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Abstract: In this paper, we present a robust output-feedback model predictive control (MPC)
design for a class of open-loop stable systems with hard input- and soft state constraints.
The proposed output-feedback design is based on a linear state estimator and a novel
parameterization of the soft state constraints that has the advantage of leading to optimization
problems of prescribable size. Robustness against unstructured model uncertainty is obtained
by choosing the cost function parameters so as to satisfy a linear matrix inequality condition.
The robust output-feedback design incorporates a novel state-feedback design, which may be
seen as a generalization of a previous proposal.

1. INTRODUCTION

Model predictive control (MPC) policies are optimization
based control policies that calculate the current control
input by solving an optimization problem parameterized
by the current system state. The optimization problem
in MPC is typically an open-loop optimal control problem
which incorporates a dynamic model of the system in order
to calculate predictions from the current state over a future
horizon. A major advantage of the MPC methodology is
that constraints on system inputs and states can be han-
dled by imposing constraints on the predictions. However,
due to model uncertainty, unmeasured disturbances, etc.,
constrained MPC policies may face infeasibility problems,
that is, they may encounter a system state for which the
constraints on the associated predictions can not be met.

To avoid the occurrence of infeasibility problems, it is
often beneficial to make use of soft constraints (de Oliveira
and Biegler, 1994; Zheng and Morari, 1995; Scokaert and
Rawlings, 1999; Choi and Kwon, 2003). In an MPC policy
with soft constraints, constraint violations are allowed
but (near) constraint satisfaction and good performance
can nevertheless be achieved, provided the slack variables
that parameterize the constraint violations are suitably
penalized in the cost function. Zheng and Morari (1995)
suggest to penalize the maximum constraint violation
over the horizon. This approach, however, may lead to
poor performance and be difficult to tune, especially for
non-minimum phase systems, as shown by Scokaert and
Rawlings (1999). To overcome such difficulties, Scokaert
and Rawlings (1999) proposed an MPC policy which
penalizes the sum of the norm of the constraint violations.

A computational issue inherent in the approach of both
Zheng and Morari (1995) and Scokaert and Rawlings
(1999) is that the optimization problem includes an infinite
number of soft constraints. Hence, to solve the problem
accurately using finite dimensional optimization it is nec-
essary to remove (or finitely parameterize) all constraints

after a suitably long horizon N̄ . However, the horizon N̄
generally depends on, and may increase indefinitely with,
the size of the current state (Choi and Kwon, 2003).

In this paper, we propose a soft-constrained MPC scheme
which only requires the solution of a single quadratic
programme (QP) of prescribable size. The proposed design
generalizes the design of Scokaert and Rawlings (1999)
in the case of quadratic penalty functions. That is, if
the terminal constraint set and the horizons are chosen
to be sufficiently large, then the proposed state-feedback
MPC scheme yields equivalent results to that of Scokaert
and Rawlings (1999). A major advantage of the new
design, however, is that it is not necessary to choose the
horizons sufficiently large, since the algorithm is globally
exponentially stable for any horizon length and is based
on a finite dimensional QP whose size is independent of
the current state.

Another, perhaps more significant, advantage of the pro-
posed state-feedback design is that it extends naturally to
a robust output-feedback design, for a class of open-loop
stable systems with unstructured model uncertainty, when
combined with a linear state estimator. In particular, we
show that global ℓ2-stability can be ensured by choosing
the cost function parameters so as to satisfy a linear matrix
inequality (LMI) condition. The robust output-feedback
design described here may be seen as a generalization of
the robust input-constrained design proposed in Løvaas,
Seron, and Goodwin (2008). The present approach to
stability analysis is an application of the “dissipativity ap-
proach” proposed in Løvaas, Seron, and Goodwin (2007a).

