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Abstract: In this paper, an iterative algorithm to solve a special class of Hamilton-Jacobi-
Bellman-Isaacs (HJBI) equations is proposed. By constructing two series of nonnegative
functions, we replace the problem of solving an HJBI equation by the problem of solving
a sequence of Hamilton-Jacobi-Bellman (HJB) equations whose solutions can be approximated
recursively by existing methods. The local convergence of the algorithm is guaranteed. A
numerical example is provided to demonstrate the accuracy of the proposed algorithm.
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1. INTRODUCTION

Traditionally, in linear H2 control, one needs to solve LQ-
type Algebraic Riccati Equations (AREs) with a nega-
tive semidefinite quadratic term; in linear H∞ control,
one needs to solve AREs with an indefinite quadratic
term. Some iterative procedures to solve such AREs were
proposed in Kleinman [1968] and Lanzon et al. [2007]
respectively. In Kleinman [1968], a sequence of monoton-
ically non-increasing matrices is constructed by solving
Lyapunov equations to obtain the unique stabilizing so-
lution of an ARE with a negative semidefinite quadratic
term. In Lanzon et al. [2007], an ARE with an indefinite
quadratic term is replaced by a sequence of AREs with a
negative semidefinite quadratic term and each of them can
be solved by the Kleinman algorithm; then the solution
of the original ARE can be approximated by the sum of
the solutions of the AREs with a negative semidefinite
term. In some sense, the iteration scheme in Lanzon et al.
[2007] is an extension to the one in Kleinman [1968], since
both algorithms enjoy similar characteristics such as high
numerical reliability, local quadratic rate of convergence
(see Kleinman [1968], Lanzon et al. [2007]) and, as noted,
the algorithm in Lanzon et al. [2007] can be applied in
more general cases (i.e. solving AREs with an indefinite
quadratic term).

Although linear optimal control theory, as well as lin-
ear H∞ control theory, has been well developed in the
past decades, matters become more complicated when
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a nonlinear control system is considered. For example,
in nonlinear optimal control, HJB equations need to be
solved to obtain an optimal control law. However, HJB
equations are first-order, nonlinear partial differential
equations that have been proven to be impossible to solve
in general and are often very difficult to solve for specific
nonlinear systems. Since these equations are difficult to
solve analytically, there has been much research directed
toward approximating their solutions. For example, the
technique of successive approximation in policy space (see
Bellman [1971, 1957], Bellman et al. [1965]) can be used
to approximate the solutions of HJB equations iteratively.
In fact, it can be shown (see Leake et al. [1967]) that
the technique of policy space iteration can be used to
replace the problem of solving a nonlinear HJB partial
differential equation by the problem of solving a sequence
of linear partial differential equations. Also, in some sense,
the iterative procedure to solve HJB equations in Leake
et al. [1967] is a generalization of the Kleinman algorithm
in Kleinman [1968], since both of them obtain solutions
by constructing a sequence of monotonic functions or
matrices while the algorithm in Leake et al. [1967] can
be used in more general cases than just the LQ problem.

In nonlinear H∞ control, given a disturbance attenuation
level γ > 0, in order to solve the H∞ suboptimal control
problem, one needs to solve Hamilton-Jacobi-Bellman-
Isaacs (HJBI) equations. It is clear that HJBI equations
are generally more difficult to solve than HJB equations,
since the disturbance inputs are additionally reflected in
HJBI equations. Recall the iterative algorithm in Lan-
zon et al. [2007]: an ARE with an indefinite quadratic
term is reduced to a sequence of AREs with a negative
semidefinite quadratic term, which are more easily solved
by an existing algorithm (e.g. the Kleinman algorithm).
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If we regard HJB equations as the general version of
AREs with a negative semidefinite quadratic term and
HJBI equations as the general version of AREs with an
indefinite quadratic term, then the question arising here
is: “can we approximate the solution of an HJBI equation
by obtaining the solutions of a sequence of HJB equations
and thereby extend the algorithm in Lanzon et al. [2007]
to nonlinear control systems?” In this paper, we will
answer this question to some degree; that is, we extend
the algorithm in Lanzon et al. [2007] to a special class of
nonlinear control systems and develop an iterative proce-
dure to solve a special class of HJBI equation associated
with the nonlinear H∞ control problem.

