = 〈φ(t), A−ei〉+ k3Ii.

The optimal control u(t, ei) is calculated with the aid of
relation

u(t, ei) =
{

1, if H1(φ(t), t, ei) ≤ 0,
0, if H1(φ(t), t, ei) > 0.

(13)

Here,
H0(φ, t, µ, ei) =

k2λ(t) for i = 0,

µ(φi−1 − φi) +
k1i

µ
+ k2λ(t) + k3µ for 0 < i < N,

µ(φN−1 − φN ) +
k1N

µ
+ k2λ(t) + k3µ for i = N,

(14)
and

H1(φ, t, ei) =


λ(t)(−φ0 + φ1 − k2) for i = 0,

λ(t)(−φi + φi+1 − k2) for 0 < i < N,

0 for i = N.
(15)

Remark 3.1. Notice that for each state ei ∈ S the optimal
control can be chosen as Borelean measurable function
which coincides with (12),(13) almost everywhere in [0, T ].
Moreover, the number of the state changes is finite with
P = 1 and therefore, the composition u(t,Xt) is progres-
sively measurable, and there exists a predictable version
of this control. Full details can be found in Wan & Davis
[1979].

4. EXAMPLES

Example 1. Access control.

In order to illustrate these results we consider the example
of queuing system with buffer of length N = 2. Other
parameters are the following:

λ(t) = 1.5 + 0.75 cos 2t,

µ = 1, T = 10, k1 = 0.17, k2 = 0.5.

So in order to calculate the value function V (t,X) =
〈φ(t), X〉 we have to solve the system of ordinary differ-
ential equations (11) for φi(t), i = 0, 1, 2 with functions
H0,H1 given by relations (14), (15).

It is evident that at the state X = e2 the access is
impossible, and u(t, e2) = 0. At the state X = e0 we
get u(t, e0) = 1, so if the system is free any job will be

Fig. 1. Cost functions φi(T − t) for i = 0, 1, 2; T = 10.

Fig. 2. Control functions ui(T − t) for i = 0, 1; u2(t) ≡ 0;
T = 10.

accepted. The nontrivial case is X = e1 when there is only
one job in queue. In this case the decision depend on time
and the future evolution of the input flow rate. The results
of calculations are presented below in Figures 1, 2 for
functions φi(T −t) and for control u(T −t, e0), u(T −t, e1).
Since in this case the Hamiltonian is affine in u the optimal
control has a threshold form.

Example 2. Joint access and the service rate con-
trol.

Numerical modelling is performed for the case
k1 = 0.17, k2 = 0.25, k3 = 1, T = 10

µ ∈ [1.0, 2.0], λ(t) = 0.6 + 0.5 cos 2t, φ0
0 = 5,

φ1
0 = φ2

0 = 0.

So we introduce the penalization of the terminal state.
The results are presented below in Figures 3, 4, 5. Since
the Hamiltonian is strictly convex in service rate control
µ and affine in access control u, the optimal control µ
does not have a threshold form (see Fig. 4), however, the
optimal control u does have (see Fig. 5).

5. CONCLUSIONS

So we apply the general optimal control setting to various
classes of problems arising in theory of queuing systems.
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Fig. 3. Cost functions φi(T − t) for i = 0, 1, 2; T = 10.

Fig. 4. Service rates µi(T − t), for i = 1, 2; T = 10.

Fig. 5. Controls ui(T − t), for i = 0, 1, u2(t) ≡ 0; T = 10.

However, for any criterion os a type (4) one can calculate
also the cost function for any type of Markov controls
u(t,Xt) and thereby one can construct an effective nu-
merical procedure for the solution of the problems with
constraints, represented in the form of inequalities with
the criteria of a type (4).
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