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Abstract: This paper provides a design method of fixed-structure robust controllers satisfying
multiple H∞ norm specifications by using a sort of randomized algorithms. First, a new tool
to perform general constrained optimization is developed which does not need any gradient or
derivative of the objective function. This tool is based on PSO (particle swarm optimization),
which attracts a lot of attention recently in the evolutionary computation area due to its
empirical evidence of its superiority in solving various non-convex problems. Second, it is
shown how to design a fixed-structure controller satisfying given multiple H∞ specifications
by using the developed optimization tool. Third, its effectiveness is evaluated through various
numerical examples, because it is difficult to guarantee the performance of the proposed method
theoretically due to a probabilistic nature of the PSO. The simulation results demonstrate its
effectiveness clearly.
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1. INTRODUCTION

In practical control engineering, it is crucial to obtain
reduced-order/fixed-structure controllers due to limitation
of available computer resource and necessity of on-site
controller tuning. This paper is concerned with a direct
way to attack such a problem.

As for proportional-integral-derivative (PID) or lead-lag
compensators, some progress has been made on this prob-
lem recently. Various deign methods of such compensators
satisfying not only stability but also H∞ specifications
have been proposed [Ho and Lin, 2003, Ho, 2003, Blanchini
et al., 2004, Hwang and Hsiao, 2002]. It would be, however,
difficult to extend these methods to a broader class of
fixed-structured controllers, because they strongly depend
on the specific (such as PID) structure. While, as for more
general framework of H∞ controller design subject to the
fixed-order/fixed-structure, most approaches utilize linear
matrix inequality (LMI) formulae. They try to obtain a
local optimal solution through LMI iterations [e.g., Iwasaki
and Skelton, 1995, Apkarian et al., 2003], some of which
may be suitable for multi-objective controllers. Further,
Ebihara et al. [2004] and Saeki [2006a,b] keep the con-
troller variables directly in LMI to cope with the fixed-
structure constraints. However, it seems to be difficult
for any of these methods to treat both the controller
structure and the multiple specifications simultaneously.

More importantly, since it requires deep understanding
of robust control theory and semi-definite programming
(SDP), it may not be easy for most practical engineers
to enjoy these sophisticated approaches. This could be a
serious barrier from the viewpoint of practical use.

Contrary to the above deterministic approaches, Calafiore
et al. [2000] proposed to use a probabilistic one based on
randomized algorithms because the problem is inherently
an NP hard [Fu and Luo, 1997]. As an extension of this line
of research, Fujisaki et al. [2006] provided a mixed prob-
abilistic/deterministic approach to aim at computational
efficiency. These approaches give us a discerning remedy
when we cannot obtain any solution within reasonable
time by the existing deterministic approaches. However, it
is not clear how often these methods outperform the exist-
ing LMI ones (as shown in the numerical examples of this
paper). In addition, they require some skill/understanding
of both randomization and robust control theory. So, it
might be difficult to claim that the probabilistic approach
is easy to use for practical engineers.

On the other hand, Kennedy and Eberhart [1995] re-
cently proposed the particle swarm optimization (PSO)
algorithm which is a swarm intelligence technique and is
one of the evolutionary computation algorithms. PSO has
attracted much attention in recent years, and further a lot
of research has been made to improve the performance of
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the original PSO [see e.g., Sedlaczek and Eberhard, 2006,
Parsopoulos and Vrahatis, 2002, Kadirkamanathan et al.,
2006, Sedlaczek and Eberhard, 2004, Kim et al., 2007, and
the references therein]. In this line of researches, Sedlaczek
and Eberhard [2006] developed an augmented Lagrangian
PSO (ALPSO) algorithm to handle the optimization prob-
lems subject to equality/inequality constraints. Therefore,
if we can utilize PSO for the fixed-structured controller de-
sign, it would be a great help for practical engineers. How-
ever, concerning to the constrained optimization which
plays a crucial role in controller design, ALPSO has some
drawbacks. Namely, it is based on the assumption that the
objective function is differentiable, and the algorithm be-
comes complex due to the augmented Lagrangian. There-
fore, an alternative simple way to handle constraints in
PSO is desired.