One method of finding solutions to HJBI equations is
developed in Wise et al. [1994], where the method of
characteristics is used to form integral expressions, the
solutions of which can be approximated by successive
approximations. We compare our algorithm to this one
in a numerical example at the end of the paper.

The structure of the paper is as follows. Section 2 in-
troduces the steady-state HJBI equation we treat in this
paper. Section 3 recalls some existing definitions and re-
sults, and then establishes some preliminary results which
will be used in the main theorem. Section 4 presents the
main result. Section 5 states the algorithm. Section 6
gives a numerical example. Section 7 contains concluding
remarks. Space limitations preclude the inclusion of most
proofs.

2. PROBLEM SETTING

In this section, we introduce the steady-state HJBI equa-
tion we want to solve.

We begin with some notation: R denotes the set of real
numbers; R

+ denotes the set of nonnegative real numbers;
(·)T denotes the transpose of a vector or a matrix; σ(·)
denotes the maximum singular value of a matrix; Z

denotes the set of integers with Z≥a denoting the set
of integers greater or equal to a ∈ R; R

n denotes an n-
dimensional Euclidean space. For a given control system,
define X0 as a neighborhood of the origin in R

n, U0 as a
neighborhood of the origin in R

m, W0 as a neighborhood
of the origin in R

q, and Y0 as a neighborhood of the origin
in R

p. Define function spaces as follows:

X0 =

{

x : R
+ → X0

∣

∣

∣

∣

∫ t1

t0

‖x(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

,

U0 =

{

u : R
+ → U0

∣

∣

∣

∣

∫ t1

t0

‖u(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

,

W0 =

{

w : R
+ → W0

∣

∣

∣

∣

∫ t1

t0

‖w(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

,

Y0 =

{

y : R
+ → Y0

∣

∣

∣

∣

∫ t1

t0

‖y(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

.

A matrix is said to be Hurwitz if all of its eigenvalues
have negative real part.

We work with the nonlinear control system

Γ : U0 ×W0 → Y0 (1)

given by the following equations:

x(0) = x0 (2)

ẋ(t) = f(x(t)) + g1(x(t))w(t) + g2(x(t))u(t) (3)

y(t) = h(x(t)) (4)

where x ∈ X0 is the state; x0 ∈ X0 is the initial state; u ∈
U0 is the input; w ∈ W0 is the disturbance; y ∈ Y0 is the
output. f : X0 → R

n, g1 : X0 → R
n×q, g2 : X0 → R

n×m

and h : X0 → R
p are smooth functions with f(0) = 0 and

h(0) = 0. It is assumed further that f, g1, g2 are such that
(3) has a unique solution for any u ∈ U0, w ∈ W0, and
x0 ∈ X0. Throughout this paper, it is further assumed
that the functions f, g1, g2, h defined in the system Γ can
be represented in the following form:

f(x̃) = Fx̃ + fr(x̃), (5)

g1(x̃) = G1 + g1r(x̃), (6)

g2(x̃) = G2 + g2r(x̃), (7)

h(x̃) = Hx̃ + hr(x̃), (8)

where F,G1, G2,H are real constant matrices with suit-
able dimensions and fr(x̃), g1r(x̃), g2r(x̃), hr(x̃) are
higher order terms.

The steady-state HJBI equation associated with the sys-
tem Γ we treat in this paper is

0 = 2

(

∂Π(x̃)

∂x̃

)T

f(x̃) +

(

∂Π(x̃)

∂x̃

)T

(

g1(x̃)gT
1 (x̃) − g2(x̃)gT

2 (x̃)
)

(9)
(

∂Π(x̃)

∂x̃

)

+ hT (x̃)h(x̃),

Π(0) = 0

where f, g1, g2, h are real functions in the system Γ, x̃ ∈ X0

is the state vector of the system Γ and Π : X0 → R
+

is the unique local nonnegative stabilizing solution we
seek. Here, a solution of (9) is called a local stabilizing
solution if this solution is such that the closed-loop
of the system Γ is locally exponentially stable under

the feedback inputs u∗(t) = −gT
2 (x(t)) ∂Π(x̃)

∂x̃

∣

∣

∣

x̃=x(t)
and

w∗(t) = gT
1 (x(t)) ∂Π(x̃)

∂x̃

∣

∣

∣

x̃=x(t)
.

