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Abstract: This paper presents an efficient optimization algorithm for mixed integer nonlinear 
programming (MINLP) problem resulting from multiple partially linearized (MPL) model based control of 
nonlinear hybrid dynamical system (NHDS). The algorithm uses structural information of the canonical 
MPL framework and derives comparatively easier quadratic programming (QP) primal problem as well as 
an MILP master problem for generalized outer approximation (GOA) algorithm, a decomposition based 
solution strategy for MINLP. Computational efficiency of the algorithm over the branch and bound 
strategy is demonstrated using a simulated benchmark three-spherical tank system. 

 

1. INTRODUCTION 

Hybrid systems are used to describe processes that involve 
continuous dynamics in addition to discrete (logical) decisions 
(Branicky et al., 1998; Bemporad and Morari, 1999) and have 
found applications in manufacturing systems, automobile 
control, and computer disk drive control among others. 
Although the use of a hybrid system framework in modeling 
and control of chemical processes has emerged only recently, 
large continuous plants have always used logic controllers to 
implement safety features such as the triggering of a coolant 
pump and the various safety interlocks. However, current 
trends in the chemical process industry emphasize the need 
for flexible processing, which invariably necessitates a greater 
degree of logical decision-making along with the continuous 
control laws.  
 
A number of modeling formalisms that represent nonlinear 
hybrid dynamical systems (NHDS) have been proposed in 
literature (Branicky et al., 1998; Engell, 1998; van der Schaft 
and Schumacher, 2000; Buss et al., 2002). These formalisms 
can be broadly assigned to the following three categories 
(Kowalewski, 2002): (i) a discrete formalism, such as finite 
automata, that can be extended with continuous variables 
resulting in hybrid frameworks such as timed automata and 
hybrid Petri Nets, (ii) a continuous formalism that can 
accommodate discrete variables or logical conditions by 
appropriately switching between system dynamics, and (iii) an 
approach that directly combines the continuous subsystem 
with its discrete counterpart through an interface. These 
models play a key role in various aspects of hybrid systems 
such as simulation, verification, identification, optimization 
and control. Optimal feedback control, such as model 
predictive control, of NHDS is challenging since this typically 
requires an online solution of a mixed integer 
nonlinear/quadratic program (MINLP/MIQP) within a small 
fraction of the sampling period. This impediment to control of 
NHDS can be addressed along three paths: (i) efficient 
representation of the NHDS, (ii) efficient algorithms for 
solution of MINLP/MIQP (iii) enhanced computer speed.  

 
Our earlier work (Nandola and Bhartiya, 2008) addressed the 
first aspect by modeling the NHDS using a multiple, partially 
linearized (MPL) scheme. Each linearized model is a local 
representation of all locations of the hybrid system. These 
models are then combined using Bayes theorem to describe 
the nonlinear hybrid system. The multiple models, which 
consist of continuous as well as discrete variables, are used 
for synthesis of a model predictive control (MPC) law. The 
MPC formulation takes on a similar form as that used for 
discrete-time control of a continuous variable system. 
Although implementation of the control law requires an online 
solution of an MINLP, the optimization problem has a fixed 
structure with certain computational advantages. These 
advantages of the MPL model over the mixed logical 
dynamical (MLD) model (Bemporad and Morari, 1999) were 
demonstrated for servo control of a benchmark three tank 
system, where all integer programs were solved using a 
branch and bound (BB) strategy.  
 