The purpose of this paper is to develop an easy-to-use
design method for fixed-structure controllers satisfying
multiple H∞ specifications. In order to solve such a design
problem without any complicated pre-processing, we first
provide a method to handle the optimization problems
subject to inequality constraints by PSO in such a way
that we can fully enjoy the merits of PSO in contrast
with ALPSO. Second, it is shown how to obtain a fixed
structure controllers satisfying multiple H∞ specifications
based on the developed optimization technique. Third,
its effectiveness is evaluated through extensive simulation
studies, because it is difficult to guarantee the performance
of the proposed method theoretically due to a probabilistic
nature of PSO.

The following notation will be used hereafter: for given
vectors x ∈ Rn and y ∈ Rn, x ≤ y means element-wise
inequality.

2. PROBLEM FORMULATION

Consider the linear time-invariant closed-loop system Σ[x]
described by [

z
y

]
= G(s)

[
w
u

]
, u = K(s; x)y (1)

where G(s) is the generalized plant, K(s; x) is the fixed-
structure controller which is determined by the design
parameter x := (x1, x2, · · · , xn)T ∈ Rn. The vectors z and
w are defined by z := (z1, z2, · · · , zm)T where zi ∈ Rpi

and w := (w1, w2, · · · , wm)T where wi ∈ Rqi . The signals
zi ∈ Rpi , wi ∈ Rqi , y ∈ Rp0 and u ∈ Rq0 are the controlled
output vector, the external input vector, the measurement
vector and the control input vector, respectively.

Let λi(Σ[x]) denote the ith pole of the system Σ[x] and
λmax(Σ[x]) be the pole whose real part is greater than any
other poles, i.e.,

Re[λmax(Σ[x])] = max
i
{Re[λi(Σ[x])], ∀i}. (2)

Further, let Tziwi(s; x) denote the transfer matrix from
wi ∈ w to zi ∈ z for i = 1, 2, · · · ,m.

Now the optimization-based controller synthesis problem
considered in this paper is stated as follows: given the
objective function

J(x) := ‖Tz1w1(s; x)‖∞ (3)

and the admissible level γi > 0, find the design parameter
vector x ∈ Rn which minimizes J(x) while satisfying the
following multiple constraint conditions:

(C1) Re[λmax(Σ[x])] < 0,
(C2) ‖Tziwi

(s; x)‖∞ < γi for i = 2, 3, · · · ,m.

The case where the following form of the objective function
J(x) := Re[λmax(Σ[x])] (4)

is adopted instead of (3) is also considered.

In the following sections, a concrete procedure to deter-
mine the design parameter x ∈ Rn based on a novel
constrained PSO algorithm will be presented.

3. CONSTRAINED PARTICLE SWARM
OPTIMIZATION ALGORITHM

In this section, we first briefly describe the conventional
PSO algorithm proposed by Kennedy and Eberhart [1995].
Then, it will be presented how to handle the constraint
conditions in PSO algorithm, which plays a crucial role in
controller design problems.

3.1 Basic PSO algorithm

Consider the following optimization problem:
min

x
f(x), x ∈ Rn, (5)

where the objective function f : Rn → R and the initial
search space D ⊂ Rn, which is supposed to contain the
desired design parameters xi (i = 1, 2, · · · , n), is given by
the designer in advance.

The PSO algorithm uses a swarm consisting of np particles
to search the optimal solution x∗ ∈ Rn of (5). The position
of the ith particle is denoted as

xi := (xi,1, xi,2, · · · , xi,n)T ∈ Rn (6)
where i ∈ {1, 2, · · · , np}, and its velocity is denoted as

vi := (vi,1, vi,2, · · · , vi,n)T ∈ Rn. (7)
Then, the position of the ith particle, xi ∈ Rn, is updated
by
xk+1

i = xk
i + vk+1

i , (8)

vk+1
i = c0v

k
i + c1r

k
1,i(x

best,k
i − xk

i ) + c2r
k
2,i(x

best,k
swarm − xk

i ),
(9)

where the inertia factor c0, the cognitive scaling factor
c1 and the social scaling factor c2, which are given by the
designer, influence on the particle trajectories and thus the
convergence and search diversity properties. The random
numbers rk

1,i and rk
2,i are uniformly distributed in [0, 1] and

represent the stochastic behaviors. In (9), xbest,k
i is defined

as
xbest,k

i := arg min
xj

i

{f(xj
i ), 0 ≤ j ≤ k} (10)

and denotes the best previously obtained position of the
ith particle. Also, xbest,k

swarm is defined as
xbest,k

swarm := arg min
xk

i

{f(xk
i ), ∀i} (11)

and denotes the best position in the entire swarm at the
current iteration k.

