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Abstract: By complementarily fusing the robust regional eigenvalue-assignability condition, the 
orthogonal-functions approach (OFA) and the hybrid Taguchi-genetic algorithm (HTGA), an integrative 
method is proposed in this paper to design the robust optimal eigenvalue-assignable output feedback PID 
(proportional-integral-derivative) controller such that (i) the eigenvalues of a linear multivariable uncertain 
closed-loop system can be retained inside the same specified region as the nominal closed-loop system 
does, and (ii) a quadratic finite-hoziron integral performance index for the linear nominal multivariable 
control system can be minimized. A design example of the robust optimal eigenvalue-assignable output 
feedback PID controller for an uncertain stirred tank system is given to demonstrate the applicability of the 
proposed integrative approach. 

 

1. INTRODUCTION 

The PID (proportional-integral-derivative) controller is the 
most common form of feedback in use today, and is 
successfully used for a wide range of application: process 
control, motor drives, magnetic and optic memories, 
automotive, flight control, instrumentation and so on (Tan et 
al., 1999; Isaksson and Hagglund, 2002). But the problem for 
the performance design of linear multivariable PID control 
systems is still a real challenge to control system engineers 
(Saeki, 2006). Besides, to ensure both stability robustness 
and certain performance robustness, it is important to 
guarantee that the eigenvalues of a linear time-invariant 
multivariable system under parameter uncertainties remain in 
a specified region. Thus, recently, Chen et al. (2006) have 
discussed the robustness analysis problem of eigenvalue-
clustering in a specified region for the linear multivariable 
PID control systems with parameter uncertainties. However, 
to the authors’ best knowledge, there are no literatures to 
study the issue of designing the robust optimal eigenvalue-
assignable output feedback PID controller such that (i) the 
eigenvalues of a multivariable uncertain closed-loop system 
can be retained inside the same specified region as the 
nominal closed-loop system does, and (ii) a quadratic integral 
performance criterion for the linear nominal multivariable 
control system can be minimized. On the other hand, very 
recently, Ho and Chou (2007) have proposed a computational 
optimization method, which integrates the orthogonal-
functions approach (OFA) and the hybrid Taguchi-genetic 
algorithm (HTGA), to design the optimal fuzzy controllers. 
Since the method proposed by Ho and Chou (2007) only 
involves the algebraic computation and is straightforward and 
well-adapted to computer implementation, the design 
procedures of the optimal fuzzy controllers may be either 
greatly reduced or much simplified accordingly. Summing up 

the above statements and reasons, the purpose of this paper is 
to propose an integrative optimization method to design the 
robust optimal eigenvalue-assignable output feedback PID 
controllers for the linear multivariable uncertain systems. The 
proposed integrative method complementarily fuses the OFA, 
the HTGA and the robust regional eigenvalue-assignability 
condition, where the robust regional eigenvalue-assignability 
condition is derived in this paper for ensuring that the 
eigenvalues of a linear multivariable uncertain closed-loop 
system can be retained inside the same specified region as 
nominal closed-loop system does. 

2. PROBLEM STATEMENT 

Consider the linear uncertain system described by 
( ) ( ) ( )tButAxtx +=&                               (1) 

and                                ( ) ( )tCxty =                                      (2) 
with the PID controller of the form 

              ( ) ( ) ( ) ( ), 

0 
tyKdyKtyKtu D

t

IP &++= ∫ θθ                 (3) 

where ( ) nRtx ∈  is the state vector, ( ) qRty ∈  is the output 
vector, and ( ) rRtu ∈  is the input vector; 
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are the system matrix, the input matrix and the output matrix, 
respectively, in which 

ik  ( )mi ,,2,1 K=  are the elemental 
uncertainties; ,iA  

iB  and 
iC  ( )mi ,,2,1 K=  are, 

respectively, the given ,nn ×  rn ×  and nq ×  constant 
matrices which are prescribed prior to denote the linearly 
dependent information on elemental uncertainties 

ik ’s; m  is 
the number of independent uncertain parameters. The 
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matrices ,  ,  , qr
DIP RKKK ×∈  respectively, are the 

proportional feedback gain matrix, the integral feedback gain 
matrix and the derivative feedback gain matrix of the output 
feedback PID controller. 

Let a new state variable be ( ) ( ) ( ) ( )
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and the new output be ( ) ( ) ( ) ( )
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(Zheng et al., 2002), then the system in (1) and (2) with the 
PID controller in (3) can be expressed as the following 
uncertain closed-loop generalized state-space system: 
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and 
nI  denote the nn ×  identity matrix. 