The paper outline is as follows: Section 2 describes the
uncertain open-loop system. Section 3 proposes a state-
feedback MPC policy for the nominal component of the
system. Section 4 extends the results of Section 3 and
proposes a robust output-feedback MPC policy for the un-
certain system. Throughout we use the following notation:
‖x‖2P denotes xTPx, [a, · · · , c] denotes [aT · · · cT]T and Iq

denotes the q × q identity matrix.
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2. SYSTEM DESCRIPTION

We consider a discrete-time system whose evolution from
time k = 0 onwards is described by the feedback intercon-
nection shown in Fig. 1, where

G(z) =

[
G11(z) G12(z)
G21(z) G22(z)

]

(1)

is a known rational transfer function, and where ∆ is a
causal operator satisfying

‖∆‖∞ ≤ 1. (2)

We will impose strict causality and open-loop stability for
any causal ∆ satisfying (2). To this end, we require the
following assumption:

Assumption 2.1. G(z) is stable and causal,

‖G22(z)‖∞ < 1, (3)

and G11(z) and G12(z) are strictly causal.

uk

wkzk

yk

G(z)

∆

Fig. 1. Uncertain system.

Subject to Assumption 2.1, a state-space representation of
the system, such that
[
G11(z) G12(z)
G21(z) G22(z)

]

=

[
C
Cz

]

(zI −A)
−1

[B Bw] +

[
0 0
D Dw

]

,

has the form

xk+1 = Axk + Buk + Bwwk, x0 = x, (4a)

yk = Cxk, (4b)

zk = Czxk + Duk + Dwwk, (4c)

where xk ∈ R
nx is the system state, and where the

auxiliary system input wk ∈ R
nw is the response of ∆

to the auxiliary system output zk ∈ R
nz . Here we assume

that ∆ has a finite initial condition so that, in view of (2),
its input and output satisfy the following sum quadratic
constraint (SQC):

L∑

k=0

[
zk

wk

]T

M1

[
zk

wk

]

+ β1 ≥ 0, M1 ,

[
I 0
0 −I

]

, (5)

for any integer L ≥ 0 and some scalar β1.

The system is subject to the following constraints

V uk ≤ v, ∀k ≥ 0, (6)

Hxk ≤ h, ∀k ≥ 0, (7)

where V ∈ R
nv×nu , v ≥ 0, H ∈ R

nh×nx and h ≥ 0 are ma-
trices of appropriate dimension. The input constraints (6)
are “hard” and must be respected at all time, whereas
the state constraints (7) are “soft” and will be treated by
penalizing constraint violations in the MPC cost function.

Remark 2.1. The input-output map, Ḡ, of the system in
Fig. 1 is given by the linear fractional transformation

Ḡ = G11 + G12∆(I −G22∆)
−1

G21.

Hence, we interpret G11(z) as the nominal model of
the system, whereas inequality (2) and G12(z), G21(z),

G22(z) constitute a description of the model uncertainty
associated with G11(z).

To simplify the presentation, we assume that the maximal
output admissible set O∞ associated with the state con-
straints (7) is finitely determined with 0 ∈ int(O∞), that
is, we have

O∞ , {x |HAkx ≤ h, ∀k ≥ 0}

= {x |T∞x ≤ t∞}, (8)

for some matrix T∞ and vector t∞ with positive elements.
A sufficient condition for (8) to hold is that h > 0,
H = [C̄,−C̄], where the pair C̄, A is observable (see, e.g.,
Gilbert and Tan (1991)).

3. NOMINAL CASE WITH STATE-FEEDBACK

In this section, we propose a soft-constrained state-
feedback MPC policy for the nominal system obtained by
use of Bw = 0 in (4), that is,

xk+1 = Axk + Buk, x0 = x. (9)

The proposed state-feedback policy will be subsequently
used in Section 4 to construct a robust output-feedback
policy for the uncertain system (4).