Then, the PSO algorithm consists of the following steps:
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[Step 0] Initialize np particles with randomly chosen po-
sitions in D and evaluate the corresponding objective
function value at each position. Set k = 0. Determine
xbest,0

i and xbest,0
swarm.

[Step 1] If the termination criterion is satisfied, the algo-
rithm terminates with the solution

x∗ := arg min
xj

i

{f(xj
i ), ∀i, j}. (12)

Otherwise, go to Step 2.
[Step 2] Apply (8) and (9) to all particles and evaluate

the corresponding objective function value at each posi-
tion. Set k = k + 1. Determine xbest,k

swarm and xbest,k
i , and

then go to Step 1.

In this paper, the parameters c0, c1 and c2 in (9) are set
as c0 = 0.9, c1 = c2 = 0.8, and the iteration of (8) and
(9) is terminated when the iteration number k exceeds the
predefined number kmax.

3.2 Constrained PSO algorithm

In optimization-based controller design problems, it is
crucial to take the given constraint conditions into account
in the optimization process.

Therefore, a reasonable and reliable way to handle such
constraints in PSO framework is proposed in this subsec-
tion, which exploits the flexibility of PSO and does not
destroy any merits of PSO.

First, consider the optimization problem subject to multi-
ple constraint conditions:

min
x∈F

f(x), F = {x ∈ Rn| h(x) < 0} , (13)

where the function h : Rn → Rm and F denote the
constraints and the feasible region, respectively. Here, it is
assumed that F is not empty. Next, a novel way to handle
the constraints in PSO framework is presented. We first
find a virtual objective function fv(x) : Rn → R which
satisfies the following two properties simultaneously:

(P1) fv(x) < 0 holds for any x ∈ F,
(P2) fv(xa) < fv(xb) holds whenever f(xa) < f(xb) is
satisfied.

Note that such fv(x) always exists. In fact, one possible
candidate of fv(x) is

fv(x) := arctan {f(x)} − π

2
. (14)

Then, based on the above virtual objective function fv(x),
the constrained optimization problem (13) is modified as
the following unconstrained one:

minimize
x∈Rn

fm(x) (15)

with

fm(x) :=
{

hmax (x) if hmax(x) > 0
fv(x) otherwise

(16)

where
hmax (x) := max [h1(x), h2(x), · · · , hm(x)] (17)

and hi(x) denotes the ith entry of h(x) in (13). It is ob-
vious that we can obtain a solution of the constrained op-
timization problem (13) by optimizing the unconstrained
problem (15)-(16) using the ordinary PSO scheme given
in Section 3.1.

It may be in order to give some remarks on the merits of
the proposed method. Most important advantage of the
proposed method is that it is applicable to a broad class
of problems, since it does not require for f(x) and h(x) to
be continuous, differentiable nor convex with respect to x.
This feature is in contrast with ALPSO by Sedlaczek and
Eberhard [2006]. In addition, the proposed method does
not introduce any additional decision variables such as the
coefficients of the augmented Lagrangian in ALPSO.

3.3 Reduction of computational burden

This subsection discusses how to improve the computa-
tional efficiency in the proposed method.

First of all, note that since PSO needs only xbest,k
swarm and

xbest,k
i in its update process (8) and (9), it is enough to

judge whether each particle could be such best ones or
not. Thus, evaluation of the accurate value of the objective
function performed in [Step 2] of the basic PSO algorithm
(Section 3.1) is can be skipped for most particles.

Suppose xbest,k
swarm and xbest,k

i are determined by evaluating
fm(xk

1), fm(xk
2), · · · , fm(xk

np
) in this order. In this case, if

we can conclude that fm(xk
i ) is greater than

max
[
fm(xbest,k−1

i ), min
j=1,2,··· ,i−1

{fm(xk
j )}

]
, (18)

it implies that the particle xk
i can be neither xbest,k

swarm nor
xbest,k

i . Therefore, more precise evaluation of fm(xk
i ) is

not required at all.