3. DEFINITIONS AND PRELIMINARY RESULTS

In this section, we firstly give some definitions, and then
set up some lemmas. There are five lemmas in this section
and they can be divided into the following two categories:

• Lemma 5 and Lemma 6: Lemma 5 and Lemma 6 give
sufficient conditions for the existence and uniqueness
of the local nonnegative stabilizing solutions of a
special class of HJB and HJBI equations we treat
in this paper.

• Lemma 7-9: Lemma 7 gives a basic formula (see
(16)) which will be used in our proposed algorithm;
Lemma 8 sets up an iterative scheme based on the
local exponential stability of two vector fields which
can be recursively defined in our proposed algorithm;
Lemma 9 constructs three matrix sequences which
are used in our main result.
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The system ∆ : U0 → Y0 is used in this section, and it is
defined by letting w(t) = 0 for all t ≥ 0 in the system Γ.

Definition 1. (Lukes [1971]) Let f, g2 be the real functions
defined in the system ∆ and suppose that they have the
representation (5) and (7) respectively. The pair (f, g2) is
called stabilizable if and only if (F,G2) is stabilizable.

We now define a function, motivated by the right-hand
side of the HJBI equation, that will be useful throughout
the paper.

Definition 2. Let f, g1, g2, h be the real vector functions
defined in the system Γ, and x̃ ∈ X0 be the state value
of Γ. Let T be the set which includes all smooth mappings
from X0 to R, and define Θ : T → T as

(Θ(V )) (x̃) = 2

(

∂V (x̃)

∂x̃

)T

f(x̃) +

(

∂V (x̃)

∂x̃

)T

(

g1(x̃)gT
1 (x̃) − g2(x̃)gT

2 (x̃)
)

(

∂V (x̃)

∂x̃

)

+ hT (x̃)h(x̃), (10)

for all V ∈ T, x̃ ∈ X0.

We define two functions that will later be useful.

Definition 3. Let f, g1, g2, h be the real vector functions
defined in the system Γ. Let Π ∈ T be the local nonneg-
ative stabilizing solution of (9). Let T,Θ be defined as in

Definition 2. Given V ∈ T, we then define f̂V : X0 → R

as

f̂V (x̃) = f(x̃) + g1(x̃)gT
1 (x̃)

∂V (x̃)

∂x̃
− g2(x̃)gT

2 (x̃)
∂V (x̃)

∂x̃

for all x̃ ∈ X0, and define f̄V : X0 → R as

f̄V (x̃) = f(x̃) + g1(x̃)gT
1 (x̃)

∂V (x̃)

∂x̃
− g2(x̃)gT

2 (x̃)
∂Π(x̃)

∂x̃

for all x̃ ∈ X0.

We define a function which will be used in Lemma 9.

Definition 4. Let F,G1, G2,H be the real matrices ap-
pearing in (5)-(8). Define U : R

n×n → R
n×n as

U(Q) = QF + FT Q − Q(G2G
T
2 − G1G

T
1 )Q + HT H.

(11)

In the remainder of this section, we will set up some pre-
liminary results regarding the smooth stabilizing solutions
of a special class of HJB (HJBI) equations.

The following lemma sets up the results regarding the
existence and uniqueness of the local smooth stabilizing
solutions of a special class of HJB equations.

