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Abstract: Recent technological progress in insulin pumps and continuous glucose monitors (CGM) are enabling 
development of an artificial β-cell that will allow superior glycemic control for patients with type 1 diabetes mellitus 
(T1DM). A control algorithm that is implemented in such system will need to regulate basal insulin as well as to reject 
unmeasured disturbances, such as meals. A traditional approach is to combine feed-forward control as a means to 
overcome meal disturbances, where the user informs the controller on a meal and estimates the size of that together 
with PID control or Model Predictive Control (MPC) to address the regulation problem. This approach fails with 
T1DM adolescents and children because they often forget to give a pre-meal bolus and are poor at estimating meal 
sizes.  A novel approach to overcome this problem is suggested in this paper by the combination of a meal library and 
a meal detection algorithm in the framework of Model Predictive Control (MPC). In this work, the challenging 
problem of an unannounced mixed meal is being addressed using this novel combination. 

 

1. INTRODUCTION 
Type 1 diabetes mellitus (T1DM) is an autoimmune disease 
characterized by the destruction of pancreatic β-cells that are 
responsible for the production of insulin.  As a result, 
exogenous insulin is required to regulate glucose levels in 
patients with type 1 diabetes.   Currently, glucose sensors and 
insulin pumps are used independently by paitients in an 
attempt to maintain normoglycemia. Recent advances in 
insulin pumps and glucose sensing technology suggest that a 
closed-loop artificial β-cell for T1DM could soon be available 
with suitable control algorithms (Hovorka et al. 2006; Gillis et 
al. 2007). Development of automated control sets a basic 
requirement: perform at least as well as a patient that uses 
bolus dosing effectively. The ultimate goal of the automated 
system is to be able to fully mimic the pancreatic β-cells. The 
automated closed-loop artificial β-cell is a challenging control 
problem due to uncertainty in the available data, the difficulty 
of developing accurate models and the nature of unmeasured 
disturbances. This challenging problem can be divided into 
two control objectives, the first is a regulation of basal insulin 
and the second is disturbance rejection including meals, 
stress, and physical activity. 

Hence, any controller that will be implemented in such a 
system should address these issues and be conservative with 

disturbances rejection (such as meals), since overdosing of 
insulin can drive the patient to severe hypoglycemia and a 
controller only delivering insulin cannot provide adequate 
counter-regulation.. 

A traditional control approach for this kind of problem is to 
combine a feed-forward controller as a mean to overcome 
meal disturbances, where the user informs the controller about 
a meal, together with a PID controller Steil (2006) or Model 
Predictive Control (MPC) Hovorka (2004) to address the 
regulation problem. These can be considered reasonable for 
patients who are able and willing to take control of the 
disease; however, they are not valid for patients who do not, 
or cannot, assume this responsibility.  

A novel approach to overcome this problem is suggested in 
this paper by the combination of a meal library and a meal 
detection algorithm in the framework of MPC. This 
combination permits flexible control over an extensive range 
of conditions with minimal user intervention. The 
performance of the proposed strategy is evaluated using a 
meal library that allows various meal compositions (e.g.  type 
of carbohydrate,  fat, and  protein) as well as different meal 
sizes and serves as in-silico test bed.  

The remainder of this paper outline is as follows: Section 2 
presents a library of glucose absorption profiles containing 
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different compositions of mixed meals; Section 3 introduces 
the meal detection algorithm; Section 4 presents the proposed 
control strategy; Section 5 presents simulation results; Section 
6 concludes the paper and proposes future research. 

2. GLUCOSE ABSORPTION MODEL LIBRARY  
The modeling of hepatic balance, insulin absorption and the 
independent/dependent insulin utilization has been 
extensively investigated for a number of years: Bergman 
(2003),  Cobelli (1982) and Hovorka (2004). However, less is 
known about   intestinal absorption patterns (Dalla Man et al. 
2006), which makes the task of developing a general and 
accurate mathematical model for glucose rate of appearance 
following mixed meals a challenging task. A practical 
solution to overcome this difficulty has been presented by the 
authors in the form of a library of glucose absorption profiles 
for different types of mixed meals (Herrero et al. 2007). 

The library has been constructed based upon a simulation 
model of the glucose-insulin system in the postprandial state 
by Dalla Man (2007) together with published data from 
studies on the effect of the meal composition (e.g. 
carbohydrate type, fat) on the plasma glucose and insulin 
concentrations of healthy subjects (Normand et al. 2001; Frost 
et al. 2003; Galgani et al. 2006).   

