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Abstract: This paper first introduces the fractional-order hold transformation that, together
with the generalized bilinear transformation recently proposed in Zhang et al. [2007], contains
all commonly used discretization methods as special cases. In light of this, it further shows that
at fast sampling, all the digital approximations of an analog controller are equivalent in the
sense of `p induced norm for p ∈ [1,∞] when the analog controller is stable or in the sense of
some gap metric even when it is unstable.
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1. INTRODUCTION

A digital controller can be designed via a variety of
approaches. For instance, it can be designed based on
a discrete-time system obtained by lifting the original
continuous-time plant. In this way, intersampling behavior
can be taken into account. However, unfortunately, it ends
up with a controller design in an infinite dimensional space.
Alternatively, a digital controller can be designed directly
based on the discretization of the original continuous-time
plant (the so-called direct design). It can also be designed
by discretizing a continuous-time controller designed for
the continuous-time plant. Hence the last case can be
viewed as approximation of a continuous-time controller.
This can be done in roughly three routes. The first is
to approximate the differentiator (or equivalently, the
integral 1/s), e.g., the Euler method, the (generalized)
bilinear transformation (BT). The second is to derive a
discrete-time model via sampling the original continuous-
time controller, e.g., the zero-order hold (ZOH) equivalent
and first-order hold (FOH) equivalent (Wittenmark et al.
[2002]) (see Fig. 1). In Fig. 1, H can be a zero-order hold,
first-order hold, or even a fractional-order hold, K(s) is
an analog controller followed by an ideal sampler. This
transformation, we hereafter call hold equivalent transfor-
mation, maps an analog controller to a digital one. The
third is optimization-based controller redesign studied in
Keller and Anderson [1992], Rafee et al. [1997], Hwang
et al. [2003], Shieh et al. [1998], etc. In each of the
approaches proposed in these papers, given an analog
controller, an optimization problem is solved to produce a
? This research is partially supported by NSERC Discovery Grants
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digital controller which is optimal in a certain sense, e.g.,
H2 or H∞ norm. Contemplating these various approaches
in designing a digital controller, one may ask the following
question: What are the relations among these approxi-
mations at fast sampling? A common belief in doing ap-
proximation is that the resulting sampled-data system will
perform similarly as the original continuous-time system
when the underlying sampling period is sufficiently small.
Though this faith is quite intuitive and appealing, its
rigorous theoretical foundation is not yet solidly built.
This paper is an attempt toward this goal and provide
a partial answer for the hold equivalent transformations
and integral approximations. More specifically, we focus on
the following question: Given a stable controller K(s) in
continuous time, denote its discrete-time counterparts by
Kd(z), Kfd(z) and Kbt(z) obtained via ZOH, FOH and BT
respectively, and let h be the underlying sampling period,
we show that Kd, Kfd and Kbt converge to each other in
`p-induced norm for all p ∈ [1,∞] as h tends to zero. For
convenience, we thus call them `p-equivalent.

Fig. 1. Hold equivalent transformation

The `p-equivalence between ZOH and the bilinear transfor-
mation is established in Zhang and Chen [2004] under the
conditions that K(s) is SISO and its “A” matrix is diag-
onalizable with all real eigenvalues. These constraints are
removed in Zhang et al. [2007]. Actually a stronger result
is established in Zhang et al. [2007] for the `p-equivalence
between a so-called generalized bilinear transformation
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(GBT) and ZOH. The generalized bilinear transformation
has a free parameter α. When α = 0, it is the forward Euler
approximation method; when α = 1/2, it reduces to the
bilinear transformation; when α = 1, it is the backward
Euler approximation method (Wittenmark et al. [2002]).
It is further shown that by choosing a suitable α, GBT
may map unstable poles (resp. zeros) to stable poles (resp.
zeros). Given that unstable poles or zeros always impose
various performance limitations on the pertinent control
system, this feature of GBT is hence very appealing. Fur-
thermore, the free parameter α eases the tuning of the
controller on-line to trade off various performance specifi-
cations. In this paper, instead of merely working on FOH
and the bilinear transformation, a new type of fractional-
order hold (FROH) is first introduced that contains ZOH
and FOH as special cases, then the `p-equivalence between
FROH and GBT is attained, thus partially answering the
previously posed question. The discussion in this paper is
for linear systems exclusively.