Lemma 5. Consider the system ∆, suppose (5)-(8) hold,
and let x̃ ∈ X0 be the state value of ∆. Let x0 ∈ X0 be
the initial state of the system ∆. Let f, g2, h be the real
vector functions defined in ∆ and let F,G2,H be the real
matrices appearing in (5)-(8). If (F,G2) is stabilizable and
(H,F ) is detectable, then

(i) there exists a unique stabilizing solution P ≥ 0
(i.e. there is no other stabilizing solution) to the
following ARE:

0 = PF + FT P − PG2G
T
2 P + HT H, (12)

here, a solution P of (12) is called a stabilizing
solution of (12) if it is such that the matrix F −
G2G

T
2 P is Hurwitz;

(ii) there exists at least locally a solution Z(x̃) ≥ 0 to
the following equations:

0 = fT (x̃)
∂Z(x̃)

∂x̃
− 1

2

(

∂Z(x̃)

∂x̃

)T

(13)

g2(x̃)gT
2 (x̃)

∂Z(x̃)

∂x̃
+

1

2
hT (x̃)h(x̃),

0 = Z(0),

0 =
∂Z(x̃)

∂x̃

∣

∣

∣

x̃=0
,

P =
∂2Z(x̃)

∂x̃2

∣

∣

∣

x̃=0
,

where P ≥ 0 is the unique stabilizing solution to
(12);

(iii) the solution Z(x̃) appearing in (ii) is also the unique
local nonnegative stabilizing solution to (13)(i.e.
there is no other local nonnegative stabilizing solu-
tion to (13)). Here, a solution of (13) is called the
local stabilizing solution of (13) if it is such that
the system ∆ is locally exponentially stable under

the input u∗(t) = −gT
2 (x(t)) ∂Z(x̃)

∂x̃

∣

∣

∣

x̃=x(t)

Proof. See Zhou et al. [1996] for (i). See van der Schaft
[1999] for (ii). The proof for (iii) is omitted for brevity. 2

The next lemma gives an existence and uniqueness result
regarding the steady-state HJBI equation (9).

Lemma 6. Consider the system Γ, and let F,G1, G2,H
be the real matrices appearing in (5)-(8). If (H,F ) is
detectable, and there exists a stabilizing solution K ≥ 0
to the following ARE:

0 = KF + FT K − K(G2G
T
2 − G1G

T
1 )K + HT H, (14)

then there exists a local solution Π(x̃) ≥ 0 to the steady-
state HJBI equation (9) for x̃ ∈ X0 with Π(0) = 0,
∂Π(x̃)

∂x̃

∣

∣

∣

x̃=0
= 0 and K = ∂2Π(x̃)

∂x̃2

∣

∣

∣

x̃=0
. Furthermore, such

Π(x̃) is also the unique stabilizing solution to (9) (i.e.
there is no other stabilizing solution to (9)).

Proof. See van der Schaft [1999] for the existence of
Π(x̃). The rest of the proof is omitted for brevity. 2

The next lemma establishes some relations that will be
very useful in the proof of the main theorem.

Lemma 7. Let f, g1, g2, h be the real vector functions
defined in the system Γ, and x̃ ∈ X0 be the state value
of Γ. Let T and Θ be as defined in Definition 2, and
let addition in T be defined in the obvious way. Given
V,Z ∈ T, then

(Θ(V + Z))(x̃) = (Θ(V )) (x̃) + 2

(

∂Z(x̃)

∂x̃

)T

f̂V (x̃)

−
(

∂Z(x̃)

∂x̃

)T
(

g2(x̃)gT
2 (x̃) − g1(x̃)gT

1 (x̃)
) ∂Z(x̃)

∂x̃
.

Furthermore, if V,Z ∈ T satisfy

0 = 2

(

∂Z(x̃)

∂x̃

)T

f̂V (x̃) −
(

∂Z(x̃)

∂x̃

)T

g2(x̃)gT
2 (x̃)

∂Z(x̃)

∂x̃

+ (Θ(V )) (x̃) (15)
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for all x̃ ∈ X0, then

(Θ(V + Z))(x̃) =

(

∂Z(x̃)

∂x̃

)T

g1(x̃)gT
1 (x̃)

∂Z(x̃)

∂x̃
(16)

for all x̃ ∈ X0.

Proof. The first result can be obtained by direct com-
putations; the second claim is then trivial. 2

The next lemma sets up some basic relationships between
the local nonnegative stabilizing solution of equation (9)
and the functions V,Z ∈ T satisfying equation (15).