For the linear uncertain singular system ( ), , AAE Δ+  we 
assume that a set of PID feedback gain matrix 

[ ]DIP KKKK  , ,=  has been specified in advance to make the 

nominal system ( )AE  ,  be regular and impulse-free, and to 
have all its finite eigenvalues located within a specified 
region D, then we can see that ( ) 1−

− AEs  is a proper rational 

matrix. Since ( ) 1−
− AEs  is a proper rational matrix, it can be 

uniquely decomposed as (Fang, 1997):  
     ( ) ( ) ,

1
JsGAsE sp +=−

−                            (6) 

where ( )sGsp
 is a strictly proper matrix part of ( ) ,

1−
− AEs  

and J  is a constant matrix part. In what follows, we present 
a robust eigenvalue-assignability criterion to analyze whether 
the linear uncertain singular system ( )AAE Δ+ ,  remains 
regular and impulse-free, and has all its finite eigenvalues 
retained inside the same specified region as the nominal 
system ( )AE  ,  does. That is, we propose a robust eigenvalue-
assignability criterion to analyze whether the linear 
multivariable output feedback PID uncertain control system 
has all its eigenvalues kept within the same specified region 
as the linear multivariable output feedback PID nominal 

control system does, where the PID feedback gain matrices 
have been specified in advance. 

Theorem: 
Assume that a set of PID feedback gain matrix 

[ ]DIP KKKK  , ,=  has been specified in advance to make the 

nominal system ( )AE  ,  be regular and impulse-free, and to 
have all its finite eigenvalues located inside a specified 
region D. The linear uncertain singular system ( )AAE Δ+ ,  
is still regular and impulse-free, and has all its finite 
eigenvalues retained within the same specified region as the 
nominal system ( )AE  ,  does, if the following both 
inequalities are simultaneously satisfied: 
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in which ( )Vμ  denotes the matrix measure of the matrix 
nnCV ×∈  (Desoer and Vidyasagar, 1975); J  is given in (6); 

Qq ∈~  and Q denotes the boundary of the specified region D. 

Proof: Following the same proof procedures given in the 
work presented by the authors of this paper (Chen et al., 
2006), we can obtain that, if both inequalities (7a) and (7b) 
are satisfied, the linear uncertain singular system 
( )AAE Δ+ ,  is still regular and impulse-free, and has all its 
finite eigenvalues retained inside the specified region D.  

Q.E.D. 

The problem considered in this paper is how to specify the 
PID feedback gain matrices 

PK  
IK  and 

DK  in (3) such that 
(i) the constraint of robust eigenvalue-assignability criterion 
in (7) for the linear closed-loop uncertain singular system in 
(5) can be satisfied, and (ii) such that the optimal control 
performance for the linear nominal multivariable system 

( ) ( ) ( ),00 tuBtxAtx +=&  ( ) ( )txCty 0=                   (9) 
can be achieved by minimizing the following quadratic finite-
horizon integral performance index: 
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that is, such that the optimal control performance for the 
linear closed-loop nominal singular system 

( ) ( )txAtxE =&                                  (11) 
can be achieved by minimizing the following quadratic 
integral performance index: 
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where ft  denotes a small time interval which is chosen for 
the independent variable t, q  is a positive integer specified 
by designer, xxQ  is a symmetric positive-semidefinite matrix, 

uuR  is a symmetric positive-definite matrix, 
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Here the time interval of interest is designated as being from 
0=t  to ,ftqt =  where 0=t  is the initial time and ftqt =  is 

the final time of the control period. The problem to be studied 
in this paper can be named the robust optimal eigenvalue-
assignable output feedback PID controller design problem of 
a linear uncertain multivariable system, and the design 
procedures for the PID controller can be described as 
following: 
Step 1: Check the constraint of robust regional eigenvalue- 

assignability criterion in (7). 
Step 2: Minimize the quadratic finite-horizon integral 

performance index in (12) for the linear closed-loop 
nominal singular system in (11). 

That is, the design problem of the robust optimal eigenvalue- 
assignable output feedback PID controller for a linear 
uncertain multivariable system is a constrained optimization 
problem. In the next section, we will integrate the OFA, the 
HTGA and the presented robust eigenvalue-assignability 
criterion to solve this PID controller design problem.  