Simulation model parameters are based on data from a large 
database of normal subjects who underwent a triple-tracer 
meal protocol with a fixed meal composition. The library 
consists of a set of mixed meals represented by the set of 
parameters corresponding to the glucose absorption sub-
model. 

The model equations for the glucose absorption sub-model 
are: 
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where qsto1(t) and qsto2(t) are the amounts of glucose in the 
stomach (solid and liquid phase, respectively); δ(t) is the 
impulse function; D is the amount of ingested glucose; qgut(t) 
is the glucose mass in the intestine, k21 the rate of grinding; 
kempt the rate of gastric emptying; kabs the rate constant of 
intestinal absorption; and f the fraction of the intestinal 
absorption which actually appears in plasma. The nonlinear 
representation of the gastric empting  by Dalla Man (2007) is 
described in the following equations:  
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where kmin and kmax are the minimal and maximal absorption 
rates respectively, b is the percentage of the dose for which 

kempt  decreases at (kmax – kmin)/2. Similarly, c is the percentage 
of the dose for which kempt is back to (kmax – kmin)/2. 

Limited published data on the effect of meal composition on 
plasma glucose and insulin concentrations for T1DM subjects 
forced the authors to rely on data from healthy subjects. This 
can be justified by the fact that the glucose absorption 
physiology is similar in T1DM and healthy subjects. 
Furthermore, with healthy subjects, there is less interference 
since the endogenous glucose production is mostly suppressed 
in the prandial period.  

The parameters of the glucose absorption sub-model (kmax, 
kmin, kabs, ,b and d), were fitted for various compositions of 
mixed meals by the constrained optimization routine fmincon 
(The MathWorks, Inc., Natick, MA), by introducing plasma 
insulin profiles and carbohydrate amount to the glucose-
insulin simulation model. The constrains for such 
optimization were derived from physiological data. 

Fig.  1 presents an example of an absorption profile, which 
has been developed based on the mixed meal with the 
composition and nutritional characteristics shown in Table 1. 
The line with red squares in the top graph represents the 
measured glucose concentration; the solid green line 
corresponds to the simulated response with the identified 
parameters. The bottom figure shows the corresponding 
glucose absorption profile where the corresponding fitted 
parameters of the glucose absorption sub-model  with their 
coefficient of variation (CV)  values  are listed in Table 2, 
(Cobelli and Carson 2007). 

Table 1. - Nutritional characteristics of the identified low 
glycemic meal consist of : long-grain white rice, low-fat 
cheese, fructose, pear, bran-cookies and oil (Galgani et al. 
2006) 

Energy (KJ) 1516±35 
Carbohydrates (g) 52.4±1.2 

Fat (g) 10.5±0.2 
Protein (g) 14.5±0.3 

Dietary fiber (g) 2.9±0.1 
Energy density (KJ/g) 3.93±0.02 

Glycemic load (g) 22±2 
Glycemic index (%) 43 
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Fig.  1 – Example of plasma glucose and glucose absorption 
profile of the mixed meal (Table 2); Measured glucose 
concentration is denoted by red squares, simulated response as 
a solid green and the corresponding glucose absorption profile 
as a solid red line. 

Table 2. - Indentified parameters 

Parameter kmax kmin kabs B D 
Value 0.0516 0.0135 0.0222 0.8203 0.0074 

CV (%) 42.5 48.5 75.5 23 52 
 
 

3. MEAL DETECTION 
A meal event is one of the largest disturbances that a control 
algorithm for an artificial β-cell must manage. However, to 
achieve a fully automated closed-loop system, we advocate 
that the controller be informed about the meal event in order t 
to eliminate the disturbance without causing postprandial 
hypoglycemic due to excessive insulin delivery.  One way to 
automate the response to a meal event was suggested by 
Dassau (2007), where the glucose rate of change estimated 
from CGM data is used to flag a meal. A detailed description 
of the detection algorithm can be found in  (Dassau et al. 
2008). For this implementation, a simplified algorithm is 
implemented to notify the MPC of the upcoming meal. The 
glucose rate of change is estimated using a three point 
(current and two previous samples) backward difference 
calculation with a set of heuristics to filter noise and signal 
drops. It has been shown that the meal detection algorithm can 
flag a meal in less than 30 min from the meal onset,when the 
glucose has increased no more than 30 mg/dL from the base 
line (pre-meal). This encouraging result permits automated 
control action in sufficient time to avoid a prolonged post-
prandial hyperglycemic event. 