Lemma 8. Let f, g1, g2, h be the real vector functions
defined in the system Γ. Let V ∈ T be of the form V (x̃) =
1
2 x̃T Ax̃ + Vr(x̃) for all x̃ ∈ X0, where Vr(x̃) are terms
of higher order than quadratic and A ≥ 0 is a constant
matrix with suitable dimensions. Let Z(x̃) be the local
nonnegative stabilizing solution of (13). Suppose V,Z ∈ T

satisfy equation (15). Let Π ∈ T be the local nonnegative
stabilizing solution to equation (9). Let Σ : X0 → R and
Σ(x̃) = Π(x̃) − V (x̃) − Z(x̃) for all x̃ ∈ X0. Then

(i) Π(x̃) ≥ V (x̃) + Z(x̃) for all x̃ ∈ X0 if x∗ = 0 is a
locally exponentially stable equilibrium point of the
vector field f̄V (x̃),

(ii) x∗ = 0 is a locally exponentially stable equilibrium
point of vector field f̄V +Z(x̃) if Π(x̃) ≥ V (x̃) + Z(x̃)
for all x̃ ∈ X0.

Proof. The proof of this lemma is omitted for brevity. 2

The next lemma constructs three matrix sequences which
will be used in our main result. In some sense, we can
say that this lemma is the linear version of our proposed
algorithm in this paper.

Lemma 9. (Lanzon et al. [2007]) Let F,G1, G2,H be the
real matrices appearing in (5)-(8). Let U be the function
defined by (11). Suppose (H,F ) is detectable, (F,G2) is
stabilizable and there exists a stabilizing solution K ≥ 0
to equation (14). Then

(I) three square matrix sequences Jk, Fk, and Dk can be
defined for all k ∈ Z≥0 which satisfy

J0 = 0, (17)

Fk = F + G1G
T
1 Jk − G2G

T
2 Jk, (18)

Dk is the unique positive semidefinite and stabilizing
solution of

0 = DkFk + FT
k Dk − DkG2G

T
2 Dk + U(Jk),

and then

Jk+1 = Jk + Dk; (19)

(II) the series defined in part (I) have the following
additional properties:
1) (F + G1G

T
1 Jk, G2) is stabilizable, ∀k ∈ Z≥0,

2) Dk ≥ 0 ∀k ∈ Z≥0,
3) U(Jk+1) = DkG1G

T
1 Dk, ∀k ∈ Z≥0,

4) F + G1G
T
1 Jk −G2G

T
2 Jk+1 is Hurwitz ∀k ∈ Z≥0,

5) Π ≥ Jk+1 ≥ Jk ≥ 0, ∀k ∈ Z≥0,
6) (GT

1 Dk, Fk+1) is detectable, ∀k ∈ Z≥0;
(III) let

J∞ := lim
k→∞

Jk ≥ 0,

then the limit exists and J∞ = K.

Proof. See Lanzon et al. [2007]. 2

4. MAIN RESULT

In this section, we set up the main theorem by construct-
ing two nonnegative function series Zk(x̃) and Vk(x̃) for
all x̃ ∈ X0, and we also assert (the proof is omitted
for brevity in this paper) that Vk(x̃) is monotonically
increasing and converges to the unique local nonnegative
stabilizing solution Π(x̃) of the HJBI equation (9) if such
a solution exists.

Theorem 10. Consider the system Γ, and let F,G1, G2,H
be the real matrices appearing in (5)-(8). Let x̃ ∈ X0 be
the state of the system Γ. Define Θ : T → T as in (10).
Suppose (H,F ) is detectable, (F,G2) is stabilizable and
there exists a stabilizing solution K ≥ 0 to equation (14).
Let Fk,Dk and Jk be the matrix sequences appearing in
Lemma 9. Then

(I) there exists a unique local nonnegative stabilizing
solution Π(x̃) to the equation (9);

(II) two unique real function sequences Zk(x̃) and Vk(x̃)
for all k ∈ Z≥0 can be defined recursively as follows:

V0(x̃) = 0 ∀x̃ ∈ X0, (20)

Zk(x̃) is the unique local nonnegative stabilizing
solution of

0 = 2f̂T
Vk

(x̃)
∂Zk(x̃)

∂x̃
−

(

∂Zk(x̃)

∂x̃

)T

g2(x̃)gT
2 (x̃)

∂Zk(x̃)

∂x̃
+ (Θ(Vk)) (x̃), ∀x̃ ∈ X0 (21)

0 = Zk(0),

0 =
∂Zk(x̃)

∂x

∣

∣

∣

x̃=0
,

and then

Vk+1 = Vk + Zk; (22)

(III) the two series Vk(x̃) and Zk(x̃) in part (II) have the
following properties:

1) (f(x̃) + g1(x̃)gT
1 (x̃)∂Vk(x̃)

∂x̃
, g2(x̃)) is stabilizable

∀k ∈ Z≥0 ∀x̃ ∈ X0,

2) (Θ(Vk+1))(x̃) =
(

∂Zk(x̃)
∂x̃

)T

g1(x̃)gT
1 (x̃)∂Zk(x̃)

∂x̃

∀k ∈ Z≥0 ∀x̃ ∈ X0,

3) f(x̃) + g1(x̃)gT
1 (x̃)∂Vk(x̃)

∂x̃
− g2(x̃)gT

2 (x̃)∂Vk+1(x̃)
∂x̃

is locally exponentially stable at the origin
∀k ∈ Z≥0 ∀x̃ ∈ X0,

4) Π(x̃) ≥ Vk+1(x̃) ≥ Vk(x̃) ≥ 0 ∀k ∈ Z≥0 ∀x̃ ∈ X0,
5) Zk(x̃) = 1

2 x̃T Dkx̃+O0(x̃) ∀k ∈ Z≥0 ∀x̃ ∈ X0,

Vk(x̃) = 1
2 x̃T Jkx̃ + O1(x̃) ∀k ∈ Z≥0 ∀x̃ ∈ X0,

where Dk and Jk are the matrix sequences
appearing in Lemma 9, and O0(x̃) and O1(x̃)
are terms of higher order than quadratic.

(IV) For all x̃ ∈ X0, the limit

V∞(x̃) := lim
k→∞

Vk(x̃)

exists with V∞(x̃) ≥ 0. Furthermore, V∞ = Π is the
unique local nonnegative stabilizing solution to (9).

Proof. See Lemma 6 for (I). Results (II) and (III) can
be shown together by an inductive argument by using
Lemmas 5-9. Result (IV ) can be shown by using (III)
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and Lemma 6. For brevity, the full proof is omitted here
and will be published elsewhere. 2

From Theorem 10 (III1), we know that we can check
the existence of the local nonnegative stabilizing solution
of (9) by checking the stabilizability of a matrix function
pair. By Definition 1, we can check the stabilizability
of a matrix function pair by checking their linear parts.
Meanwhile, from (10) we note that the HJBI equation (9)
can be expressed equivalently by Θ(Π) = 0. Hence we
have the following corollary which gives a condition under
which there does not exist a local nonnegative stabilizing
solution Π to Θ(Π) = 0. This is useful for terminating the
recursion in a finite number of iterations.

Corollary 11. Let F,G1, G2,H be the real matrices ap-
pearing in (5)-(8). Let Jk be the matrix sequence ap-
pearing in Lemma 9. Suppose that (H,F ) is detectable
and (F,G2) is stabilizable. Let x ∈ X0 be the state of
the system Γ. Define Θ : T → T as in (10). If ∃k ∈ Z≥0

such that (F +G1G
T
1 Jk, G2) is not stabilizable, then there

does not exist a local nonnegative stabilizing solution to
Θ(Π) = 0.

Proof. If ∃k ∈ Z≥0 such that (F + G1G
T
1 Jk, G2) is

not stabilizable, then since (5)-(7) hold and Vk(x̃) =
1
2 x̃T Jkx̃ + O1(x̃) ∀k ∈ Z≥0 ∀x̃ ∈ X0 by (III5), we con-

clude that (f(x̃) + g1(x̃)gT
1 (x̃)∂Vk(x̃)

∂x̃
, g2(x̃)) is not stabi-

lizable ∀k ∈ Z≥0, ∀x̃ ∈ X0 by Definition 1. Then by The-
orem 10 (III1), there does not exist a local nonnegative
stabilizing solution to Θ(Π) = 0.