3.1 Existing State-Feedback MPC

For clarity, we shall present the state-feedback design as a
generalization of the MPC scheme proposed by Scokaert
and Rawlings (1999). At each time step k, the latter MPC
scheme solves the following optimal control problem, using
the current state of the system (9) as a parameter x = xk:

[P ] : Ψ= min
{ui}

Nu−1

i=0
, {ǫi}∞

i=0

∞∑

i=0

(
‖xi‖

2
Q + ‖ui‖

2
R + ‖ǫi‖

2
S

)

subject to







x0 = x

xi+1 = Axi + Bui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}

ui = 0, ∀i ≥ Nu

Hxi ≤ h + ǫi, ∀i ≥ 0

Here, we require Nu ≥ 1, Q ≥ 0, R > 0 and S > 0.

Remark 3.1. Unlike “Problem 2: Soft Constraint MPC”
in Scokaert and Rawlings (1999), the present problem
[P ] does not include constraints of the type ǫi ≥ 0 and
stage cost terms of the type sTǫi, for some vector s ≥ 0.
However, our treatment corresponds precisely to choosing
s = 0 in Scokaert and Rawlings (1999), since the con-
straints ǫi ≥ 0 will be satisfied naturally in problem [P ]
whenever S > 0 is diagonal, as assumed/recommended by
Scokaert and Rawlings (1999). For brevity and consistency
with Section 4, we shall not address the case s 6= 0, al-
though generalizations to non-quadratic penalty functions
are possible (see Remark 3.4).

Problem [P ] is of infinite dimension. However, the restric-
tion that ǫi = 0 for all i ≥ N , where N is suitably
large, is not suboptimal (Scokaert and Rawlings, 1999) and
may be used to formulate an equivalent finite dimensional
problem. Although Scokaert and Rawlings (1999) did not
consider any specific finite dimensional optimization suited
for solving [P ], it is convenient in view of Lemma 1 below
and related results in Chmielewski and Manousiouthakis
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(1996); Scokaert and Rawlings (1998) to consider the fol-
lowing:

[PN ] : ΨN = min
{ui}

Nu−1

i=0
, {ǫi}∞

i=0

∞∑

i=0

(
‖xi‖

2
Q + ‖ui‖

2
R + ‖ǫi‖

2
S

)

subject to







x0 = x

xi+1 = Axi + Bui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}

ui = 0, ∀i ≥ Nu

Hxi ≤ h + ǫi, ∀i ∈ {0, · · · , N − 1}

ǫi = 0, ∀i ≥ N

Here, we assume, for simplicity, N ≥ Nu. We denote by
uN = {uN

i }
Nu−1

i=0 and ǫN = {ǫN
i }

∞
i=0 the optimal sequences

of [PN ] and by {xN
i } the associated state trajectory.

The following lemma provides a necessary and sufficient
condition for [PN ] to be equivalent to [P ]. The lemma
has been adapted from Lemma 2 in Chmielewski and
Manousiouthakis (1996).

Lemma 1. (i) Ψ∞ , limN→∞ ΨN exists.
(ii) ΨN = Ψ∞ ⇔ ΨN = ΨN+k; ∀k ≥ 0 ⇔ (uN , ǫN ) =
(uN+k, ǫN+k); ∀k ≥ 0 ⇔ xN

N ∈ O∞.
(iii) If there exists N such that xN

N ∈ O∞ then ΨN =
Ψ∞ = Ψ.
(iv) There exists N such that xN

N ∈ O∞.

It follows from Lemma 1 that to solve [P ] it suffices to
solve [PN ], N ≥ N̄(x), where

N̄(x) , min{N |N ≥ Nu, xN
N ∈ O∞}. (10)

Furthermore, the integer N̄(x) can be identified by solving
[PN ] for increasing values of N until the condition xN

N ∈
O∞ is met. The MPC scheme of Scokaert and Rawlings
(1999) can thus be described as follows:

Algorithm 1. Off-line: (i) Choose any integer Nu ≥ 1. (ii)
Choose any matrices Q ≥ 0, R > 0, S > 0. On-line: At
each time step k ≥ 0, solve [PN ], using N ≥ N̄(xk) and
x = xk, then apply uk = uN

0 to (9).

