
Components Selection Methods for Enterprise Interoperability
in Multi Domain Models

Ke FENG, Xiaoping LI, Qian WANG, Jingjing SHAN

School of Computer Science &Engineering, Southeast University, 210096, Nanjing, P.R .China
Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education

alphafeng2006@gmail.com xpli@seu.edu.cn qwang@seu.edu.cn sjj93@126.com

Abstract: Component-based development is gradually showing its advantages in building complex
systems with shorter time and less cost than traditional methods. However, mismatching and semantic are
key problems in component searching process. In this paper, a function description model is proposed to
precisely and completely describe the user requirements and component function based on domain
models. In the component selection process, a sophisticated matching algorithm is introduced for
semantic problems in matching two activity profiles derived from different domain models. A component
selection method is also presented to improve interoperability for multi domain models, followed by the
implemented prototype of the proposed methods.

1. INTRODUCTION

Component-based development (CBD) is increasingly
changing the way of building new systems and showing its
advantages. (1) Reduce the developing time and cost. (2)
Design and deploy complex software systems with
minimum engineering effort and resource cost. Although
CBD has many potential benefits, some issues should be
considered. (1) How to describe requirements for and
capabilities of a component precisely and completely. (2)
How to search the desired components in existing
component repositories efficiently. The key issue is how to
compare the user requirements with the capabilities of the
components, which is a component selection process.

In the existing work, there are five main component
selection approaches (Vijayan et al., 2003).

Keyword Search: Search for the occurrence of string
patterns specified by the user in component attributes and
descriptions.

Faceted classification: Classify components based on facets
(taxonomies) such as function the software performs,
medium used, type of system, functional area, etc.

Signature Matching: Matching of function types and
argument types to the query specified by the user. Signature
matching could be one at the function level or module level
(set of functions).

Behavioral Matching: Execute each library component with
random input vectors and generate output vectors. Compare
expected output to actual output and select components.

Semantic-Based Method: User requirements expressed as
simple imperative or nominal sentences. Natural Language
Processing (NLP) used for generating initial queries and
augmented with domain information. Components selected
based on closeness measure.

A component selection process is characterized by
uncertainty, dynamic changes of the environment, explicit
and implicit criteria and constraints and involving in
different stakeholders (Günther, 2003). Different users and
software vendors use heterogeneous methods to describe
their requirements and component capabilities. These
different descriptions focus on different aspects.
Furthermore, different descriptions may also use different
vocabularies for the same item. As a result, there are some
semantic problems during the selection process and
semantic-based method is usually used. Many researches
focused on the semantic heterogeneity existing in many
autonomously developed systems (Vijayan et al., 2003.
Gemma et al., 2004. Sofien et al., 2006. Ayala et al., 2004).
However, without considering the application context,
semantic-based matching approaches appear not adequate
for addressing the challenge (Hung-Ju et al., 2007).

Besides the semantic problem, there are some problems on
efficiency in the selection process. When the number of
components is large, there are a lot of descriptions in the
repository. So, it is essential to develop an efficient
component selection procedure and the components should
be well structured to reduce the search scope. Several
approaches have been introduced to reclassify the software
components and simplify the request specification (Sofien et
al., 2006).

Interoperability between different users and software
vendors should be improved by a uniform and standard way
to describe user requirements and component capabilities
precisely and completely (Xavier et al., 2005). These
different descriptions should also use common unified items
to avoid the misunderstanding about the described
capabilities between each other (Nasib, 2003). In this paper,
basic concepts used in the domain model are defined for
interoperability. With the domain model, the application
context will be fully considered. Formal component and user
requirements descriptions are extended with functional and

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11919 10.3182/20080706-5-KR-1001.2043

non-functional aspects. As well, an algorithm is presented
for semantic matching in component selection process. At
last, a component selection method is introduced.

2. REFERENCE FRAMEWORK

2.1 Domain Model

In a domain model, an integrated application can be modeled
as a combination of a set of processes, resources and
information exchanged. Resources consist of networks,
devices, software, equipment, material, and personnel
necessary to support the processes and information exchange
required by the application (ISO 16100-1, 2002. ISO
16100-2, 2002. ISO 16100-3, 2005).

Fig. 1.Activity tree structure

A process is modeled as a set of activities that follow a
specific sequence. Each activity has its own specific
function(s) and is performed by the corresponding
component(s) offered by different vendors. As shown in
Figure 1, all activities are organized as a tree. A parent
activity can be decomposed into several child activities and
every leaf activity is an atom activity. The activity tree (AT)
shall be pre-defined by domain experts, and different
domains may have different activity trees. An activity tree is
a kind of domain model which actually indicates how the
domain experts define the functions of each activity needed
in the target domain and shows the part-whole relation of
each activity in the function matching process. At a
minimum, the activity tree defines the scope and boundaries
of the essential standard components of a software system
and can be used principally as an interface specification.