5. ALGORITHM

Let f, g1, g2, h be the real functions defined in the sys-
tem Γ and suppose (5)-(8) hold. Let Jk be the matrix
sequence appearing in Lemma 9. Suppose (F,G2) is sta-
bilizable and (H,F ) is detectable; an iterative algorithm
for finding the local nonnegative stabilizing solution of
equation (9) is given as follows:

(1) Let V0 = 0 and k = 0.
(2) Construct (for example using the algorithm in Leake

et al. [1967], though this is not necessary) the unique
local nonnegative stabilizing solution Zk(x̃) which
satisfies

0 = 2f̂T
Vk

(x̃)
∂Zk(x̃)

∂x̃
−

(

∂Zk(x̃)

∂x̃

)T

g2(x̃)gT
2 (x̃)

∂Zk(x̃)

∂x̃
+ (Θ(Vk)) (x), (23)

0 = Zk(0),

0 =
∂Zk(x̃)

∂x̃

∣

∣

∣

x̃=0
,

where Θ is defined by (10).
(3) Set Vk+1 = Vk + Zk.
(4) Rewrite Zk(x̃) = 1

2 x̃T Dkx̃ + O0(x̃) (note that this
is always possible from Theorem 10 if Zk(x̃) exists),
where O0(x̃) are terms of higher order than quadratic
and Dk ≥ 0 is the matrix sequence appearing in
Lemma 9.

(5) If σ(GT
1 Dk) < ǫ where ǫ is a specified accuracy, then

set Π = Vk+1 and exit. Otherwise, go to step 6.
(6) If (F + G1G

T
1 Jk, G2) is stabilizable, then increment

k by 1 and go back to step 2. Otherwise, exit as there

does not exist a local nonnegative stabilizing solution
Π satisfying Θ(Π) = 0.

From Corollary 11 we see that if the stabilizability condi-
tion in step 6 fails for some k ∈ Z≥0, then there does
not exist a local nonnegative stabilizing solution Π to
Θ(Π) = 0 and the algorithm should terminate (as required
by step 5). But when this stabilizability condition is satis-
fied ∀ k ∈ Z≥0, construction of the series Vk(x̃) and Zk(x̃)
is always possible and Vk(x̃) converges to Π(x̃) (which is
captured by step 5).

6. A NUMERICAL EXAMPLE

In this section, a numerical example is given to demon-
strate the algorthm proposed in this paper. To analyze
the performance, we intentionally choose an example for
which we can find an analytic solution to the HJBI equa-
tion, and also compare to the method of characteristics
(see Wise et al. [1994]). This initial test looks to be very
promising.

Example 1
In Wise et al. [1994], the method of characteristics is
used to solve HJBI equations recursively. The following
example comes from van der Schaft [1992], and it illus-
trates the proposed algorithm outperforming the method
of characteristics in Wise et al. [1994] when solving HJBI
equations. The comparison is possible because in this
particular case, we are able to obtain the exact solution
of the HJBI equation. The scalar system is given by

ẋ(t) = u(t) + x(t)w(t) (24)

with output y(t) = x(t). For this example, we have
f(x̃) = 0, g1(x̃) = x̃, g2(x̃) = 1, h(x̃) = 1, F = 0,
G1 = 0, G2 = 1, H = 1 and it is clear that (F,G2)
is stabilizable and (H,F ) is detectable. Now the steady-
state HJBI equation becomes

x̃2 −
(

∂Π(x̃)

∂x̃

)2

(1 − x̃2) = 0 (25)

with Π(0) = 0. We have (without any approximation)

∂Π(x̃)

∂x̃
= ± x̃√

1 − x̃2
, Π(0) = 0, (26)

for −1 < x̃ < 1. However, since Π(0) = 0 and we seek
the solution for which Π(x̃) ≥ 0 in a neighborhood of the
origin, we have