This paper is organized as follows. Section 2 introduces
the fractional-order hold (FROH) transformation. After
deriving its state-space model, we study its limiting zeros
with the aid of those of ZOH equivalents which have
been investigated in the literature (Astrom et al. [1984],
Hagiwara et al. [1993], Weller et al. [2001]). Section 3
reviews briefly the generalized bilinear transformation.
Section 4 investigates the relation between GBT and
FROH; we show that the FROH and GBT converge to each
other in the `∞ induced norm as h goes to zero. Section
4 establishes the `p-equivalence between GBT and the
FROH transformation. Section 5 contains some concluding
remarks.

The following notation is used in this paper. The norm
symbol ‖ · ‖ represents the Euclidean norm for a vector
or the largest singular value for a matrix; ‖ · ‖`p is the
`p norm if applied to a vector and `p induced norm if
applied to a system. o(h) is a function of h which satisfies
lim
h→0

o(h)/h → 0. Similarly, O(h) satisfies lim
h→0

O(h) → 0.

Here o(h) and O(h) may be either scalar functions or
matrix functions. Following the convention, for a discrete-
time transfer function H(z) with a state-space realization
(A,B, C, D), define[

A B
C D

]
:= D + C(zI −A)−1B.

The discrete-time counterpart is defined similarly.

2. THE FROH TRANSFORMATION

In this section, the fractional-order hold (FROH) trans-
formation is first proposed, then the zeros of the FROH
equivalent of an analog controller is investigated. It turns
out that they can be estimated via discretization zeros of
two ZOH equivalents of the analog controller.

Suppose that an analog controller K(s) has already been
designed; now we want to implement it digitally. One
obvious way is to precede and follow K(s) with a hold
H and an ideal sampler S respectively, as shown in Fig. 1.
Because digital controllers are implemented in computers
in the forms of algorithms, the physical realization of
H is not an issue. Therefore, besides the zero-order and
first-order holds (Wittenmark et al. [2002]), other types

of holds can also be used. In this paper, H is allowed
to be fractional-order holds. For convenience, we call
such discretization methods fractional-order hold (FROH)
transformations.

More specifically, consider a continuous-time controller
K(s) of state-space model:

ẋ = AKx + BKu,

y = CKx + DKu, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, and
y ∈ Rp is the output. AK , BK , CK , and DK are all
constant matrices of appropriate dimensions. A discrete-
time controller can be obtained in the way as shown in
Fig. 1, where H is a certain hold and S is an ideal sampler.
Clearly, if H is a zero-order hold, then the resulting digital
controller is the zero-order hold equivalent of K(s). In this
paper we let H be a fractional-order hold, and call the
discretization method in Fig. 1 the fractional-order hold
(FROH) transformation. In what follows we define the
(FROH) transformation. At time interval [kh, (k + 1)h),
where k ∈ Z+, if the input u(τ) is approximated via

u(τ) = u(kh) + β
u(kh + h)− u(kh)

h
(τ − kh) , (2)

for τ ∈ [kh, (k + 1)h), where β ∈ (−∞,∞), then the
fractional-order hold equivalent of K(s) is defined via

x (kh + h)

= eAKhx(kh) +
∫ kh+h

kh

eAK(kh+h−τ)BK

·
(

u(kh) + β
u(kh + h)− u(kh)

h
(τ − kh)