2.2 Activity profile

An activity profile (shown in Figure 2) is used to describe
the component capabilities and user requirements. There are
two parts in a profile. (1) Nonfunction Part including general
information of a component, such as type of manufacturing
domain, reference activity tree ID, computing facilities,
component performance and so on (W. Yu et al., 2007). (2)
Function Part for the required/needed activities and
particular information required by each activity, such as
input/output information (to be exchanged), resources
needed, lower level activities (functions), and so on. The
format of Function Part is shown in Figure 2. An activity
profile is a well formed XML file. In the component
selection process, the function part of profile is our main
concernment to evaluate the interoperability.

Fig. 2.An example of activity profile

3. FCUNCTION MATCHING

Activity should be matched to find existing proper
components which meet the user requirements in the
component selection process. In the matching process, the
profile of user requirements is compared with the profiles of
existing components in Database one by one. So the activity
matching is actually a matching process between activity
profiles, which can be derived from any two nodes of
activity tree(s).

The matching includes two parts due to the above activity
profile structure. Non-Function Part has a fixed information
structure and contains the general information of an activity.
So the matching process can be fulfilled just by comparing
all the elements one by one.

The contents of Function Part (shown in Figure 2) are
mainly derived from activities of target domain. When
component and user requirements base on the same domain
model, the matching process is Simple Function Matching.
When component and user requirements have different
domain models, the matching process is Sophistical
Function Matching, which is much more complex than the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11920

simple one. In this paper, we focus on Function Matching

3.1 Simple Function Matching

In an activity tree, a parent activity always consists of its
child activities. Therefore, in the CCS shown in Figure 3, the
component (node a1) includes the function of the user
requirements (node a3). In other words, the user
requirements can be fulfilled by the component, and a proper
component has been found.

Fig. 3. A simple function matching example

In simple function matching process, LID (Level_ID) is
used to indicate the location of each node in the same
activity tree. LID of an ancestor node is always the prefix of
those of its descendants. For instance, A and AB are LIDs of
a1 and a3 respectively. A is the prefix of AB, which means
a1(A) is the ancestor node of a3(AB). LID implies the level
of each node and the function inclusive relationship of two
selected nodes in the same activity tree.

3.2 Sophistical Function Matching

Different organizations may have different activity
hierarchical structures and naming rules in certain domain,
leading to various activity trees. Therefore, semantic
problems are the main consideration when component and
user requirements come from different activity trees (Andrea
et al., 2003). In this paper, 'semantic' means the meaning of
an activity name and the function represented by the activity.
Different activity names stand for the same function (show
as Figure 4(3)), or the same name stands for different
capabilities (show as Figure 4(2)). Also, activity may have
different names with different capabilities (show as Figure
4(4)).

Fig. 4. Semantic problems between different ATs

Therefore, LID and name comparison used in the simple

function matching is unsuitable for CCS structure
comparison, which is necessary for the semantic problems in
Sophistical Function Matching.

3.2.1 Same Function Node_pair

A_CCS , are two CCSs, B_CCS A_ATa∈ ,
B_ATb∈ , B_ATA_AT ≠ .

Definition 1 (same function node_pair): and are
called the same function node_pair (marked as

a b
ba ==)

when the following two conditions are satisfied. (1) At least
 or is a leaf node. (2) and have the same name

according to the synonymy dictionary.
a b a b

In an activity tree, leaf nodes are atomic activities and
perform limited functions. Hence, it is not difficult to find
the same function node_pairs in leaf nodes even though
different organizations may use different activity trees for
the same domain, especially when the domain synonymy
dictionary is used. The same function node_pairs provide
basic rules for the structure comparison of different activity
trees.

3.2.2 Function Satiable

Definition 2 (function satiable): is function satiable to
 (marked as), if and only if:

b
a ab → ba == or
descendants of are function satiable to all child nodes of

.
b

a

Definition 3 (corresponding node): if is function
satiable to , then is the corresponding node of .

b
a b a

Fig. 5. An example of function satiable

For an instance shown in Figure 5, Node A is user
requirements in the left-hand tree. A suitable node should be
found to make node A function satiable in the right-hand
tree.

(1) Find the corresponding node of A by Definition 3.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11921

(2) Recursively find the corresponding nodes of the child
nodes of A (AA and AB).

(3) BAAA == .

(4) The child nodes of AB (ABA , ABB and), ABC
BBABA == , and .

Ancestor node of , and is , so
.