The current work examines the second impediment to control 
of NHDS by exploiting the structure of the MINLP resulting 
from the MPL model based predictive control law. We show 
that this MINLP is particularly suited for decomposition 
approaches such as generalized outer approximation (GOA) 
and generalized bender decomposition  (GBD). Specifically, 
we show that for the MPL based control law the primal 
problem of the GOA algorithm is reduced to a quadratic 
program (QP) while the master problem retains its mixed 
integer linear program (MILP) form. Thus the GOA method 
reduces to solving a series of QPs and MILPs to obtain the 
solution of the original MINLP. Both of these subproblems 
are comparatively less expensive than the NLP solutions 
needed when using the BB strategy. Moreover, the fixed 
structure of the MINLP enables us to derive analytical 
gradients for the nonlinear objective function and constraints, 
which can be used in the master problem to further speed up 
the solution.  The benefits of this algorithm relative to the BB 
strategy are demonstrated on a three-spherical tank system. 
The results confirm significant computational advantage 
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relative to previous results in Nandola and Bhartiya (Nandola 
and Bhartiya, 2008) that used a BB strategy. The current 
paper is organized as follows: Section 2 reviews MPL 
modeling and control for nonlinear hybrid dynamic (NHDS) 
system. Generalized outer approximation (GOA) algorithm in 
perspective of our MPL model based predictive control is 
discussed in Section 3. Section 4 demonstrates the 
applicability of GOA algorithm for MPL model based control 
of NHDS on three spherical tank system. Finally, the work is 
concluded in Section 5. 

 
2. MODELING AND CONTROL USING MULTIPLE 

PARTIALLY LINEARIZED (MPL) MODEL 
 
Hybrid systems may involve both continuous and discrete 
states as well as continuous and discrete inputs. Typically, the 
flow-field describing the evolution of continuous states is 
dependent on discrete phenomena characterized by discrete 
state events as well as control events due to discrete inputs. 
Buss et al. (Buss et al., 2002) modelled the nonlinear hybrid 
system by introducing discrete states ( dx ) as well as discrete 
control inputs  in addition to the continuous states ( cx ) and 
control inputs ( cu ). Their model forms the starting point for 
multiple partially linearized (MPL) model for NHDS. The 
continuous states of the hybrid system evolve based on the 
flow-field fl , which is dependent on the location l of the 
system. Upon occurrence of an event, the system jumps to a 
new location l’ which results in a change in the flow-field to 
fl’. To enable identification of the different locations and the 
transitions between them, suitable event generating functions 
sj, j = 1, 2,… ,ns are defined. When one or more of these 
functions take on a value of zero, that is sj = 0, an event is 
said to occur. State events as well as control events are 
considered, both of which are identified by event generating 
functions sj. 
 
In order to obtain a control relevant model by representing all 
locations of NHDS by a global flow-field, Nandola and 
Bhartiya (Nandola and Bhartiya, 2008) modified the HSM  for 
switched hybrid system by assigning binary indicator 
variables { }0 1 1, , , ...,∈ =j sj nδ  to each event generating 
function sj . The resulting logical expression was then 
converted into linear inequalities using equivalence with 
propositional logic expressions (such as Big-M constraints; 
see, for example, Williams (Williams, 1993) and Raman and 
Grossmann (Raman and Grossmann, 1991)). Thus, the 
modified HSM is written as follows, 

( , , )gf=c c cx x u δ                     (1) 

( )( ) ( )d
dx b δt t=                   (2) 

( ) ( ) ( )t t t+ + ≤1 2 3 4
cE u E δ E x E                   (3) 

( ) ( )t t+ −=c cx x                   (4) 

( )( ) ( )t t+ +=d
dx b δ                   (5) 

where gf is a global flow-field that subsumes all location-
dependent flow-fields fl and is parameterized by the indicator 
vector δ, whose elements are determined by inequality (3). 
Superscripts + and - indicate values of states just after and 
before occurrence of an event, respectively. Matrices iE  

(i=1,2,3,4) are constant coefficient matrices and vector db  is a 
function of binary variables δ. Note that the vector δ with ns 
binary elements can describe 2ns locations. A change in the 
status of one or more elements of δ corresponds to an event 
that may be triggered by discontinuity in states (that is, a State 
Event (SE)) and/or discontinuity in inputs (that is, a Control 
Event (CE)). If the model described by (1)-(5) is used for 
model predictive control, an online solution of an MINLP is 
required. In the remainder of this section, we describe an 
approximation of the model by using a multiple partially 
linearized (MPL) model scheme. The chief advantage of the 
MPL model is that although the controller law continues to be 
an MINLP, it takes on a canonical form for which efficient 
optimization algorithms can be tailored.  
 
