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Abstract: In this research, a stable biped walking pattern is generated using reinforcement learning. The 
biped walking pattern is chosen as a simple third order polynomial. To complete the walking pattern, four 
boundary conditions are needed. Initial position and velocity and final position and velocity of the joint are 
selected as boundary conditions. In order to find the proper boundary condition value, a reinforcement 
learning algorithm is used. Also, desired motion or posture can be achieved using the initial and final 
position. The final velocity of the walking pattern is chosen as a learning parameter. To test the algorithm, 
a simulator that takes into consideration the reaction between the foot of the robot and the ground was 
developed. The algorithm is verified through a simulation. 

 

1. INTRODUCTION 

A humanoid robot is a robot that totally or partially resembles 
a human in shape and/or function. This kind of robot is 
different from industrial robots, which are normally used in 
factories and typically perform tasks repetitively. The 
humanoid robot may have a torso, head, arms and so on and 
may even be able to perform various functions using fingers. 
It may also have artificial intelligence, and thus can recognize 
objects or human faces and also can represent himself using 
gestures. For a humanoid robot, its method of locomotion is 
critical. Numerous movement methods have been considered, 
including the use of wheels and caterpillar, quadped, and 
hexapod walking methods based on motions of animals and 
insects. While these methods have respective strengths, it is 
preferable that humanoid robots used in human society be 
capable of biped, as humans walk on two legs and our 
environment is geared to biped walking. By employing biped 
motion, the humanoid robot will be able to navigate stairs 
easily, doorsill, and walk over stepping stones. 

HUBO, the first humanoid robot in Korea, was developed by 
Oh and colleagues at KAIST in 2004. Its performance was 
later improved and new biped walking robots, Albert HUBO 
and HUBO FX-1, were developed. Albert HUBO is an 
android type robot and HUBO FX-1 is a human riding biped 
walking robot. These humanoid robots combine several biped 
walking methods for stable walking. For the walking strategy, 
first a walking pattern that is suitable for a given environment 
is designed, and then a ZMP feedback controller and other 
sub controllers are used to maintain its stability for a 
dynamically changeable environment. In other words, the 
robot follows the walking pattern that is designed for a given 
environment. In order to keep its stability for a slightly 
changed environment, it uses the ZMP feedback controller 

and other sub-controllers such as a posture controller and 
landing orientation controller. Many researchers use only a 
ZMP feedback controller; however, while stable walking can 
be maintained, it is difficult to generate a desired motion.  

The key challenge in the existing method used by HUBO is 
finding proper parameters for designing or generating a stable 
walking pattern. It is difficult to find proper parameters, 
because they are influenced by many factors such as robot 
posture, ground conditions, and so on. Also, the walking 
mechanism is not fully understood, in other words, it is not 
clear how humans walk or run, and thus it is naturally hard to 
apply the mechanism of human walking and design the 
walking pattern. The existing HUBO finds these parameters 
through many experiments and a walking data analysis using 
the real system. This process is, however, difficult and time-
consuming. Furthermore, because the unconfirmed walking 
pattern is tested using the real robot, there is an inherent risk 
of accident. This is the starting point of the present research. 

2. RELATED WORK 

Chew and A. Pratt simulated their biped walking robot, 
Spring Flamingo and M2, in the planar plane (two-
dimensional simulation). A reinforcement leaning system 
was used as the main controller. They chose the following 
states: (a) Velocity of the hip in the forward direction (x-
coordinate); (b) x-coordinate of the previous swing ankle 
measured with reference to the hip; and (c) step length. The 
next position of the swing foot was used as the action. They 
used a torque controller in each ankle to control the ankle 
joint torque. The ankle joint torque was limited to a certain 
stable value, and thus the robot could walk stably without 
considering the ZMP. However, because their goal was to 
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realize walking with constant speed, the posture of the robot 
was not considered. 