BCABB == BAAABC ==
BB BC BAA B

ABB →

(5) as the ancestor node of (AB → BA BAAA ==) and
() is . B ABB → B

3.2.3 Algorithm FCN

In this paper, algorithm FCN (Find Corresponding Node) is
presented for finding corresponding nodes.

(1) Scanning AT_A to find all same function node_pairs.

(2) 1.1 Set the default state =-1 for each node . A_ATa∈

1.2 Scan each node
{
 if (a == b)
 set a.state=2 and store (a, b) in the mapping table;
 else if (node a is a leaf node)
 set a.state = 0;
}

A_ATa∈

(3) Scanning AT_A to find the corresponding nodes for all
the non-leaf nodes in AT_A. For node , call
FindCN (a) recursively by the following way.

A_ATa∈

{
 if(a.state > 0)
 return a's corresponding node;
 if(a.state == 0)
 return null;
 if (a.state ==-1)
 {
 //i in (1.. the node number of a's child nodes)
 for each node ai in a's child nodes
 {
 node bi = FindCN(ai); // recursive call
 if (bi == null)
 set a.state = 0 and return null;
 }
 }
 get the common ancestor b of all bi
 set a.state = 1;
 store (a, b) in the mapping table;
 return b;
}

(4) Stop.

For the example in Figure 5, the mapping table, which
records the node state and corresponding nodes of the nodes
in the left-hand tree, is shown Table 1.

Table 1. Node states and corresponding node_pairs

step1 step2 Node

LID node
state

corresponding
node LID

node
state

correspondin
g node LID

A -1 - 1 B

AA 2 BA 2 BA

AB -1 - 1 B

ABA 2 BB 2 BB

ABB 2 BC 2 BC

ABC 2 BAA 2 BAA

3.2.4 Algorithm Analysis

In step1, time is mainly consumed by the same function
node_pairs searching process in terms of Definition 1.
Suppose nodes in AT_A and m nodes in AT_B.
Comparing a node name in AT_A with the names in AT_B
one by one, the time complexity is . If every node in
AT_A has k synonymies at most in the synonymy
dictionary, the worst time complexity of the same function
node_pairs searching process is .

n

)O

)(O

m(

n*m*k

In step2, the recursive corresponding node searching process
is a bottom-up approach. By using node state, all the nodes
can be processed just once. In order to find the
corresponding node of a non-leaf node in AT_A, all
corresponding nodes of its child nodes should be found
recursively. Then, the corresponding node of a can be
quickly found just by comparing the LIDs of the
corresponding nodes of its child nodes. For example, LID
BB and LID BC have the same prefix B. So, the common
ancestor of and is . The time complexity of
finding the same prefix is , and the time complexity is

 by using this LID (the same prefix) to search the
node in AT_B. Therefore, the time complexity of searching
the corresponding nodes of all the nodes in AT_A is

.

a

BB BC B
)1(O

)m(O

)n*m(O

In order to decrease the time expense of FCN, two hash
tables are used to accelerate the searching process in AT_B.
One is used to index and link the nodes in AT_B by their
names. Suppose the hash table has hash buckets, the
average time complexity for searching an element in the
hash table is . So, in step 1, the time complexity
for searching a node by its name in AT_B can be reduced to

. In step 2, the other hash table indexes the nodes
in AT_B by their LIDs to search the corresponding node
efficiently.

p

)p/m(O

)p/m(O

3.3 User Requirements Translation

With the mapping table, user requirements can be easily

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11922

translated to the activity tree with registered components in
certain domain (component AT for short). In Figure 5,
suppose FactoryManage(A) is the user requirements, its
corresponding node is PlantManage(B) based on the
mapping table (show as Table 1), then the user requirements
can be translated to PlantManage(B) in component activity
tree. Based on the mapping table, the node in user
requirements do not have corresponding node, use its
ancestor’s corresponding node instead.

4. MSU SELECTION

The MSU selection process can be modeled as Figure 6.

(1) User inputs the requirements.

(2) Get the domain, activity tree ID and selected activities
based on the REQ.

(3) Search the components registered on the same function
classes in Database (components and user requirements
are on the same AT). If any mapping tables exist,
translate the user requirements from original AT (AT
with the user requirements) to new AT according to the
mapping table. Then search the components on the new
AT.

(4) Compare the components found in (3) with REQ.

(5) Output the components which meet the REQ.

Fig. 6. Software selection process

The simple function matching process works well and
efficiently in step (2). Algorithm FCN is used to generate the
mapping tables used in step3.

A screenshot of our components selection application is
shown in Figure 7. In the searching process, the application
search and compare the components register on the original
CCS. Then the application translates the user requirements
from original AT to component AT according to the mapping
tables saved in selected mapping files, and redo the
searching and comparing process on the component AT.