∂Π(x̃)

∂x̃
=

x̃√
1 − x̃2

(27)

for −1 < x̃ < 1. Now the closed-loop saddle point solution

for the system (24) is u∗(x̃) = − x̃√
1−x̃2

, w∗(x̃) = x̃2

√
1−x̃2

and the closed-loop of the the system (24) under the
saddle point inputs u∗ and w∗ is

˙̃x = −x̃
√

1 − x̃2 (28)

for −1 < x̃ < 1. Then it is clear that x∗ = 0 is a
local stable equilibrium point for the system (28). We
approximate the value of Π(x̃) by approximating the value

of ∂Π(x̃)
∂x

. From (27), we know that the value of Π(x̃)
is symmetric about the origin. In view of this, we only

approximate the value of ∂Π(x̃)
∂x̃

for 0 ≤ x̃ < 1 in the
following.
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The exact solution of ∂Π(x̃)
∂x̃

in (25) can be approximated
by both our algorithm and the method of characteristics
in Wise et al. [1994].

To approximate ∂Π(x̃)
∂x̃

in (25), we carry out our proposed
algorithm from Section 5.

For convenience, we denote (·)k,x̃ = ∂(·)k

∂x̃
in the following

for k = 0, 1, 2, 3. After a straightforward computation, we
obtain the first three approximations V1,x̃, V2,x̃, V3,x̃ of
∂Π(x̃)

∂x̃
in (25) as follows:

V1,x̃ = Z0,x̃ = x̃, (29)

Z1,x̃ = x̃3 − x̃ + x̃
√

x̃4 − x̃2 + 1, (30)

V2,x̃ = x̃3 + x̃
√

x̃4 − x̃2 + 1, (31)

Z2,x̃ = f2 +
√

f2
2 + x̃2Z2

1,x̃, (32)

V3,x̃ = x̃5 + x̃3
√

x̃4 − x̃2 + 1 +
√

f2
2 + x̃2Z2

1,x̃, (33)

where f2 = x̃5 − x̃3 + (x̃3 − x̃)
√

x̃4 − x̃2 + 1. If we use
the method in Wise et al. [1994] to approximate the local
nonnegative stabilizing solution Π(x̃) to the HJBI equa-
tion (17), the first three approximations V 1,x̃, V 2,x̃, V 3,x̃

of ∂Π(x̃)
∂x̃

in (25) are

V 1,x̃ = x̃, (34)

V 2,x̃ = x̃ +
1

2
x̃3, (35)

V 3,x̃ = x̃ +
1

2
x̃3 +

7

16
x̃5 +

9

80
x̃7 +

437

53760
x̃9. (36)

We plot these approximations together in Figure 1 (we
ignore the first approximations for both algorithms since
they are identical) to compare their convergence to the
“Exact Solution”, which is given by (27).
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Successive Approximation Solution for the van der Schaft Example
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Fig. 1. Demonstration and comparison of algorithm

From Figure 1, we can see that our algorithm has better
accuracy than the method of characteristics in Wise et al.
[1994], noting in particular the following points:

1. For both the 2nd approximation and the 3rd approx-
imation, our algorithm is more accurate than the
method in Wise et al. [1994].

2. The 2nd approximation (dotted line) of our algo-
rithm is very close to the 3rd approximation (dashed
line) of the method in Wise et al. [1994].

3. The 3rd approximation of our algorithm (thin solid
line) is very close to the exact solution (thick solid
line).

7. CONCLUDING REMARKS

In this paper, we have developed an iterative procedure
to solve a special class of HJBI equations. Under some
suitable assumptions, we can compute the local nonneg-
ative stabilizing solutions of HJBI equations recursively
by constructing a monotone non-decreasing function se-
ries. Our algorithm is an extension of the algorithm in
Lanzon et al. [2007] to nonlinear control. Our algorithm
has an additional property, not established here; that is,
as for the H∞ linear algorithm of Lanzon et al. [2007],
convergence of the approximation to the limiting value is
quadratic.
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