Remark 1:  Elements of δ  describe discrete control inputs in 
addition to discrete states (see (2)) of the NHDS. Thus, a 
change in the status of discrete control inputs triggers a 
control event which can be identified from the status of binary 
indicator variables { }0 1 1j sj nδ , , , ...,∈ = .  
 
The MPL modeling begins with performing a Taylor series 
expansion on (1) at a point of continuous variable (xc, uc) and 
retaining binary vector δ as a parameter. Thus, one can 
obtained linearized model whose system matrices are a 
function of the binary variables δ.  Next, the linearized model 
is discretized in the time domain, which in turn will enable 
writing the prediction equations needed in MPC. 
Discretization of the linearized model starts with fixing the 
value of binary variables δ in the system matrices of the 
linearized model, thereby obtaining a model for a system at a 
fixed location. Since ns binary variables result in 2 sn  possible 
locations, one can obtain 2 sn  discrete time linear models from 
(1) and  (2). These 2 sn  models are then combined using a 
corresponding scalar logical multiplier (Colmenares et al., 
2001) i  to produce a linearized discrete-time representation 
of  (1)-(3) as follows, 

2 2 2

, , ,
1 1 1

1 Φ c
k+ k kx x u fΓ

n n ns s s

i k i i k ι i k di
i i i= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑         (6) 

3+ + ≤1 2 4
c
k k kE u E E x Eδ                 (7) 

where 
T

⎡ ⎤= ⎣ ⎦
c d

k k kx x x . The logical multiplier i is defined 

using the indicator variables kδ , and is designed to take on a 
value 1 if and only if the ith combination of the binary 
variables is encountered and zero, otherwise.  
 
Remark 2: The deviation form of variables has not been used 
as this allows representation of non-equilibrium operation, a 
common feature in hybrid systems applications, resulting in 
the affine representation.  
 
Note that the RHS of (6) consists multiplicative terms 
between binary variable δk, state variables c

kx  and inputs c
ku  

and thus the model is nonlinear. These multiplicative terms 
can be masked by introducing auxiliary binary and auxiliary 
continuous variables and its corresponding constraints to 
recast (6) and (7) into MLD model (Bemporad and Morari, 
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1999). However, the increased size of MLD imposes large 
computational burden in its use. On the other hand retaining it 
in the nonlinear form as shown in (6) and (7) is 
computationally efficient as it requires fewer number of 
variables and constraints. In addition, (6) can be represented 
in a compact vector form. Thus, (6) and (7) take the form, 

( ) ( )= + +1
c

k+ k k k k kx L x L u L fΦ Γ                                       (8) 

2+ + ≤1 3 4
c
k k kE u E E x Eδ                    (9) 

where kL ,Φ ,Γ  and f  are constituted from ,i k , Φ
i
, 

i
Γ and 

di
f , respectively. The outputs of the linearized model 

may be written as follows, 
=k ky Cx                   (10) 

Note that this model describes all locations of the nonlinear 
hybrid system in the vicinity of a single operating point. 
Similar linearized discrete-time models may obtained at 
different operating points (Ozkan et al., 2000) characterized 
by the continuous states and continuous inputs (xc, uc). These 
models are then combined using a weighting scheme such as 
Bayesian weighting (Schott and Bequette, 1997; Nandola and 
Bhartiya, 2008) to reconstitute the original nonlinear model. 
Thus, the overall weighted model may be written as follows, 

( ) ( )= + +1
c

k + k avg k k αvg k k avgx L x L u L fΦ Γ                 (11) 

2+ + ≤1 3 4
c
k k kE u E E x Eδ                 (12) 
=k ky Cx                (13)  

where , ,avg αvg avgfΦ Γ  are the blended system matrices that 
depend on weighting of the different models. Thus, (11)-(13) 
approximate the nonlinear operating range as well as all 
locations of the hybrid system. In addition, this model 
becomes linear at a particular location. Note that the structure 
of the MPL model remains unchanged for any arbitrary 
NHDS. Nandola and Bhartiya (Nandola and Bhartiya, 2008) 
derived the MPC law for NHDS which can be stated as 
follows, 

( )

min ( )
,

( ) ( )