)
dτ

= eAKhx(kh) + (Γ− βΓ1)u(kh) + βΓ1u(kh + h),

y(kh) = CKx(kh) + DKu(kh), (3)

where Γ :=
∫ h

0
eAKτdτB, and Γ1 :=

∫ h

0
eAKτ h−τ

h dτB.
Because u(kh + h) appears on the right-hand side of the
equation of the state evolution, define

w(kh) := x(kh)− βΓ1u(kh).
Then Eq. (3) is converted to

w(kh + h) = eAKhw (kh) +
(
Γ + β

(
eAKh − I

)
Γ1

)
u(kh)

y(kh) = CKw(kh) + (DK + βCKΓ1)u(kh). (4)

In the sequel, we denote the fractional-order hold equiva-
lent defined in Eq. (4) by Kfroh(z). Let

AKfroh = eAKh, BKfroh = Γ + β (AKfroh − I) Γ1,

CKfroh = CK , DKfroh = DK + βCKΓ1.

Then Kfroh has a state-space realization
(AKfroh, BKfroh, CKfroh, DKfroh) .

Remark 1. When β = 0, the fractional-order hold reduces
to the zero-order hold (ZOH); when β = 1, it becomes
the first-order hold (FOH) (pp.17, Wittenmark et al.
[2002]). Note that our aim is to get an approximation of a
continuous-time controller, and the resulting discrete-time
controller will be implemented in a computer, so physical
implementation (non-causality) is not an issue.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15233



It is easy to show that the impulse response is

z(t) =
β

h
(t + h) (us (t + h)− us (t))

+
(

1− β

h
t

)
(us (t)− us (t− h))

=
β

h
(t + h) us (t + h)−

(
2β

h
t + β − 1

)
us (t)

−
(

1− β

h
t

)
us (t− h) ,

where us is the unit step function. Applying the Laplace
transform to the last equation

z(s) := L(f)(s)

=
βehs

hs2

(
1− e−hs

)2
+

β

s

(
e−hs − 1

)

+
1
s

(
1− e−hs

)
.

Denote the continuous-time transfer function of Eq. (1) by
K(s). The Z-transform of z(s)K(s), namely Kfroh(z), is
given by

Z [z(s)K(s)] = Z

[
βehs

hs2

(
1− e−hs

)2
K(s)

]

+Z

[
1− β

s
K(s)

]
(1− z−1)

=
βz

(
1− z−1

)

h
Z

(
1− e−hs

s

K(s)
s

)

+(1− β) (1− z−1)Z
[
K(s)

s

]
(5)

In the following, we focus on the limiting zeros of system
Z [z(s)K(s)] as h goes to 0. For simplicity, we here
consider a SISO and strictly proper K(s), i.e., m = p = 1
and D = 0 in Eq. (1). Assume that K(s) is

Q
(s− γ1) · · · (s− γnm

)
(s− λ1 · · · (s− λnd

))
, (nd > nm), (6)

where Q is a constant. Moreover, as given in the intro-
duction, assume Kd(z) = Z

[
1−e−sh

s K(s)
]

(namely, the
zero-order hold equivalent). Define a differential recurrence
relation via

B1(z) = 1,

Bp(z) = (1 + (p− 1)z)Bp−1(z)

+z(1− z)
dBp−1(z)

dz
, p = 2, 3, ...

Moreover, let ξ1, ..., ξp−1 be the roots of Bp(z), η1, ..., ηp

the roots of Bp+1(z). Then
η1 < ξ1 < η2 < ξ2 < · · · < ηp−1 < ξp−1 < ηp < 0.

Define
Cp(z) := βBp+1(z) + (1− β) (p + 1)Bp(z).

Then we have

Theorem 1. Kfroh(z) has nd zeros. Furthermore, as h →
0, Kfroh(z) approaches

Q
hnd−nm

(nd − nm + 1)!
(z − 1)nm

(z − 1)nd
Cnd−nm

(z). (7)

Let q = nd − nm and assume that the roots of Cq(z) are
ζ1, ..., ζq. Then the following statements hold.