Algorithm 1 can be shown to be exponentially stable
(Scokaert and Rawlings, 1999). However, if Algorithm 1 is
implemented incorrectly so that the condition N ≥ N̄(xk)
is violated, then the closed-loop system may be unstable.

3.2 Proposed State-Feedback MPC

The following optimization problem generalizes [PN ] and
leads to an MPC scheme which is closed-loop stable
regardless of our choice of, for example, N ≥ Nu ≥ 1:

[PN,Nǫ] : J∗(x) = min
U,ε,e

J(x, U, ε, e)

subject to







x0 = x

xi+1 = Axi + Bui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}

ui = 0, ∀i ≥ Nu

Hxi ≤ h + ǫi, ∀i ∈ {0, · · · , Nǫ − 1}

Hxi ≤ h + HAi−Nǫe, ∀i ∈ {Nǫ, · · · , N − 1}

TxN ≤ t + TAN−Nǫe

(11)

where U = [u0, · · · , uNu−1], ε = [ǫ0, · · · , ǫNǫ−1] and where

J(x, U, ε, e) , ‖[x, U, ε, e]‖2P , (12)

for some appropriate matrix P whose selection will be
explained below. Here, we have introduced an additional
horizon Nǫ, which may be chosen freely so as to satisfy
N ≥ Nǫ ≥ 1 and can be used to significantly reduce
the number of slack variables ǫi as compared with [PN ].
Also, to “summarize” constraint violations beyond the
prediction time i = Nǫ − 1, we have introduced a slack
variable e ∈ R

nx . The matrices T and t describe a
“terminal constraint set” whose selection will be described
later. In the sequel, we use U∗(x), ε∗(x), e∗(x) to denote
the optimal values of U , ε, e, resulting from [PN,Nǫ].

To describe various conditions on the cost function ma-
trix P , we introduce the following system:






xn+1

Un+1

εn+1

en+1




 =






A [B 0 · · · 0] 0 0
0 Γ(Nu, nu) 0 0
0 0 Γ(Nǫ, nh) H̄
0 0 0 A






︸ ︷︷ ︸

Ā0






xn

Un

εn

en




 , (13)

where H̄ , [0, · · · , 0, H ], and where Γ(N̄ , n̄) is a matrix
such that using Ū =

[
ū0, · · · , ūN̄−1

]
we have Γ(N̄ , n̄)Ū =

[ū1, · · · , ūN−1, 0], that is,

Γ
(
N̄, n̄

)
=












0 In̄ 0 · · · 0
... 0 In̄

. . .
...

...
...

. . .
. . . 0

... 0 · · · 0 In̄

0 0 · · · 0 0












∈ R
N̄n̄×N̄n̄. (14)

We also require the following matrix function:

Σ{Q,R,S}(P ), ĀT
0 PĀ0 − P + C̄T

0 diag [Q, R, S] C̄0, (15)

where Ā0 is the matrix defined in (13), Q ∈ R
nx×nx ,

Q ≥ 0, R ∈ R
nu×nu , R > 0, S ∈ R

nh×nh , S > 0, and
where the matrix C̄0 is such that C̄0[x, U, ε, e] = [x, u0, ǫ0].

The following theorem connects the three optimization
problems described above.

Theorem 2. If T = T∞, t = t∞ [as defined in (8)], Nǫ =
N ≥ N̄(x) [as defined in (10)] and Σ{Q,R,S}(P ) = 0 in

(15), then problems [P ], [PN ] and [PN,Nǫ] are equivalent,
that is, Ψ = ΨN = J∗(x) and U∗(x) =

[
uN

0 , · · · , uN
Nu−1

]
,

ε∗(x) =
[
ǫN
0 , · · · , ǫN

N−1

]
.