1 2 3

1 2 3

0 1 0 1

c
k k k k k ref

c
y k k k k k refc

k k c c
k k - u k k -

H x H H

W H x H H

R R u W R R u

μ ψ

μ ψ
μ δ

μ μ

T

c T c

J

⎛ ⎞+ + −
⎜ ⎟

= + + −⎜ ⎟
⎜ ⎟⎜ ⎟+ − −⎝ ⎠

            (14) 

such that, 
( ):1 1 2 3 1 1 2 1 3 1 4

c c
k k k - k k - k k -g E E E H x H H Eμ δ μ+ + + + ≤ (15) 

:2 min 1 2 3 max
c

k k k k kg H x H Hψ μ ψ≤ + + ≤                  (16) 

{ }0,1
min max
c c c

k

k

μ μ μ

δ

nc

nb

R≤ ∈ ≤

∈
                 (17) 

where 1kH , 2kH , 3kH , 1 1k -H , 2 1k -H , 3 1k -H  are variable 
coefficient matrices which depends on the discrete decision 
variables kδ , c

kμ is a controlled vectors of continuous inputs 
(for m control horizon) and kδ  is appropriate vector of binary 
variables resulting from p step ahead prediction for m control 
moves using (11)-(13). Vector  refψ  stands for the setpoint 

trajectory.  Matrices , , ,1 2 3 4E E E E  are constant coefficient 
matrices made up of matrices , , ,1 2 3 4E E E E , respectively. 
Note that the objective function (14) and constraints, 1g  and 

2g , make the above optimization problem an MINLP. For 
details, the reader is referred to Nandola and Bhartiya 
(Nandola and Bhartiya, 2008).  
 
Nandola and Bhartiya (Nandola and Bhartiya, 2008) used a 
BB algorithm with an NLP solver to solve the MINLP (14)-
(17). They showed that their formulation has superior 
computational aspects when compared with the MLD 
framework. The BB algorithm performs a tree search in the 
space of integer variables and solves a relaxed NLP at each 
node where a subset of binary variables is fixed. The relaxed 
NLP provides a lower bound of original MINLP and this 
information is used to fathom the BB nodes. Thus, it solves a 
sequence of NLPs until all the binary variables take on value 
of 0-1. This method is computationally expensive for high 
dimensional binary variables and can be of use only for fewer 
binary variables or when the relaxed NLP is easy to solve 
(Grossmann and Kravanja, 1995). On the other hand, 
decomposition based algorithms such as generalized bender 
decomposition (GBD) (Geoffrion, 1972; Floudas, 1995) and 
generalized outer approximation (GOA) (Fletcher and 
Leyffer, 1994) have proved computationally efficient for a 
certain class of  MINLP such as mixed-integer dynamic 
optimization (MIDO) (Bansal et al., 2003). In the next 
section, we discuss the GOA method in perspective of the 
MINLP resulting from formulation of the MPL model based 
control law. 
 

3. GENERALIZED OUTER APPROXIMATION (GOA) 
FOR MPL MODEL BASED CONTROL 

 
The key idea of GOA algorithms is generation of a non- 
increasing upper bound and a non- decreasing lower bound by 
solving a series of primal problems and master problems. The 
primal problem is obtained by fixing the binary variables. 
Hence it results in an NLP whose solution represents an upper 
bound to the MINLP. The master problem is obtained via 
generation of support functions of the nonlinear objective 
functions as well as nonlinear constraints, using their linear 
approximation at current value of continuous variables (that is 
solution of primal problem) and binary variables. The master 
problem results in an MILP whose solution is a lower bound 
of the MINLP. The master problem also produces the value of 
the binary variables for next iteration. When the difference of 
lower and upper bounds lies within a user-defined tolerance, 
the algorithm terminates and the current solution of the primal 
problem and master problem correspond to optimal values for 
the continuous variables and binary variables, respectively. 
For detailed theoretical development and issues related to 
infeasibility see (Fletcher and Leyffer, 1994; Floudas, 1995). 
However, for highly non-convex problems, the linear 
approximation needed in the master problem may not result in 
an outer approximation of the original MINLP and hence may 
sometimes result in a suboptimal solution. In such problems, 
convexification methods for MINLP (Porn et al., 1999) or 
augmented penalty based methods may be used prior to 
application of this algorithm . 
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3.1 Primal problem 
 
In this work, we consider the MINLP of (14)-(17).  This 
MINLP has a canonical structure and remains unchanged for 
arbitrary nonlinear hybrid system. The objective function (14) 
of this MINLP is nonlinear in binary variables kδ  and 
quadratic in continuous variables c

kμ . The constraints 
represented by (15) and (16) are nonlinear in binary variables 

kδ and linear with respect to continuous variables c
kμ . 