Based on this fact, we can reduce the computational
burden in the proposed method as shown below:

(A) Exploitation of the structure of fm(·):
The definition in (16) indicates that the value of fm equals
to fv or hi > 0 (i = 1, 2, · · · , m) and if any of them
turns out to be greater than the value of (18), no more
calculation of other functions are needed. For example, if
h1 (> 0) exceeds (18), then we can skip the calculation of
hj (2 ≤ j ≤ m) and fv. This improves the computational
efficiency.

(B) Exploitation of the properties of fv(·) and h(·):
For some cases, it costs much cheaper to evaluate whether
the function value exceeds some given level or not, instead
of calculating its precise value. Hence, if an objective func-
tion fm is composed of such functions, the computational
burden could be reduced by checking whether it exceeds
(18) or not, before the precise calculation of the function
value. This is the case for controller design problems deal-
ing with the H∞ norm and the system poles.

4. SYNTHESIS OF FIXED-STRUCTURE H∞
CONTROLLERS

In this section, we present a design procedure based on the
constrained PSO algorithm developed in Section 3 for a
fixed-structure controller satisfying the given performance
specifications. Also, several numerical examples are given
to evaluate its effectiveness.
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4.1 Controller synthesis procedure

First, note that it is straightforward to obtain the desired
fixed-structure controller if we introduce the constrained
PSO technique developed in Section 3.

In order to design a controller by minimizing J(x) in (3)
or (4) subject to (C1) and (C2) in Section 2, it is enough
to solve the optimization problem of form (15)-(16). Here,
fv(x) and h(x) could be set in the following manners:

[Case A] If J(x) := ‖Tz1w1(s; x)‖∞ is given, an example
of fv(x) satisfying (P1) and (P2) in Section 3.2 is given
by

fv(x) = −‖Tz1w1(s;x)‖−1
∞ . (19)

Then, the constraint function h(x) is set as

h(x) =




Re[λmax(Σ[x])]
‖Tz2w2(s; x)‖∞ − γ2

...
‖Tzmwm(s; x)‖∞ − γm


 . (20)

[Case B] If J(x) = Re[λmax(Σ[x])] is given, it is enough
to choose

fv(x) = Re[λmax(Σ[x])], (21)
and

h(x) =




Re[λmax(Σ[x])]
‖Tz2w2(s; x)‖∞ − γ2

...
‖Tzmwm(s; x)‖∞ − γm


 . (22)

Therefore, all we have to do is to solve (15)-(16) using the
above defined fv(x) and h(x) via the PSO algorithm given
in Section 3.1.

At the current stage, it is difficult to guarantee the
performance theoretically because the property of PSO
has not been well analyzed. Thus, it would be better
to evaluate roughly the probability of finding feasible
solutions through the proposed method. Also, it may
not be clear if we can find a controller achieving better
performance compared to the existing methods. Therefore,
in the following, we evaluate these two points in various
numerical examples.

4.2 Numerical examples

Example 1 Consider the unity feedback system Σ1[x]
consists of the linearized model of the experimental mag-
netic levitation system

P (s) =
7.147

(s− 22.55)(s + 20.9)(s + 13.99)
(23)

and the PID controller

K(s;x) = 10x1

(
1 +

1
10x2s

+
10x3s

1 + 10(x3−x4)s

)
(24)

where x := (x1, x2, x3, x4)T denotes the design parameter
vector. Each element of x corresponds to the proportional
gain, the integral time, the derivative time, and the param-
eter to assure the properness of the obtained controller,
respectively (Refer to Sugie et al. [1993] and Kim et al.
[2007] for details). Suppose that the initial search space of
the design parameter is given by
D := {x ∈ R4| [2,−1,−1, 2]T ≤ x ≤ [4, 1, 1, 3]T }. (25)

Then, our aim is to find x ∈ R4 which minimizes
Re[λmax(Σ1[x])] subject to the following multiple H∞ con-
straints:

‖WS(s)S(s; x)‖∞ < 1, ‖WT (s)T (s; x)‖∞ < 1 (26)
where S(s;x) := 1

1+P (s)K(s;x) is the sensitivity function,

T (s; x) := P (s)K(s;x)
1+P (s)K(s;x) is the complementary sensitivity

function, and WS(s) and WT (s) are set as
WS(s) := 5/(s + 0.1), (27)
WT (s) := 4.3867× 10−7(s + 0.066)

× (s + 31.4)(s + 88)(104/(s + 104))3. (28)
Note that the conventional methods are not able to handle
problems like this one which has multiple H∞ constraints.