Fig. 7. A screenshot of components selection system

5. CONCLUSIONS

In this paper, a components selection method based on multi
domain models is proposed. An activity tree is a model of
the certain target domain which classifies the functions and
guides the components selection process. All the component
profiles are classified under the structures of ATs (see Figure
6). The function matching process just need to compare the
user requirements with the component profiles, registered
under the selected function classes.

When different software vendors and users in the same
domain agree with the same domain model, they come to an
agreement about the function of each activity. And there is
no semantic difficulty in function matching process. When
multi domain models are used in one certain domain, there
are semantic problems. In sophistical function matching
process, algorithm FCN is used for two ATs' mapping to
eliminate the semantic heterogeneity existing in different
models. User requirements translation from user AT to
component AT is adopted to transform two different models
into one.

Even though the mapping table can be generated after the
execution of algorithm FCN, it is much time-consuming.
Especially, when multi ATs (suppose ATs) exist in the
same domain,

n
)1n(*n − times of mapping should be done

to generate the mapping tables between two ATs. In practice,
a standard AT can reduce the mapping times to and
facilitate the mapping process (all the ATs just need to map
to the standard AT).

n

There is still much work to be done. In the first scanning of
algorithm FCN, a domain synonymy dictionary is used to
find the same function node_pairs. When one node can find
two and more same function nodes, how to select the fittest
one should be serious considered. The complete description
with resource and information exchanged model is still need
further work.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11923

6. ACKNOWLEDGEMENT

This work is supported by National 863 Plan of China under
Grants No. 2006BAF01A48.

The authors thank ISO/TC 184/SC 5/ WG 4 members and
its Japanese mirror committee members for their useful
effort to international standards on which our work are
based and extended.

REFERENCES

Andrea Rodrı´guez M., Egenhofer Max J.. (2003).
Determining Semantic Similarity among Entity Classes
from Different Ontologies. IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, Vol. 15,
NO. 2, pp. 442-456.

Ayala Claudia, Franch Xavier. (2006). Domain Analysis for
Supporting Commercial Off-The-Shelf Components
Selection. In: International Conference on Conceptual
Modelling – ER 2006, pp. 354-370.

Gemma Grau, Juan Pablo Carvallo, Xavier Franch, Carme
Quer. (2004). DesCOTS: A Software System for
Selecting COTS Components. In: Proceedings of the
30th EUROMICRO Conference, pp. 118-126.

Günther Ruhe. (2003). Intelligent Support for Selection of
COTS Products. In: Web Databases and Web Services
2002, pp. 34–45.

Hung-Ju Chu, Randy Y.C. Chow. (2007). Reaching Semantic
Interoperability through Semantic Association of
Domain Standards. In: 11th IEEE International
Workshop on Future Trends of Distributed Computing
Systems, FTDCS '07, pp. 15-20.

ISO/TC184/SC5/WG4, ISO 16100-1 (2002) Industrial
automation systems and integration – manufacturing
capability profiling for interoperability – Part 1:
Framework.

ISO/TC184/SC5/WG4, ISO 16100-2 (2002) Industrial
automation systems and integration – manufacturing
capability profiling for interoperability – Part 2:
Profiling methodology.

ISO/TC184/SC5/WG4, ISO 16100-3 (2005) Industrial
automation systems and integration – manufacturing
capability profiling for interoperability – Part 3:
Interface services, protocols and capability templates.

Nasib S. Gill. (2003). Reusability Issues in
Component-Based Development. ACM SIGSOFT
Software Engineering Notes, Vol. 28, NO. 4, pp. 4-4.

SEMATECH Technology Transfer 2706 Montopolis Drive
Austin. (1998). Computer Integrated Manufacturing
(CIM) Framework Specification Version 2.0.

Sofien Khemakhem, Khalil Drira, Mohamed Jmaiel. (2006).
SEC-A Search Engine for Component based software
development. SAC’06, pp. 1745-1750.

Vijayan Sugumaran, Veda C. Storey. (2003). A
Semantic-Based Approach to Component Retrieval. The
DATA BASE for Advances in Information Systems, Vol.
34, No. 3, pp. 8-24.

W. Yu, M. Matsuda, Q. Wang. (2007). Enhancing
Interoperability of Manufacturing Software Units Using
Capability Profiling. Enterprise Interoperability: the
new Challenges and Approaches, Springer, pp. 451-460.

Xavier Franch, Marco Torchiano. (2005). Towards a
Reference Framework for COTS-Based Development:
A Proposal. ACM SIGSOFT Software Engineering
Notes, Vol. 30, NO. 4, pp. 1-4.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11924