Therefore, on fixing the binary variables (for example, kδ = 

k,iδ ) , the primal problem reduces to the following quadratic 
programming (QP) optimization problem,  

( ) ( )1min
2

c c c
k i k i kc

k

Q Fμ μ μ
μ

T T
p,iJ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                     (18) 

such that, 
c

i k iA bμ ≤                  (19) 

min max
c c c

kμ μ μ≤ ≤                  (20) 

where iQ , iA , Fi  and ib  are constant matrices and can be 
easily derived by fixing the value of binary variables k,iδ in 
(14) -(16) as follows,  

( )2 2k,i

T T
i y k,i uQ H W H R W R= + , 

1 3 12 ,

2

2

k i

i k,i

k,i

E E H
A H

H

−⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

( )
1 3

1 0

2 2

2 2

2 k,i k,i

k,i k

T T T
k y k,i y k,iT

i T T c T T
y k,i ref y k,i u

x H W H H W H
F

d W H W H u R W Rψ
−

⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟− −⎝ ⎠

 

( )
( )
( )

4 2 3 1 1, 1 , 3 ,

max 1 3

min 1 3

k i k i k k i

i k,i k k,i k

k,i k k,i k

E E E H x H

b H x H d

+ H x + H d

δ

ψ

ψ

− −
⎡ ⎤− − −
⎢ ⎥
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− +⎢ ⎥⎣ ⎦

 

In the above QP, suffix i denotes GOA iteration and suffix k 
indicates time instant of the MPL based model predictive 
control. The QP optimization problem is easier to solve as 
compared to the general primal problem which is a NLP. Note 
that the solution of this problem results in the current best 
value of continuous variables (that is ,

c
k iμ ) and current upper 

bound (that is , ,UB i p iJ J= ) of MINLP. 
 
3.2 Master problem 
 
The master problem relaxation is obtained via outer 
approximation of the original MINLP. This relaxation varies 
with the feasibility of the primal problem. For the case of a 
feasible primal problem, the master problem is obtained by 
outer approximation of nonlinear objective function (14) as 
well as the nonlinear constraints (15) and (16) at ( ), ,c

k i k,iμ δ . 
On the other hand, for the case of infeasible primal problem, 
the master problem is obtained by considering the outer 
approximation of the nonlinear constraints alone without 
considering outer approximation of nonlinear objective 
function (Floudas, 1995). Thus, the master problem reduces to 
the following mixed integer linear programming (MILP) 

 
,min

, ,c
k kμ δ

m i GOA

GOA

J α
α

=                   (21) 

 

( )

( )

,
,

,
,

,

. .

, 0

c c
k k ic

k i k,i
k k,i

c c
k k ic

k i k,i
k k,i

J

g g

μ μ
μ δ

δ δ

μ μ
μ δ

δ δ

∇

∇

T
GOA

T

J

i F P

α
⎫⎡ ⎤−

+ ≤ ⎪⎢ ⎥− ⎪⎣ ⎦ ∀ ∈⎬
⎡ ⎤− ⎪+ ≤⎢ ⎥ ⎪−⎣ ⎦ ⎭

          (22) 

( ) ,
, , 0 . . .

c c
k k ic

k i k,i
k k,i

g g
μ μ

μ δ
δ δ

∇ T i N F P
⎫⎡ ⎤− ⎪+ ≤ ∀ ∈⎬⎢ ⎥− ⎪⎣ ⎦ ⎭

     (23) 

  
where variable GOAα  is a decision variable, . .F P  and 

. . .N F P  stands for feasible and infeasible primal problem, 
respectively. Vector g represents all nonlinear constraints 
shown in (15) and (16) while J∇ , g∇  are gradients of 
objective function (14) and nonlinear constraints, g , 
respectively. In general, these gradients are calculated 
numerically. However, the canonical structure of the MINLP 
enables one to write analytical gradients, which can be used 
for enhanced accuracy as well as efficient computation. In the 
simulation example presented next, we use the analytical 
gradients but are not presented here for brevity.  
 