Benbrahim and A. Franklin used a reinforcement learning 
system as both the main and sub controllers. To achieve 
dynamic walking of their planar robot, central and other 
peripheral controllers were used. The central controller used 
the experience of the peripheral controllers to learn an 
average control policy. Using several peripheral controllers, it 
was possible to generate various stable walking patterns. The 
main controller activated specific peripheral controllers, an 
approach that is suitable for specific situations. However, the 
architecture of the controller is very complex and this 
approach required many trials for the leaning and long 
convergence time. 

Morimoto, Cheng, G. Atkeson, and Zeglin used a simple five 
link planar biped robot to test their reinforcement learning 
algorithm. The foot of each leg had a ‘U’ shape and there 
were no joints in the ankle and thus it moved in the manner 
of a passive walker. The goal of the learning system was to 
walk with constant speed and the states were: (a) velocity of 
the hip in the forward direction; and (b) forward direction 
distance between the hip and ankle. The reward was simply 
falling down or not and the action was the angle of the knee 
joint. This work concentrated on stable walking only and thus 
the posture of the robot was not considered. 

3. WALKING PATTERN 

Methods of designing the stable walking pattern can be 
categorized as follows. The first approach is the inverted 
pendulum model control method. In this method, a simple 
inverted pendulum, i.e., inverted pendulum model, is used as 
a biped walking model. Based on this model, the proper ZMP 
reference is generated and the ZMP feedback controller 
follows this reference. Because this method uses a simple 
inverted pendulum model, its structure is very simple. 
Furthermore, since it follows the ZMP reference for stable 
walking, stability is always guaranteed. However, it requires 
a proper ZMP reference and it is difficult to clearly and 
accurately define the relationship between the ZMP reference 
and the posture of the biped walking robot. Therefore, it is 
difficult to select the proper ZMP reference if the posture of 
the biped walking robot is considered in addition to stable 
walking. A pattern generator, which translates the ZMP 
reference to the walking pattern, is also needed. Fig. 3-1 
shows a block diagram of the inverted pendulum model 
control method. 

 

Fig. 3-1 Inverted pendulum model control method 

The other method is called the accuracy model method. This 
model requires accuracy models of the biped walking robot 
and its environment. In this method, a stable walking pattern 

is generated in advance based on the accuracy model and the 
biped walking robot follows this walking pattern without a 
ZMP feedback controller. The strengths of this method are 
that it is possible to control the biped walking robot with the 
desired posture and it does not need a ZMP controller. 
However, the generated walking pattern is not a general 
walking pattern. For example, the walking pattern that is 
generated for flat ground is not suitable to inclined ground. 
Therefore, if the given environment is changed (e.g., ground 
condition, step length, step period, etc.) then the walking 
pattern should be regenerated for the changed environment. 

 

Fig. 3-2 Accuracy model method 

An additional problem of this method is the difficulty in 
obtaining an accurate model of the robot and its environment, 
including such factors as the influence of the posture of the 
robot and the reaction force from the ground. Consequently, 
the generated walking pattern should be tuned by 
experiments. The generated walking pattern for the specific 
environment is sensitive to external forces, because this 
method does not include a ZMP controller. However, when 
the precise posture of the biped walking robot is required, for 
example, when moving upstairs or doorsill, this “accuracy 
model method” is very powerful. In order to resolve these 
problems, in the present work the walking pattern generating 
algorithm is developed using reinforcement learning. Fig. 3-2 
shows the process of the accuracy model method. 

To generate the walking pattern, first, the structure of the 
walking pattern should be selected carefully. Selection of the 
kind of structure is made based on polynomial equations, sine 
curves, etc. according to the requirements. In this research, a 
third order polynomial ankle and hip joint pattern for the 
support leg is designed as the walking pattern. To simplify 
the problem and also to make the body upright from the 
ground, the sum of the hip, knee, and ankle angles is set to be 
zero. The knee angle of the support leg is constant while 
walking, and thus the hip angle is not independent of the 
pattern of the ankle with respect to making the body upright. 
Thus, only the ankle joint or the hip joint pattern is required 
for the walking pattern of the support leg.  