Proof When Nǫ = N and Σ{Q,R,S}(P ) = 0, the cost
function (12) satisfies

J(x, U, ε, e) , ‖xNu
‖2PF

+

Nu−1∑

i=0

(
‖xi‖

2
Q + ‖ui‖

2
R

)

+ ‖e‖2Π +

N−1∑

i=0

‖ǫi‖
2
S, (16)

where ATPF A − PF = −Q and ATΠA − Π = −HTSH ,
and where xi is given by (11). Since N ≥ N̄(x), T = T∞,
t = t∞ and T∞xN

N ≤ t∞, the solution to [PN ] (i.e.,
Ū =

[
uN

0 , · · · , uN
Nu−1

]
, ε̄ =

[
ǫN
0 , · · · , ǫN

N−1

]
) together with

the choice e = 0 will yield a feasible solution to [PN,Nǫ ] at
a cost of J(x, Ū , ε̄, 0) = ΨN . Hence, we have ΨN ≥ J∗(x).
Using a similar argument we can also establish the reverse
inequality ΨN ≤ J∗(x), since Π ≥ 0, and thus we conclude
that ΨN = J∗(x). The remainder of the theorem then
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follows from Lemma 1 and uniqueness properties implied
by strict convexity (c.f. R > 0, S > 0).

Remark 3.2. Note that, if the pair H, A is not observable,
then choosing Σ{Q,R,S}(P ) = 0 leads to a semi-definite QP
since the matrix Π in (16) will be singular. In this case, to
ensure uniqueness of e∗(x), one may modify Π or add an
equality constraint of the form Tnoe = 0, where Tno is a
matrix which selects the modes of A unobservable by H .

The proposed state-feedback MPC design is based on
[PN,Nǫ] as follows:

Algorithm 2. Off-line: (i) Choose any integers N , Nu and
Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1. (ii) Choose any
matrices Q ≥ 0, R > 0, S > 0. (iii) Choose any matrix P
satisfying Σ{Q,R,S}(P ) ≤ 0. (iv) Choose any T and t such

that the set XF , {x |Tx ≤ t} satisfies

Ax ∈ XF , ∀x ∈ XF , XF ⊆ {x |Hx ≤ h}. (17)

On-line: At each time step k ≥ 0, solve [PN,Nǫ], using
x = xk, then apply uk = [I 0 · · · 0]U∗(x) to (9).

Next we establish closed-loop stability of Algorithm 2.

Theorem 3. The closed-loop system under Algorithm 2 is
globally exponentially stable. Moreover, the closed-loop
trajectories satisfy

∞∑

k=0

(
‖xk‖

2
Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S

)
≤ J∗(x0), (18)

where ǫ∗k denotes the first block component of ε∗(xk).

Proof Let

S , {[x, U, ε, e] | [x, U, ε, e] satisfy (11)}, (19)

so that the constraints in [PN,Nǫ] can be written as
[x, U, ε, e] ∈ S. Note that problem [PN,Nǫ] is always
feasible, since a particular feasible solution is given by
[U, ε, e] = KF x, where

KF , [0, H, HA, · · · , HANǫ−1, ANǫ ]. (20)

That is, we have [x, KF x] ∈ S, ∀x. In view of (17), it
can also be verified that the set S is invariant for the
system (13), that is,

Ā0[x, U, ε, e] ∈ S, ∀[x, U, ε, e] ∈ S. (21)

Since (21) implies that

J∗(xk+1) ≤ ‖ [xk, U∗ (xk) , ε∗ (xk) , e∗ (xk)] ‖2
ĀT

0
PĀ0

,

we have, from Σ{Q,R,S}(P ) ≤ 0, that, in closed-loop,
∀k ≥ 0,

J∗(xk+1)− J∗(xk) ≤ −
(
‖xk‖

2
Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S

)
. (22)

Summation of (22) establishes (18). In cases when Q > 0,
inequality (22) also establishes global exponential stability,
since quadratic bounds on J∗(xk) always exist. In cases
when Q ≥ 0, global exponential stability can be estab-
lished using a Lyapunov function of the form J̄(xk) =
‖xk‖PL

+ J∗(xk), for a suitably chosen matrix PL.