#1. If β ≥ 1 + 1/q, then

η1 < ζ1 < ξ1 < η2 < ζ2 < ξ2 < · · · < ηq−1

< ζq−1 < ξq−1 < ηq < 0 ≤ ζq < 1,

where “=” holds if and only if β = 1 + 1/q.
#2. If 1 < β < 1 + 1/q, then

η1 < ζ1 < ξ1 < η2 < ζ2 < ξ2 < · · · < ηq−1

< ζq−1 < ξq−1 < ηq < ζq < 0.

#3. If β = 1, then ζ1, ..., ζq coincide with η1, ..., ηq.
#4. If 0 < β < 1, then

ζ1 < η1 < ξ1 < η2 < ξ2 < ζ2 < · · · < ηq−1

< ξq−1 < ζq−1 < ηq < 0.

#5. If β = 0, then the roots of Cq(z) are those of Bq(z).
#6. If β < 0, then

η1 < ζ1 < ξ1 < η2 < ζ2 < ξ2 < · · · < ηq−1

< ζq−1 < ξq−1 < ηq < 0 < ζq.

Due to page limitations, its proof is limited.
Remark 2. When nd − nm = 2, according to Eq. (3)
in Sobolev [1977], as h → 0, the FROH equivalent of
an analog controller will have two discretization zeros,
residing on the opposite side of -1 on the real axis.
Therefore it has necessarily one unstable discretization
zero. If β > 1 + 1/(nd − nm) = 3/2, one of the zeros
of Kfroh(z) is within the interval (0, 1), while the other,
no matter whether it is stable or not, is more close to 0
than the discretization zeros of the FOH equivalent. In this
sense, the fractional-order hold is superior to the first-order
hold.

3. THE GENERALIZED BILINEAR
TRANSFORMATION

The generalized bilinear transformation (GBT) is stud-
ied in Zhang et al. [2007] and Zhang et al. [2007b].
Given an analog controller K(s), denote the digital
controller obtained via GBT by Kgbt(z). In terms of
state-space data, Let (AK , BK , CK , DK) be a minimal
realization of K(s), Kgbt(z) has a state-space model
(AKgbt, BKgbt, CKgbt, DKgbt), where

AKgbt = (I − αhAK)−1 [I + (1− α)hAK ], (8)

BKgbt = (I − αhAK)−1
hBK ,

CKgbt = CK (I − αhAK)−1
,

DKgbt = DK + αCKBKgbt,

in which α ∈ (−∞,∞).
Remark 3. Interestingly, specific to the discretization of
a pure integrator 1/s, the generalized bilinear transfor-
mation and the fractional-order hold transformation are
identical provided β = 2α.
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4. `P EQUIVALENCE OF GBT AND THE FROH
TRANSFORMATIONS

In this section, we will study the relation between Kgbt(z)
and Kfroh(z), two digital approximations of an analog
controller. The main result of this section is: Given a
stable analog controller K(s), the `p induced norm of
Kgbt(z) − Kfroh(z) approaches zero for all p ∈ [1,∞] as
h → 0. In order to establish it, some preliminary results
are established first.
Lemma 1. Assume that the pair (AK , BK) is stabilizable.
Then there exists a single constant matrix F such that
both AKfroh + BKfrohF and AKgbt + BKgbtF are asymp-
totically stable (in discrete time) for sufficiently small h.