3. ROBUST OPTIMAL EIGENVALUE-ASSIGNABLE PID 
CONTROLLER DESIGN 

Here, consider the time interval ( ) ,1 ff tktkt +≤≤  where 
ft  

is chosen for the independent variable t, and let us define 
  ,η+= fktt                                    (13) 

and 
( ),fk ktxx =                                   (14) 

in which ,1 ,,2 ,1 ,0 −= qk K  and .0 ft≤≤η  

The state vector ( ),tx  within ( ) ,1 ff tktkt +≤≤  can be 
represented by the truncated orthogonal functions (OF) as 
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where m is the number of terms required for the orthogonal 
functions, ( ) ( ) ( ) ( )[ ]T

m tTtTtTtT  
110  ,,  , −= K  denotes the 1×m  OF 

basis vector, ( )tTs
 ( )1,,1 ,0 −= ms K  denote the orthogonal 

functions, ( )k
sx  ( )1,,1 ,0 −= ms K  are the 1×n  coefficient 

vector, and ( ) ( ) ( )[ ]k
m

kkk xxxx 110
)(  ,, ,~

−= K  is the mn×  coefficient 
matrix. 

Substituting the truncated OF representation of )(tx  in (15) 
into the quadratic integral performance index in (12), the 
quadratic integral performance index J becomes the 
following algebraic form: 
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where the constant matrix W~  is the product-integration-
matrix of two OF basis vectors (Ho and Chou, 2007).  

Integrating (11) from 
fktt =  to tt =  within ≤≤ tkt f

 

( ) ,1 ftk +  we obtain 
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Using the following integral property of the OF: 

( ) ( ), 

tHTdttT
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applying (14) and (15), and making use of the Kronecker 
product, the explicit form for the coefficient matrix ( )kx~  can 
be obtained from (17) as 

( ) [ ] ( ),ˆ)(ˆ 1 kT
m

k QAHEIx
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where 

mI  denotes the mm×  identity matrix, 
( ) ( ) ( ) ( )[ ] , , , ,ˆ
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k

k xEQ K=  ⊗  
denotes the Kronecker product (Barnet, 1979), and H is the 
operational matrix of integration for the OF (Ho and Chou, 
2007). This implies that )(~ kx  can be obtained from (19). 

Now, if one set of PID feedback gain matrices { }DIP KKK ,,  
is given, then ( )kx~  ( )1,,2 ,1 ,0 −= qk K  can be calculated 
from the following algorithm only involving algebraic 
computation. 

Detailed Steps: Algebraic Algorithm 
Step 1: Give a small time interval ,ft  the specified positive 

integer ,q  and the initial state vector ,)0(x  and set 
.0=k  

Step 2: Calculate ( )kx̂  from (19). 
Step 3: Compute 1+kx  by using ( )( )=+=+ fk tkxx 11  

( ) ( )( ).1~
f

k tkTx +  
Step 4: Set .1+= kk  If ,1−> qk  then stop; otherwise go 

to Step 2. 

From the above algorithm, it is obvious that if one set of PID 
feedback gain matrices { }DIP KKK ,,  is specified, then )(~ kx  

( )1,,2 ,1 ,0 −= qk K  can be determined, and thus the value of 
the performance index in (16) corresponding to this set of 
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{ }DIP KKK ,,  can be calculated. Given another set of PID 
feedback gain matrices { },,, DIP KKK  there obtains another 
value of the performance index in (16). That is, the value of 
the performance index of algebraic form in (16) is actually 
dependent on the set of PID feedback gain matrices 
{ },,, DIP KKK  which means 

( ),,,, 1211 αrKKKFJ K=                         (20) 
where 

ijK  ( , ,,2 ,1 ri K=  ,,,2 ,1 αK=j  and ),3 q×=α  
respectively, denote the elements of the PID gain matrices 

,PK IK  and .DK  Hence, the design problem of the robust 
optimal eigenvalue-assignable output feedback PID 
controller for the linear uncertain multivariable system is to 
search for the optimal 

ijK  such that (i) the robust eigenvalue-
assignability criterion in (7) is satisfied, and (ii) the 
performance index of algebraic form in (16) for the linear 
nominal singular system in (11) is minimized. This is 
equivalent to the static parameter constrained-optimization 
problem 

minimize ( )αrKKKFJ ,,, 1211 K=                       (21a) 
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where 
ijD  ( , ,,2 ,1 ri K=  ,,,2 ,1 αK=j  and )q×= 3α  are 

the positive real numbers given from the practical 
consideration, respectively. This means that, by using the 
OFA and the robust eigenvalue-assignability criterion, the 
robust optimal eigenvalue-assignable output feedback PID 
control problem for the linear uncertain multivariable system 
can be replaced by a static constrained-optimization problem 
represented by the algebraic equations with constraints; thus 
greatly simplifying the robust optimal eigenvalue-assignable 
PID control problem. Then, the HTGA can be employed to 
search for the optimal solution of the static constrained-
optimization problem in (21), where (21a) is a nonlinear 
function with the continuous variables. The detailed steps of 
the HTGA are described in the work proposed by Tsai et al. 
(2004). 