4. APPLICATION 
 
We use the GOA algorithm for control of the three-tank 
benchmark system using the MPL model based predictive 
control strategy. To evaluate the computational advantage we 
compare the average time needed to solve the control problem 
with the BB strategy. 
 
4.1. Spherical three-Tank system  
 
The system consists of two independent pumps that deliver 
the liquid flowrates Q1 and Q2 to Tank-1 and Tank-2, 
respectively through the two control valves. Six independent 
solenoid (on/off) valves ( 1V , 2V , 13V , 23V , 1LV  and 3NV ) can be 
manipulated to interrupt the flows into or out of the three 
tanks. Tank-1 and Tank-3 as well as Tank-2 and Tank-3 are 
connected through upper and lower pipes. In order to enhance 
the nonlinear behavior, we replaced the cylindrical tanks in 
the benchmark problem (Villa et al., 2004) with spherical 
tanks (Nandola and Bhartiya, 2008), as shown in Figure 1.   
 

 
Fig. 1. Schematic of the 3-Tank benchmark problem.   
 
The first principles model is briefly described below, 
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13 1 1

1
1 max 1 1 13 13 1 13 1( ) ( )V V L L

dh
h h h Q V Q V Q V Q

dt
π − = − − −          (24) 

23 2

2
2 max 2 2 23 23 2 23( ) ( )V V

dh
h h h Q V Q V Q

dt
π − = − −                    (25) 

13 23 1

2

13 13 23 23 1 133
3 max 3

2 23 3

( ) V V V

V N N

V Q V Q V Qdh
h h h

V Q V Qdt
π

+ +⎛ ⎞
− = ⎜ ⎟⎜ ⎟+ −⎝ ⎠

           (26) 

where 1V , 2V , 13V , 23V , 1LV  and 3NV  represents binary indicator 
variables for corresponding valves, and hmax represents tank 
diameter (0.6m). Variables Qi represent flowrates through 
valves Vi and may be evaluated using the following 
constitutive equations,   

( )
33 3 3 3( ) 2  ,        1, 2

ii V z i i iQ a S sign h h g h h i= − − =         (27) 

1 1 12L z LQ a S gh=                  (28) 

32N z NQ a S gh=                  (29) 

{ } { }( )
{ } { }( )

3

3

3

max , max ,
, 1,2

2 max , max ,  i

i z i i v v

i V

i v v

V a S sign h h h h
Q i

g h h h h

⎛ ⎞−
⎜ ⎟= =
⎜ ⎟× −⎝ ⎠

  (30) 

where iS , 3iS , 1LS  and NS  are cross sectional areas of valves 
and assumed identical for all  valves (0.95 cm2), vh (see Figure 
1) is height of upper pipe from bottom (0.3 m), and za  is the 
discharge coefficient, which is assumed to be unity. Next, we 
considered three partially linearized models for the three 
spherical tank system. The points of linearization are listed 
below: 
(i) Model-I: 1 2 3 1 20.15 , 0.14 , 0h h m h m Q Q= = = = =  
(ii) Model-II: 1 2 3 1 20.25 , 0.24 , 0h h m h m Q Q= = = = =  
(iii)Model-III: 1 2 3 1 20.35 , 0.34 , 0h h m h m Q Q= = = = =  
Model-I and Model-II correspond to levels below the upper 
pipe connections while Model-III corresponds to a level above 
the upper pipe. The three points correspond to low, medium 
and high levels in the three tanks. Also, the points of 
linearization were chosen such that the continuity of the max 
function is maintained. Alternatively, smooth approximation 
of the max function may be used.  
 