 4. METHODOLOGY 
We propose to use a MPC controller with a meal detection 
algorithm and a meal library, as a control solution that can 
cope with unannounced mixed meals in the context of a fully 
closed loop artificial β-cell.  The development environment of 
Matlab® and Simulink® (The MathWorks, Inc., Natick, MA) 
with the Matlab® MPC toolbox were selected for this 
implementation. We then introduced the aforementioned 

glucose-insulin simulation model for a T1DM patient (Dalla 
Man et al. 2007) as an in silico “process plant”. In particular, 
subject #2 was selected from the associated database as the 
plant. The Jacobian of the same model with a different set of 
parameters (subject #1), was considered as the prediction 
model for the MPC controller. This mismatch is introduced in 
order to make the simulations more realistic. Fig.  2 shows the 
mismatch between the two models for the previously 
described mixed meal and a same insulin bolus of 3.5U and 
the corresponding basal insulin infusion. Solid red line and 
dotted green corresponds to patient 1 and patient 2 
respectively.  
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 Fig.  2 – Model mismatch between patient #1 denoted as a 
red solid line and patient #2 as a dashed green line.  

A summary of this combined strategy is presented in Fig.  3. 
Glucose values are conveyed to the meal detection algorithm 
as soon as a meal is detected, a flag is sent to the controller to: 
(a) switch from a constant reference (e.g. 90 mg/dL) to a 
variable one (e.g. trapezoidal, (Hovorka et al. 2004; Ruiz-
Velazquez et al. 2004; Bequette 2005) that is a more 
physiological trajectory that mimics the normal glucose 
profile to a meal intake. This minimizes the risk of severe 
hypoglycemic events due to less aggressive control action; (b) 
a generic glucose absorption profile is introduced to the 
controller as an additional input (measured disturbance) to 
improve the controller prediction and performance since the 
composition and meal size is unknown.  
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Fig.  3 – Flow diagram of the combined approach of MPC 
with meal detection and the corresponding detection outputs 
(a) variable setpoint and (b) absorption profile. 

5. RESULTS 
In order to evaluate the proposed approach, four different 
configurations are presented: (1) simple MPC without meal 
detection (i.e. unannounced meal); (2) MPC with meal 
detection and variable reference; (3) MPC with meal 
detection, variable reference and generic glucose absorption 
profile; (4) MPC with meal announcement, variable reference 
and generic glucose absorption profile (i.e. user intervention). 
The last configuration serves to quantify the delay associated 
with meal detection and its reflection on the controller 
performance. 

 All four configurations were challenged with the same mixed 
meal, previously described Section 2 and with the same MPC 
tuning. 

The MPC prediction and control horizons have been set to 2 
hours, and 15 minutes, respectively. No significant 
improvements were observed for longer horizons. The 
controller weight were [1,0.01] for the output (Wy)  and input 
(Wu)  respectively and the sampling time was set to 5 minutes 

As for constraint on the input, the physical constraints of an 
actual insulin pump were used ([0,72] U/hr). At no time 
during the in silico trials were these constraints violated. 

To allow comparisons, a basal glucose level of 90 mg/dL and 
a meal intake at 100 minutes from time zero were selected for 
all four scenarios. The following line codes are used:  setpoint 
as a red dotted line; plasma glucose as a blue line; 
hypoglycemic boundary (70 mg/dL) as a green dashed line, 
meal flag point as a green circle and controller moves as a 
black line in the lower plot 

5.1 Configuration #1 – Simple MPC (no meal detection) 

This configuration represents the results of a simulation when 
a MPC controller with a constant setpoint of 90 mg/dL needs 
to reject a meal disturbance. As presented in Fig. 4, the 
response provided by the controller is completely 
unacceptable from a clinical point of view, since a severe 
hypoglycemic state is reached. This is mainly due to the large 
mismatch between the prediction model and the plant, which 
is often the case in reality.  
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Fig. 4 – Simple MPC with no meal detection. 15 U of insulin 
were used to cover the meal (lower figure in black), which led 
to severe hypoglycemia. The setpoint denoted by the red 
dotted line, plasma glucose with blue solid line, hypoglycemic 
boundary (70 mg/dL) with green dashed line and controller 
moves with the black line in the lower plot. 