Proof. Upon the hypothesis, there is a matrix F such
that AK + BKF is stable (in continuous time). Observe
that

AKfroh + BKfrohF

= eAKh +
(
Γ + β

(
eAKh − I

)
Γ1

)
F

= eAKh +
∫ h

0

eAKtdtBKF

+β
(
eAKh − I

) ∫ h

0

eAKt h− t

h
dtBKF

= I + h (AK + BKF ) + o(h),

where o(h) satisfies limh→0
o(h)

h = 0. Therefore, AKfroh +
BKfrohF (in discrete time) is stable for sufficiently small
h. To prove the stability of AKgbt + BKgbtF , observe that

AKgbt + BKgbtF

= (I − αhAK)−1 [I + h ((1− α)AK + BKF )]

= (I + αhAK + o(h)) [I + h ((1− α)AK + BKF )]

= I + h ((1− α)AK + BKF ) + αhAK + o(h)

= I + h (AK + BKF ) + o(h).
Hence, AKgbt + BKgbtF is stable (in discrete time) for
sufficiently small h. ¥
Now we have set up for the following lemma that is crucial
for further development. It basically says that Kfroh and
Kgbt converge to each other in some graph metric as h → 0.
Lemma 2. Suppose that (AK , BK) is stabilizable. Then in
the graph metric, Kfroh(z)−Kgbt(z) converges to zero as
the sampling period h goes to zero.

Proof. By Lemma 1, there exists a matrix F such that
both AKfroh + BKfrohF and AKgbt + BKgbtF are stable
for h sufficiently small. Define

[
MKfroh (z)
NKfroh (z)

]
=




AKfroh + BKfrohF BKfroh

F I
CKfroh + DKfrohF DKfroh


 ,

[
MKgbt (z)
NKgbt (z)

]
=




AKgbt + BKgbtF BKgbt

F I
CKgbt + DKgbtF DKgbt


 .

Then Kfroh (z) = NKfroh (z)M−1
Kfroh (z) and Kgbt =

NKgbt (z)M−1
Kgbt (z) are right coprime factorizations (pp.

71-73, Zhou and Doyle [1998]). it is easy to show that

MKfroh(z)−MKgbt(z)

= F [zI − (AKfroh + BKfrohF )]−1
BKfroh

− F [zI − (AKgbt + BKgbtF )]−1
BKgbt

:= FT (z)B,

where

T (z)

= [zI − (AKfroh + BKfrohF )]−1

(∫ h

0

eAKtdt

+β
(
eAKh − I

) ∫ h

0

eAKt h− t

t
dt

)

− [zI − (AKgbt + BKgbtF )]−1 (I − αhAK)−1
h.

Let z = e−jθ, θ ∈ [−π, π). If θ = 0, z = 1, then

zI − (AKfroh + BKfrohF )

= I − (AKfroh + BKfrohF )

=− (
eAKh − I

)

·
[
I +

(
A−1

K + β

∫ h

0

eAKt h− t

t
dt

)
BKF

]
,

therefore

[I − (AKfroh + BKfrohF )]−1

=−
[
I +

(
A−1

K + β

∫ h

0

eAKt h− t

t
dt

)
BKF

]−1

· (eAKh − I
)−1

.

(The matrix AK is assumed to be invertible purely for
technical simplicity, it can be easily shown that the result
also holds when AK is not invertible.) Define

W := A−1
K + β

∫ h

0

eAKt h− t

t
dt.

Then

W = A−1
K +

β

h
A−2

K

(
eAKh − I −AKh

)

= (1− β) A−1
K +

β

h
A−2

K

(
eAKh − I

)

= A−1
K +

β

h
A−2

K o(h).

Observe that
∫ h

0

eAKtdt + β
(
eAKh − I

) ∫ h

0

eAKt h− t

t
dt

=
(
eAKh − I

)
W,

and

[I − (AKfroh + BKfrohF )]−1

·
(∫ h

0

eAKtdt + β
(
eAKh − I

) ∫ h

0

eAKt h− t

t
dt

)

=− [I + WBKF ]−1 (
eAKh − I

)−1 (
eAKh − I

)
W

=− [I + WBKF ]−1
W.
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Taking limit with respect to h yields:

[I − (AKfroh + BKfrohF )]−1

·
(∫ h

0

eAKtdt + β
(
eAKh − I

) ∫ h

0

eAKt h− t

t
dt

)

=− (AK + BKF )−1
.