In order to design K(s; x), the developed constrained PSO
algorithm is introduced, where the swarm size np = 100
and the maximum iteration number kmax = 400. We run
the algorithm 100 times with different initial populations.
Then, we succeed in obtaining feasible solutions (i.e.,
controllers satisfying the constraints are obtained) in 93
trials out of 100 trials.

Fig. 1 shows the convergence property of the proposed
constrained PSO algorithm for this example. 93 lines in
this figure correspond to 93 succeeded trials and horizontal
axis shows the elapsed calculation time. Each line in the
figure shows the current best obtained controller perfor-
mance at elapsed calculation time. This figure shows that a
controller satisfying the given multiple robust performance
criteria could be found within 400 seconds in average trial.
It means that if we run the developed constrained PSO
algorithm several times, a feasible solution can be found in
an acceptable time and with a high probability of success.

In our experiment, the best design parameter is
x∗ = [3.2583,−0.8157,−0.7564, 2.3286]T , (29)

and thus the corresponding PID controller is obtained as

K(s) = 1821.6
(

1 +
1

0.1529s
+

0.1752s

1 + (8.2224× 10−4) s

)
.

(30)
Though the figure is omitted due to the page limitation,
it is confirmed that constraints on the sensitivity func-
tion S(s; x∗) and the complementary sensitivity function
T (s; x∗) in (26) are satisfied.

Example 2 Consider the linear time-invariant general-
ized plant G(s) described by[

ẋp

z
y

]
=

[
A B1 B2

C1 D11 D12

C2 D21 D22

][
xp

w
u

]
. (31)

In this example, the plant is the linearized model of F-8
aircraft treated in Apkarian et al. [2003], Calafiore et al.
[2000] and Saeki [2006b]. (see them for the detail of system
parameters) The controller K(s) is the first-order output
feedback one described by

ẋk = Akxk + Bky,
u = Ckxk + Dky.

(32)

For the above system, the optimization-based controller
design problem is as follows: minimize ‖Tzw(s)‖∞ of the
closed-loop system Σ2[x] consists of G(s) and K(s) subject
to the constraint on internal stability.
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Fig. 1. Convergence property for Example 1

The above-mentioned controller design problem can be
solved via the proposed constrained PSO method by
setting the design parameter x := (x1, x2, · · · , x9)T ∈ R9

as
[

AK BK

CK DK

]
=




x1 x2 x3

x4 x5 x6

x7 x8 x9


 . (33)

The initial search space is supposed to be given by
D := {x ∈ R9| − 5 ≤ xi ≤ 5, i = 1, 2, · · · , 9}. (34)

Now, in order to obtain x∗, we solve (15)-(16) with

fv(x) = −‖Tzw(s;x)‖−1
∞ , (35)

h(x) = Re [λmax(Σ2[s; x])] , (36)
which corresponds to [Case A] in Section 4.1. We run the
algorithm 81 times with the number of particles nP =
300 and the maximum iteration number kmax = 400. In
all 81 trials, feasible solutions are found. Average time
consumed to achieve 400 iterations was about 650[sec].
The experimental results are summarized in Table 1. It
is important to note that, if required, we can readily
add an additional performance specification on the pole
placement, and a desirable controller can be developed
through the proposed method without any difficulty.

The obtained best design parameter x∗ is


x∗1 x∗2 x∗3
x∗4 x∗5 x∗6
x∗7 x∗8 x∗9


 =



−21.1183 −1.5886 11.0822
−2.9907 0.4011 −0.5268
−20.0049 0.4298 −0.9064


 , (37)

and the corresponding H∞ performance index is
‖Tzw(s; x∗)‖∞ = 1.7092. (38)

In Calafiore et al. [2000], they applied a randomized
algorithm to solve the above problem, and then obtained
‖Tzw(s)‖∞ = 4.8937. Also, in Apkarian et al. [2003], they
used a partially augmented Lagrangian method to obtain
‖Tzw(s)‖∞ = 1.821. From these observations, we can see
that although our method is by far the simplest one, it can
produce better results in comparison with the conventional
methods.

Table 1. Statistical result of Example 2

Best Mean Worst St. Dev.