5.2 Configuration #2 - MPC with meal detection and variable 
reference 

As can be seen from Fig.  5, as soon as a meal is detected    (~ 
12 min from the onset of the meal) a trapezoidal reference is 
triggered which notably improves the response to this 
disturbance. Nevertheless, a small hypoglycemic event is 
observed. As expected, the reference shape notably affects the 
controller performance to a specific meal event. By selecting 
a generic shape, an improved level of performance can be 
observed with respect to a constant setpoint. 
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Fig.  5 – MPC with meal detection and variable reference. 
11.5 U of insulin were used to cover the meal, which led to a 
mild hypoglycemia. The setpoint denoted by the red dotted 
line, plasma glucose with blue solid line, hypoglycemic 
boundary (70 mg/dL) with green dashed line, meal flag point 
with the green circle and controller moves with the black line 
in the lower plot. 

5.3 Configuration #3 - MPC with meal detection, variable 
reference and estimated glucose absorption profile 

In this configuration, in addition to the trapezoidal reference, 
generic meal absorption and sensor noise are introduced.  The 
absorption sub-model from Hovorka et al (2004) is used to 
generate the profile. As can be seen from Fig.  6, this addition 
improves the controller performance and its ability to follow 
the trajectory setpoint regardless of some oscillations, which 
are perfectly justifiable. Moreover, no postprandial 
hypoglycemic events were present. The parameter values for 
the glucose absorption sub-model are: Dg=45g, Ag=0.8 and 
tmax=70. 
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Fig.  6 – MPC with meal detection, variable reference and 
estimated glucose absorption profile and process noise of ± 3 
mg/dL. 11 U of insulin were used to cover the meal. The 
setpoint denoted by the red dotted line, plasma glucose with 
blue solid line, hypoglycemic boundary (70 mg/dL) with 
green dashed line, meal flag point with the green circle and 
controller moves with the black line in the lower plot. 

5.4 Configuration #4 - MPC with meal announcement, 
variable reference and estimated glucose absorption 
profile 

This configuration is intended to evaluate a scenario in which 
the user informs the controller of a meal event. The following 
steps are taken as soon as such information is reveled to the 
controller: (a) setpoint change (trapezoidal reference) is 
delayed for 15 minutes from the meal announcement in order 
to contemplate the glucose absorption delay, (b) a more 
accurate absorption profile is estimated since, the amount of 
carbohydrates is considered to be approximately known. The 
parameter values for the glucose absorption sub-model are: 
Dg=52g, Ag=0.8 and tmax=70.  
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Fig.  7 – MPC with announced meal, variable reference and 
generic glucose absorption profile. 10 U of insulin were used 
to cover the meal. The setpoint denoted by the red dotted line, 
plasma glucose with solid blue line, hypoglycemic boundary 
(70 mg/dL) with green dashed line and controller moves with 
the black line in the lower plot. 

As was expected, the controller performance for the 
announced meal case 4 (Fig.  7) is better than the case with 
meal detection, but only modestly. Hence, the delay 
introduced by the meal detection algorithm does not affect 
significantly the performance of the controller. 

Table 3. – Clinical results summary 

Configuration  1 2 3 4 
Insulin units to cover the 
meal (U) 

15 11.5 11 10 

Hypo event Yes - 
severe 

Yes - 
mild 

No No 

Glucose maximum 
(mg/dL) 

140 170 156 141 

Glucose minimum 
(mg/dL) 

15 55 80 74 

Time for glucose to return 
to premeal baseline * (min) 

700 700 270 690 

*Premeal glucose values were between 80 to 100 mg /dL  

6. CONCLUSIONS 
A novel approach for glucose control consisting of the 
combination of a meal detection algorithm together with a 
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variable setpoint and an absorption profile achieved both the 
minimization of post-prandial hyperglycemia and postprandial 
hypoglycemia as can be seen in Table 3. Furthermore, it has 
been shown that the time delay, which is introduced by the 
meal detection, has only a minor effect on the controller 
performance. Hence, this can serve as a fall back to meal 
announcement. We can conclude that an artificial β-cell 
incorporating such an approach will allow flexibility and 
better control performance in uncertain conditions. In the 
future, clinical evaluations of the simulation results are 
needed to fully examine the combined approach. 
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