To create or complete the third order walking pattern, four 
boundary conditions are needed. These boundary conditions 
are chosen with a number of factors taken into account. First, 
to avoid jerking motions and make a smooth walking pattern, 
the walking pattern must be continuous. For this reason, the 
angle and angular velocity of the ankle joint at the moment of 
the beginning of the walking pattern of the support leg were 
chosen as the boundary conditions. Additionally, when the 
foot must be placed in a specific location, such as when 
stepping stones, the final position of the walking pattern is 
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important. This final position is related to the desired posture 
or step length, and this value is defined by the user. Hence, 
the final angle of the ankle can be another boundary 
condition. Finally, the final velocity of the walking pattern is 
utilized as the boundary condition. Using this final velocity, 
it is possible to modify the walking pattern shape without 
changing the final position and also stabilize the walking 
pattern. From these four boundary conditions, a third order 
polynomial walking pattern can be generated 

Table 3-1 Boundary conditions for the walking pattern 
Boundary 
condition 

Reason 

Initial velocity To avoid jerk motion 

Initial position 
To avoid jerk motion and continuous 

motion 
Final velocity To make the walking pattern stable 
Final position To make wanted posture 

 

However, it is difficult to choose the correct final velocity of 
the pattern. Because exact models include the biped robot, 
ground and other environmental factors are unknown. The 
existing HUBO robot uses a trial-and-error method to find 
the proper final velocity parameter, but numerous trials and 
experiments are required to tune the final velocity. Thus, in 
order to find a proper value for this parameter, the 
reinforcement leaning algorithm is used. 

4. REINFORCEMENT LEARNING 

The reinforcement learning agent uses the Q-learning 
algorithm, which uses the Q-value. To store the various Q-
values, which represent actual experience or trained data, 
generalization methods are needed. Various generalization 
methods can be used; in the present work, the CMAC 
(Cerebellar Model Articulation Controller) is employed. This 
algorithm converges quickly and is readily applicable to real 
systems. 

For the selection of proper states, the linear inverted 
pendulum model, which is normally used to model a biped 
walking robot, is considered. If the third order polynomial is 
used as the walking pattern, as mentioned previously, the 
ZMP equation can be written as shown in Fig. 4-1. As shown 
in Fig. 4-1, the body position and body acceleration are 
related to the ZMP position. If the ZMP position is located in 
the support region of the robot, the robot will then be 
dynamically stable. Therefore, choosing the body position 
and body acceleration as states is acceptable. In terms of 
energy efficiency, conserving the angular and linear 
momentum is important. The body velocity shows the 
direction of the movement of the body. Therefore, the body 
velocity can be another state. Table 4-1 shows the selected 
states and the related reasons for the selection of each state. 
All states are normalized to -1.0~1.0. However, the 
reinforcement learning agent has no data for the maximum 
values of the states; the reinforcement learning agent receives 
this data during the training and updates it automatically. 
First, these maximum values are set to be sufficiently small, 
in this case 0.1. The reinforcement learning agent then 
updates the maximum value at every step if the current values 
are larger than the maximum values. 

 

Fig. 4-1 The ZMP of the inverted pendulum 

To create a third order polynomial walking pattern, the final 
velocity is needed, as discussed in Section 3. Hence, the final 
velocity is used as an action and other conditions are 
determined by the user. Table 4-2 shows the action and the 
reason for it. The maximum value of the action is limited to 
0.3m/s. This maximum value is based on the physical motor 
and reduction gear specifications. 