‖Tzw(s)‖∞ 1.7092 1.7775 2.3732 0.0996
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Fig. 2. Bode plot of the sensitivity function with obtained
controller

Example 3 In order to show the effectiveness of our con-
troller design methodology over against the mixed prob-
abilistic/deterministic approach by Fujisaki et al. [2006,
2007], the example presented in Fujisaki et al. [2007] is
handled by the proposed method.

Consider the unity feedback system Σ3[x] consists of

P (s) =
17 (1 + s) (1 + 16s)

(
1− s + s2

)

s (1− s) (90− s) (1 + s + 4s2)
(39)

and

K(s) =
θ0 + α0s + θ2s

2

1 + µ0s + β2s2
. (40)

Let x := (θ0, α0, θ2, µ0, β2)T denote the design parameter
vector. Its initial search space is supposed to be given by

D := {x ∈ R5| − 5 ≤ xi ≤ 5, i = 1, 2, · · · , 5} (41)
based on the problem setting in Fujisaki et al. [2007].
Note that the search spaces of θ0 and θ2 are not specified
in their method, since these are not determined in a
probabilistic way. In Fujisaki et al. [2007], two types
of fixed-structure controllers are designed following two
different performance specifications: (i) the first one is
designed to satisfy the following pole placement condition

Re [λmax(Σ3[s; x])] < −0.2, (42)
(ii) the second one is designed to satisfy the following H∞
performance condition

‖W (s)S(s;x)‖∞ < 1 (43)
where W (s) is given as

W (s) :=
55 (1 + 3s)
1 + 800s

. (44)

Here, in order to find x ∈ R5 which satisfies both of
these conditions (42)-(43) simultaneously, we solve (15)-
(16) with

fv(x) = Re [λmax(Σ3[s; x])] , (45)

h(x) =
[

Re [λmax(Σ3[s; x])]
‖W (s)S(s; x)‖∞ − 1

]
, (46)

which corresponds to [Case B] in Section 4.1. The number
of particles is set as np = 300 and the maximum iteration
number is kmax = 200. Then, we run the algorithm 173
times, and feasible solutions are found in 68 trials (i.e.,
39%).

The best controller obtained from the above procedure is
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K(s;x∗) =
−0.5891− 0.7339s +−2.5918s2

1− 0.5578s− 1.555s2
, (47)

and the poles of the corresponding closed-loop system
are −19.4482, −0.5780 ± 0.4914j, −0.5834 ± 0.2620j and
−0.5885 ± 0.0737j. Thus, Re [λmax(Σ3[s; x])] = −0.5780,
which verifies that the pole placement specification is
guaranteed with a considerable margin. Fig. 2 shows the
gain plot of the corresponding sensitivity function S(s;x∗),
which verifies the given constraint condition is guaranteed.

5. CONCLUSION

In this paper, we have proposed a design method of fixed-
structure robust controllers satisfying multiple H∞ norm
specifications by using a sort of randomized algorithms,
which is easy to use for most practical engineers. First,
a new PSO based optimization tool which can handle
inequality constraints is developed. Since the method re-
quires few assumptions on the objective function and
the algorithm is so simple, it is applicable for a broad
class of non-convex problems directly. In addition, it is
shown how to reduce the computation burden including
the exploitation of the specific property of H∞ control
performance. Second, it is shown how to obtain a fixed-
structure controllers satisfying multiple H∞ specifications
via the developed method. It directly deals the multiple
specifications without introducing any relaxations or con-
servative assumptions, and it is straightforward to take
any fixed-structure into account in the controller design. It
should be stressed that the method is so simple that most
practical engineers can use it without any difficulty. Third,
its effectiveness has been evaluated through extensive nu-
merical examples, where it is observed that the proposed
method always succeeds to find a fixed-structure controller
which outperforms the existing methods in various cases
such as constant output feedback and PID controllers.

Note, however, that it is not guaranteed that the proposed
method always can find a solution even if feasible solutions
exist, because the PSO inherently relies on the randomized
variables. Therefore, it is important to study the global
convergence of the PSO theoretically. Nevertheless, all
numerical examples exhibit that it is very likely to obtain
a controller which outperforms the existing ones if we run
the algorithm a few dozen times with different initial con-
ditions. Therefore, combined with its easy-to-use property,
the method is NOT trivial at all from the practical point
of view.
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