We use the MPL model (11)-(13) based MPC for a setpoint 
tracking control problem, which involves filling of empty 
tanks to desired levels, followed by multiple setpoint changes. 
To study the computational efficiency of GOA algorithm, 
discussed in previous section, we compare the computation 
time with the results obtained using BB. Both cases use a 
sampling time ts of 3s, prediction horizon, p=5 (15s) and 
control horizon, m=2 (6s). We consider the first principles 
nonlinear model (24)-(30) as the plant model and the MPL 
framework (11)-(13) as the controller model.  
 
The NLP needed for solution of the MINLP using BB used 
subroutine fmincon in MATLAB 6.5 (Mathworks Inc, Natick, 
MA, USA). The QP and LP solution needed for the primal 
and master problems in GOA used subroutines quadprog an 
linprog in MATLAB 6.5, respectively.  All of the above 
algorithms were based on the activeset method. All 
simulations have been performed on a 3.0 GHz P-IV machine 
with 1 GB RAM. 

 
Figure 2 documents the results of the MPL model based 
control of the levels in the three tanks at different levels using 
both BB algorithm (dotted line) as well as GOA algorithm 
(solid line). Note that control results for both the cases are  

 
Fig. 2. MPL model based predictive control of levels h1, h2, 
and h3 in the 3-Spherical Tank system using using GOA (solid 
line) and using BB (dotted line). 

 
Fig. 3. Control moves for the level control problem in the 3-
Spherical Tank system using GOA (solid line) and using BB 
(dotted line). 
 
found to be similar and hence almost indistinguishable in the 
figure. Figure 3 shows the corresponding control moves for 
both the cases. Both the algorithms produce similar results 
when used to solve MINLP resulting from MPL model based 
control. However, the main advantage of GOA algorithm lies 
in its computational efficiency. BB algorithm solves a relaxed 
NLP at each node while GOA solves QPs and MILPs (that is, 
a number of relaxed LPs) at each iteration. Thus, the GOA 
algorithm solves comparatively easier optimization problems 
than BB but it requires additional computation time for 
linearization of the nonlinear objective function as well as 
constraints to obtaine the master problem. However, 
availability of analytical gradients reduces the computation 
effort. Figure 4 documents cpu time required to solve the 
control problem at each sampling time using BB and GOA 
algorithms. It is evident that the BB algorithm is unable to 
solve the control problem within one sampling period for 
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about 16 % of the optimization problem. On the other hand, 
the GOA algorithm takes less than one sampling time for all 
instants. Additionally, in case of GOA, the average 
computation time and standard deviation are noted as 0.45s 
and 0.36s, respectively for this control problem and for BB, 
they are 1.99s and 2.8s, respectively. Ideally, values of the 
manipulated variables should be injected immediately upon 
availability of the measurement. This requires calculating 
control problem within a very small fraction of the sampling 
time. Since the GOA algorithm takes only about 15% of the 
sampling period on an average, it is likely to show better 
practical behavior relative to the BB algorithm. We have also 
solved the same control problem with different control 
horizon to check the effect of number of binary variables and 
observed consistent superior performance of GOA. Thus, 
GOA algorithm is especially suitable for real time 
implementation of MPL model based control of NHDS.  
 

 
Fig. 4. Comparison of computation time to solve MINLP 
control problem at each sampled using GOA (+), BB (o) with 
respect to sampling time (dashed-dotted line)  

 
5. CONCLUSIONS 

 
Applications of hybrid systems are becoming increasingly 
common in the process industry. The main hurdle in the 
optimal control of hybrid systems is the requirement of an 
online solution to an MINLP/MIQP. The authors have shown 
computational advantage of the MPL model based control 
over multiple MLD model based control of NHDS previously. 
In this work, we have exploited the fixed structure of MPL 
framework to further augment the computational efficiency.  
We have used GOA algorithm and derived the primal problem 
of MINLP resulting from MPL model based control of 
NHDS. Due to the particular structure of MPL model, this 
primal problem reduces to a comparatively simpler QP 
optimization problem. We have also used analytical gradients 
of objective function and nonlinear constraints to derive 
master problem of GOA. Computational efficiency for online 
control of NHDS is demonstrated with this algorithm using 
the three-spherical tank benchmark system.  
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