On the other hand,

[I − (AKgbt + BKgbtF )]−1

=− 1
h

(AK + BKF )−1 (I − αhAK) ,

thus

[I − (AKgbt + BKgbtF )]−1 (I − αhAK)−1
h

=− (AK + BKF )−1
.

Consequently,
lim
h→0

T (1) = 0.

When θ 6= 0, T (z) is analytic, and it is easy to show that
lim

h→0+
T (e−jθ) = 0, ∀θ ∈ [−π, π).

Therefore, we conclude that

lim
h→0+

‖MKfroh (z)−MKgbt (z)‖`2

= lim
h→0+

sup
−π≤θ<π

‖MKfroh(e−jθ)−MKgbt(e−jθ)‖
= 0.

Similarly, we can show that
lim

h→0+
‖NKfroh (z)−NKgbt (z)‖`2

= 0.

It hence follows that Kfroh(z)−Kgbt(z) converges to zero
in the graph metric as h → 0. ¥
If K is stable, Kfroh(z) is stable for any β. Furthermore,
according to Eq. (8), it is not hard to show that, for any
given α ∈ (−∞,∞), Kgbt(z) is stable when h is sufficiently
small. In light of this, the graph metric induces the same
topology as that induced by the `2 induced norm. Thus
we have
Lemma 3. Suppose K(s) is stable. Then for all α ∈
(−∞,∞) and β ∈ (−∞,∞),

lim
h→0+

‖Kfroh(z)−Kgbt(z)‖`2
= 0.

With the aid of Lemma 3, we are now in a position to
prove the main result of this section.
Theorem 2. Suppose K(s) is stable. Then for any given
α ∈ (−∞,∞) and β ∈ (−∞,∞),

lim
h→0+

‖Kfroh(z)−Kgbt(z)‖`p
= 0

holds for all 1 ≤ p ≤ ∞.

Proof. Because K(s) is stable, Kfroh(z) is stable for
any β. On the other hand, by Eq. (8), it is easy to show
that, for any given α ∈ (−∞,∞), Kgbt(z) is stable when h
is sufficiently small. Therefore, ‖Kfroh(z)−Kgbt(z)‖`p

is
well-defined for sufficiently small h. According to Lemma
3,

lim
h→0+

‖Kfroh(z)−Kgbt(z)‖`2
= 0.

Let the Hankel singular values of Kfroh(z) − Kgbt(z) be
σh

H =
{
σh

1 , · · · , σh
N

}
, where σh

1 ≥ · · · ≥ σh
N ≥ 0. According

to the discrete-time counterpart of Theorem 7.8 in Zhou
and Doyle [1998], we have

‖Kfroh(z)−Kgbt(z)‖`∞

≤ 2
N∑

k=1

σh
i ≤ 2Nσh

1

≤ 2N · lim
h→0+

‖Kfroh(z)−Kgbt(z)‖`2
.

As a result,
lim

h→0+
‖Kfroh(z)−Kgbt(z)‖`∞

= 0.

Furthermore, based on the discrete-time version of The-
orem 9.1.2 in Chen and Francis [1995], it is not hard to
show that

lim
h→0+

‖Kfroh(z)−Kgbt(z)‖`p
= 0

for all 1 ≤ p ≤ ∞. (The SISO case follows Theorem 9.1.2 in
Chen and Francis [1995] directly; the MIMO case is more
tedious, but without essential difficulties.) The result is
thus established. ¥

5. CONCLUSION

In this paper, a new type of fractional-order hold trans-
formations has been proposed first. Then the property of
its limiting zeros of resulting digital controllers has been
investigated. Finally, it has been shown that, at fast sam-
pling, the digital approximations of an analog controller
obtained via this type of fractional-order hold transfor-
mations and the generalized bilinear transformation are
convergent to each other in the sense of `p induced norm
for p ∈ [1,∞] when the analog controller is stable or in the
sense of some gap metric even when it is unstable.
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