4. DESIGN EXAMPLE 

In this section, a design example for a stirred tank is given for 
illustrating the application of the proposed integrative 
approach. The state-space equation of a stirred tank 
(Kwakernaak and Sivan, 1972) is considered and given as 
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where ( )tx1
 is the incremental volume of the fluid in the tank, 

( )tx2
 is the incremental concentration in the tank, and ( )tu1

 
and ( )tu2

 are the flow rates. The following data are used in 
this example: ( ) ,m 1 3

0 =V  ( ),/sm 0212.0019.0 3
0 ≤≤ F  

( ),kmol/m 25.1 3
0 =c  ( )3

1 kmol/m 0006.10094.0 ≤≤ c  and 

( ).kmol/m 0009.29992.1 3
2 ≤≤ c  Hence, the dynamic 

equation in (22) can be described as (1) and (2) with  
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The quadratic finite-horizon integral performance index is  
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in which ,3000=q  ,01.0=ft  
2IQxx =  and .2IRuu =  The 

initial state vector for this system is =)0(x  

( ) ( )[ ] .mkmol1.0,m01.0 33 T  In this example, we want to 
assign all the finite eigenvalues of the resulting closed-loop 
uncertain singular system ( )AAE Δ+ ,  to be retained inside a 

specified rectangular region ( ){ ,0~3~~~ ≤≤−+= xjyxD  

},5.1~5.1 ≤≤− y  where .1~ −=j  

In the following, we will apply the proposed approach, which 
integrates the OFA, the HTGA and the robust eigenvalue-
assignability criterion, to design the robust optimal 
eigenvalue-assignable output feedback PID controller. In the 
OFA, the type of OF considered in this example is the 
shifted-Chebyshev functions. The evolutionary environments 
of the HTGA used in this paper are: the population size is 30, 
the crossover rate is 0.9, the mutation rate is 0.5, and the 
generation number is 30.  

After using the proposed integrative approach with 4=m  
and 30≤ijK  in which 

ijK  ( 2 ,1=i  and )6,,2 ,1 K=j  are 

the elements of the PID gain matrices ,PK  
IK  and ,DK  we 

can obtain that the quadratic performance index is 
,00067791.0=J  and the robust optimal eigenvalue-

assignable PID gain matrices are 
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From the results in (24), we can conclude that the linear 
closed-loop uncertain singular system ) ,( AAE Δ+  is regular 
and impulse-free, and has all its finite eigenvalues retained 
within the specified region D. That is, the designed linear 
multivariable optimal output feedback PID uncertain control 
system has all its eigenvalues retained inside the same 
specified region D as the linear multivariable optimal output 
feedback PID nominal control system does. The state 
responses for the uncertain stirred tank system with the 
designed robust optimal eigenvalue-assignable PID controller 
are, respectively, shown in Fig. 1. From Fig. 1, it can be seen 
that the proposed approach, which integrates the OFA, the 
HTGA and the robust eigenvalue-assignability criterion, may 
provide an effective way for designing the robust optimal 
eigenvalue-assignable output feedback PID controller of the 
linear multivariable uncertain system. 

5. CONCLUSIONS 

The robust optimal eigenvalue-assignable output feedback 
PID control problem of a linear multivariable uncertain 
control system is transformed into the robust optimal 
eigenvalue-assignable static output feedback control problem 
of a linear uncertain singular system. By using the OFA, an 
algebraic algorithm is presented in this paper to solve the 
linear nominal singular feedback dynamic equation. Then, 
the presented algebraic algorithm is complementarily fused 
with the HTGA to design the robust optimal eigenvalue-
assignable static output feedback controller of the linear 
uncertain singular system such that the control objective of 
directly minimizing a quadratic integral performance index 
subject to the constraint of robust regional eigenvalue-
assignability criterion can be achieved. The illustrative 
example regarding a control problem of an uncertain stirred 
tank system has shown that the proposed integrative approach 
is effective for designing the robust optimal eigenvalue-
assignable output feedback PID controller of the linear 
multivariable uncertain system. 
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Fig. 1. State responses (incremental volume and incremental 
concentration) of the uncertain stirred tank system 
with/without the designed robust optimal eigenvalue- 
assignable output feedback PID controller (solid line: 
controlled results; dash line: uncontrolled results). 
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