Remark 3.3. The system (13) may be seen as an au-
tonomous “prediction system” similar to that in Kou-
varitakis, Rossiter, and Schuurmans (2000). The proof of
Theorem 3 exploits the facts that: (i) the matrix P is a
“Lyapunov matrix” for the prediction system, and (ii) the
set S is an invariant set for the prediction system.

Remark 3.4. Algorithm 2 and Theorem 3 may be gener-
alized to include exact penalty functions (de Oliveira and

Biegler, 1994; Scokaert and Rawlings, 1999). In particular,
Theorem 3 also holds whenever we add the following term
to the cost function (12):

f(ε, e) = |Π̄e|p +

N−1∑

i=0

|S̄ǫi|p,

using some norm | · |p and matrices Π̄, S̄, satisfying
|Π̄Ae|p − |Π̄e|p ≤ −|S̄He|p, ∀e. Regarding computation
and existence of such matrices Π̄, S̄, see, for example,
Christophersen and Morari (2007).

Since Algorithm 2 is based on a single quadratic pro-
gramme of prescribable size, we believe it to be a useful
alternative to Algorithm 1, especially for fast/uncertain
systems for which the maximum value of N̄(xk) may be-
come relatively large. Also note that the problem [PN,Nǫ]
includes the additional design parameter Nǫ which may
be used to reduce computational complexity. A numerical
example illustrating the flexibility associated with Nǫ is
presented in the extended version of this paper, Løvaas
et al. (2007b).

4. UNCERTAIN CASE WITH OUTPUT-FEEDBACK

In this section, we propose a class of output-feedback MPC
policies for the uncertain system described in Section 2.
We also show how robust closed-loop stability can be
guaranteed by choosing the cost function parameters so
as to satisfy an LMI condition.

4.1 Proposed Output-Feedback MPC

The output-feedback policies we consider are based on
Algorithm 2 and a state estimator. For simplicity, we
consider full-order state estimators of the form

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k), x̂0 = x̂. (23)

Here, uk and yk are the input and output of the uncertain
system (4) and L ∈ R

nx×ny is a design parameter such
that the matrix (A − LC) is stable (i.e., its eigenvalues
are strictly inside the unit disk). The dynamics of the

associated estimation error x̃k , xk − x̂k are

x̃k+1 = (A− LC) x̃k + Bwwk, x̃0 = x− x̂. (24)

The proposed output-feedback policy for the uncertain
system can then be described as follows:

Algorithm 3. Off-line: Design a state estimator (23) and
an instance of Algorithm 2. On-line: At each time step
k ≥ 0, solve [PN,Nǫ], using x = x̂k, then apply uk =
[I 0 · · · 0]U∗(x̂k) to (4).

4.2 Robust Stability Test

Next we present an LMI condition on the cost function
matrix P which is sufficient for robust closed-loop stability.
To this end, we adopt the dissipativity approach proposed
recently in Løvaas et al. (2007a), in which one uses SQCs
of the type (5) to describe both the model uncertainty and
the static nonlinearity that solves the on-line optimization.

The static nonlinearity of interest here is given by

K(x) , [U∗(x), ε∗(x), e∗(x)] . (25)
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In the sequel, we let K denote the memoryless system
obtained by persistent use of the function K(x); in closed-
loop, the input to the system K is the sequence of state
estimates {x̂k}, whereas the output of K is the sequence of

minimizers {µk} , {K(x̂k)}. A particular representation
of the closed-loop system suited to the subsequent analysis
is shown in Fig. 2, where ∆ is as in Fig. 1 and the system Σ,
with state x̄k = [x̃k, x̂k], is defined as follows:

Σ :







x̄k+1 = Āx̄k + B̄µk + B̄wwk, x̄0 = [x̃0, x̂0],

x̂k = C̄x̄k,

zk = C̄z x̄k + D̄µk + D̄wwk,

and where

Ā ,

[
A− LC 0

LC A

]

, B̄ ,

[
0

BD1

]

, B̄w ,

[
Bw

0

]

, (26)

C̄ , [0 I] , C̄z , [Cz Cz] , D̄ , DD1, D̄w , Dw. (27)

Here, the matrix D1 , [I 0 · · · 0] so that uk = D1µk.