 The reward function should be the correct criterion of the 
current action and also represents the goal of the 
reinforcement learning agent. The reinforcement learning 
agent should learn to determine a viable parameter value for 
the walking pattern generation; the goal is to have the robot 
walk stably. The reward is thus divided as ‘fall down or not’ 
and ‘how good is it’ in this research. Table 4-3 shows the 
reward and reasons. If the robot falls down, the reinforcement 
learning agent then gives a high negative value as the reward; 
in other cases, the robot receives positive values according to 
the body rotation angle. The body rotation angle represents 
the feasibility of the posture of the robot. 

Table 4-1 States 
State Reason 

Body position respect to 
the support foot 

Relationship between the C.G. 
position and the ZMP and the body 

posture 
Body velocity Angular and linear momentum 

Body velocity 
Relationship between the C.G. 

position and the ZMP 

 

Table 4-2 Action 
Action Reason 

Final velocity of the 
walking pattern 

Only the final velocity is the unknown 
parameter. It is related to stable walking. 

 

Table 4-3 Reward function 
Reward  Reason 

Fall down or remain 
upright 

This denotes the stability of the 
robot(or absence of stability) 

Body rotation angle 
It represents how good it is for stable 

dynamic walking 

5. SIMULATOR 

Because reinforcement learning is basically based on a trial-
and-error method, it is both dangerous and difficult to apply 
it in actual systems before sufficient training is performed. In 
particular, when the system is inherently unstable, such as in 
the case of a biped walking robot, more attention is needed. 
Therefore, a learning agent should be fully trained in the 
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biped walking robot simulator and then applied to the actual 
robot. 

The HUBO simulator is used to train a reinforcement 
learning agent, and hence its model is very important. The 
model used for the simulator should take into account the 
robot dynamics and the interaction between the robot and its 
environment model. Many researchers confuse robot 
dynamics and the interaction between the robot and the 
environment. Interactions are more important than the robot 
dynamics, because stability problems occur when the robot 
interacts with its environment, such as in the case of reaction 
force. 

In this research, ODE (Open Dynamics Engine) was used to 
develop the robot model and the environment model such 
that it will accurately represent the real world. ODE is a 
physics engine initially developed by Smith. Its source code 
has been opened and is governed by an open source 
community. ODE provides libraries for dynamics analyses, 
including collision analyses. The performance of ODE has 
been validated by various research groups and many 
engineering programs use ODE as a physics engine.  

The HUBO simulator, which was developed for this research, 
is composed of a learning system that is in charge of all 
leaning processes, a physics engine that models the biped 
robot and its environment, and utility functions to validate the 
simulation results. Fig. 5-1 shows these modules and the 
relationships between them. 

 

Figure 5-1. Structure of the HUBO simulator  

 

Figure 5-2 Layout of the HUBO simulator 

6. EXPERIMENT 

To test the performance of the walking pattern generation 
algorithm, specific motions are used, as shown in Table 6-1. 
The overall walking period is 0.9 sec. The support leg moves 
within 0.9 sec and the swing leg moves within 0.7 sec. The 
support leg and swing leg moving periods are different 
because it is necessary to reduce the reaction force from the 
ground when the swing leg touches the ground. The target 
step length is 0.358m and the target joint angle is shown in 
Table 6-1. Knee joints are fixed at 0.2rad and the overall 
walking speed is 1.432 km/h. HUBO is used as a simulation 
model in this experiment.  

From Fig. 6-1, it is seen that the reinforcement learning agent 
converges after the 19th trial. After the 19th trial, the robot 
walks more than 400 steps and 120m. In the 10th trial, the 
robot succeeds in walking 38 steps but falls down (and 
therefore received punishment) in the next step. This can be 
considered as the local minimum. After the 19th trial, the 
states and action converge to specific vales and fall into a 
limit cycle. 