µk

wkzk

w̄kz̄k

x̂k

Σ

[
K 0
0 ∆

]

Fig. 2. Setup for stability analysis where z̄k = [x̂k, zk] and
w̄k = [µk, wk].

The first ingredient for our stability analysis is an SQC for
the system K, provided by the following lemma.

Lemma 4. (Li (2006)). For any integer L ≥ 0, we have

L∑

k=0

[
x̂k

µk

]T

M2(P )

[
x̂k

µk

]

≥ 0, (28)

where

M2(P ) ,

[

KT
F P21 + PT

21KF KT
F P22 − PT

21

P22KF − P21 −2P22

]

. (29)

Here, KF is as in (20) and Pij denotes the (i, j) block entry
of P .

Proof Note that it is straightforward to find a ma-
trix G such that the set S in (19) can be writ-

ten as S = {[x, µ] |Gµ − GKF x ≤ g}, where g ,

[v, · · · , v, h, · · · , h, t] ≥ 0. The QP can thus be written
as minµ ‖[x̂, µ]‖2P s.t. Gµ − GKF x̂ ≤ g, and the result
follows from the KKT (Karush-Kuhn-Tucker) optimality
conditions, as shown by Li (2006).

As the next ingredient in our stability analysis we need to
find matrices, F1, F2, F3, such that µ = F1x̄k+F2µk+F3wk

is a feasible solution to the online optimization at time
k + 1. We identify suitable choices for F1, F2, F3 in the
following lemma:

Lemma 5. Suppose that (17) holds and let Ā, B̄, B̄w be
as defined in (26). Then

[

Ā B̄ B̄w

F1 F2 F3

]

[x̃, x̂, µ, w] ∈ S̄, ∀[x̃, x̂, µ] ∈ S̄, ∀w ∈ R
nw ,

(30)

where S̄ , R
nx × S, F1 , KF [LC 0], F3 , 0 and

F2 ,





Γ(Nu, nu) 0 0
0 Γ(Nǫ, nh) H̄
0 0 A



 . (31)

Here, the set S is as in (19), KF is as in (20) and Γ(·) and
H̄ are as in (13).

Proof Firstly note that the left hand side of (30) equals

[(A− LC)x̃ + Bww, LCx̃ + Ax̂ + BD1µ, KF LCx̃ + F2µ] .

We need to show that, for any x̃ ∈ R
nx , any [x̂, µ] ∈ S

and any w ∈ R
nw : (i) (A − LC)x̃ + Bww ∈ R

nx ; and (ii)
[LCx̃ + Ax̂ + BD1µ, KF LCx̃ + F2µ] ∈ S. The first point
is clear. To prove (ii), we let S be described as in the proof
of Lemma 4 (i.e., S = {[x, µ] |Gµ−GKF x ≤ g}) and thus
we must show that

G (KF LCx̃ + F2µ)−GKF (LCx̃ + Ax̂ + BD1µ)

= GF2µ−GKF (Ax̂ + BD1µ) ≤ g, (32)

for any x̃ ∈ R
nx and any [x̂, µ] ∈ S. To show that

inequality in (32) indeed holds, we note from (13) that
[Ax̂ + BD1µ, F2µ] = Ā0[x̂, µ]. Hence, the result follows
from (21).