Table 6-1 Simulation conditions 
Step period 0.9 sec 
Step length 0.179+0.179=0.358 m 

Hip -0.4 rad 
Knee 0.2 rad 

Target motion of the front leg 
(0.9 sec) 

Ankle 0.2 rad 
Hip 0.2 rad Target motion of the rear leg 

(0.7 sec) Knee 0.2 rad 

 

 

Figure 6-1 Iterations and number of successes 

Fig. 6-2 and Fig. 6-3 show the body movements of the robot 
in the 19th trial. From these figures, it is seen that the robot 
walks stably and the walking sequence is repeated (limit 
cycle). The body moves up and down, because the knee angle 
of the support leg is fixed during walking. This motion is 
similar to passive walking. The center of the upper body is 
located 0.886m from the ground initially and at 0.86m during 
walking.  

Fig. 6-4 shows the body rotation angle (pitch). The maximum 
value of the body rotation angle is 1.28 degrees. This value is 
reached when the support leg is changed from right to left or 

Generalization 

Save parameters 

Parameters 

Action Simulation 
result 

States, action and q-value 

Q-value 

Reward function 

Reward 

Simulation 
results 

Save data 

OpenGL 

HUBO Graph 

 

 

Dynamics 

ODE Pattern generator 

 

 

Reinforcement learning 

Q-learning 

 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3030



 
 

     

 

from left to right. At this moment, the dynamic model is 
changed. This also shows that stability problems mostly 
occur at this moment.  

 

Fig. 6-2 Body movement (x-direction) 

 

Fig. 6-3 Body movement (z-direction) 

 

Fig. 6-4 Body rotation angle (pitch angle) 

Fig. 6-5 and Fig. 6-6 show the position of the foot during the 
stable walking process. From Fig. 6-5, it is seen that the robot 
follows the given conditions, as outlined in Table 6-1. Its step 
length is 0.382m and the step period is 0.9 sec. This implies 
that the robot can walk stably and will place its foot in the 

desired position. Fig. 6-6 shows there is no DSP(double 
support phase) during walking. 

 

Fig. 6-5 Foot position (x-direction) 

 

Fig. 6-6 Foot position (z-direction) 

7. CONCLUSION 

In this research, a learning system for a stable biped walking 
pattern generator was developed. The structure of the walking 
pattern is fixed as a third order polynomial expression and, 
on the basis of four boundary conditions, the initial position, 
initial velocity, final position, and final velocity of the 
walking pattern, it is possible to complete the walking pattern. 
Among the four boundary conditions, the initial position and 
initial velocity are selected to facilitate continuous and 
smooth walking without jerky motion. By using the final 
position as the boundary condition, the biped walking robot 
can step on a specific position. The other boundary 
conditions the final velocity of the walking pattern, is related 
to the stability of the robot. By changing this parameter, it is 
possible to realize a stable walking pattern. However, it is 
difficult to determine this parameter manually. Thus, by 
using the reinforcement learning system, the proper final 
velocity that allows for stable walking in a given 
environment is found. Using these boundary conditions, a 
stable walking pattern is generated whereby the robot can 
place its feet in specific positions. 
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All states, rewards, and actions for the learning system are 
chosen by physical insight and experience. Position, velocity, 
and acceleration of the upper body are related to ZMP. Hence, 
these states reflect the stability. Pitch angle of the upper body 
in relation to the ground is considered as the reward. There 
are many ways to describe the goal, which in this case is 
related to stability of the robot, such as the position of the 
upper body, the ZMP, the angle of the support foot or simply 
falling down or not. However, the pitch angle of the upper 
body is chosen by experience. Using this reward, the learning 
system had converged within only 19 trials. The action is 
selected to complete the stable walking pattern.  

To train and verify the learning process, the HUBO simulator 
was developed given that it is difficult and dangerous to 
implement the learning system with a real robot without full 
learning. To make the simulation more realistic, a well 
known physics engine, the ODE, is used. Using the ODE, it 
is possible to simulate the robot and its environment. All 
features of the simulator are modulated and it is easy to add 
new components and algorithms. Specific motions were 
tested and verified using the HUBO simulator. The learning 
system learns the final velocity of the walking pattern and 
this walking pattern is verified using the simulator.  
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