The final step of our stability analysis it to specialize
Theorem 2 of Løvaas et al. (2007a) into a robust stability
test for Algorithm 3. To this end, we require the following
definitions:

Φ (Ω0, m1, m2, P ) ,

[

Ā B̄ B̄w

F1 F2 F3

]T

Ω (Ω0, P )

[

Ā B̄ B̄w

F1 F2 F3

]

− [Iq 0]
T

Ω (Ω0, P ) [Iq 0] + C̄T
η M(m1, m2, P )C̄η, (33)

where q = 2nx + Nunu + Nǫnh + nx,

C̄η ,






C̄ 0 0
C̄z D̄ D̄w

0 I 0
0 0 I




 ,

Ω (Ω0, P ) ,

[
Ω0 0
0 0

]

+ DT
P PDP , DP , diag

[
C̄, I

]
,

M(m1, m2, P ) , m1E
T
1 M1E1 + m2E

T
2 M2(P )E2,

E1 ,

[
0 Inz

0 0
0 0 0 Inw

]

, E2 ,

[
Inx

0 0 0
0 0 D1 0

]

,

and where M1, M2(P ) are defined in (5) and (28), respec-
tively, and m1, m2 are real numbers.

Remark 4.1. We note that the matrix M (m1, m2, P ),
where m1 ≥ 0, m2 ≥ 0, defines an SQC for the system
diag[K, ∆] in the lower loop in Fig. 2. That is, for any
integer L ≥ 0:

L∑

k=0

[
z̄k

w̄k

]T

M(m1, m2, P )

[
z̄k

w̄k

]

+ m1β1 ≥ 0.

This can be verified using (5) and (28).

The stability test for Algorithm 3 is as follows.

Theorem 6. Suppose that (17) holds and that there exist
scalars, m0 > 0, m1 ≥ 0, m2 ≥ 0, and a symmetric matrix
Ω0 ∈ R

2nx×2nx such that

Φ (Ω0, m1, m2, P ) ≤ −m0C̄
T
η M0C̄η, (34a)

Ω (Ω0, P ) ≥ 0, (34b)

where M0 , diag[0, DT
1 D1, Inw

]. Then, the closed-loop
system is globally ℓ2-stable in the sense that
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∞∑

k=0

‖ [x̃k, x̂k, uk, wk] ‖2 ≤ ∞

for any initial condition.

Proof The result is a special case of Theorems 1 and 2 in
Løvaas et al. (2007a).

4.3 Robust Design: Upper Bound on the Nominal Cost

We note that it is a standard LMI feasibility problem to
search for Ω0, m0 > 0, m1 ≥ 0 and m2 ≥ 0 satisfying
(34) and thereby test stability of a given instance of
Algorithm 3. Alternatively, and similarly to Løvaas et al.
(2008), Theorem 6 may be used for the synthesis problem
of determining P subject to robust stability. For example,
by solving the following semi-definite programme:

inf
P1,P2, Ω0, m0,m1

{

θ (P ) s.t. Σ{Q,R,S} (P ) ≤ 0, (34),

P = diag[P1, P2], m0 > 0, m1 ≥ 0 and m2 = 0
}

, (35)

where

θ (P ) = trace (P1) + υtrace (P2) , υ > 0. (36)

In problem (35), we have introduced the structural con-
straint P = diag[P1, P2] so that the cost (12) takes the
form J(x, U, ε, e) = ‖[x, U ]‖2P1

+ ‖[ε, e]‖2P2
. Moreover, we

have introduced the constraint m2 = 0 so as to ensure
convexity. Nevertheless, the problem is always feasible, as
shown in the following theorem.

Theorem 7. Problem (35) is feasible if and only if (3)
holds.

Proof See Løvaas et al. (2007b).

In the sequel, we use P ∗ to denote a feasible and (near)
optimal solution to (35). Setting P = P ∗ leads to the
following modified version of Algorithm 3 which is guar-
anteed to be both feasible and robustly stable:

Algorithm 4. Off-line: (i) Choose any integers N , Nu and
Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1. (ii) Choose any
T and t such that the set XF = {x |Tx ≤ t} satisfies (17).
(iii) Choose any observer gain L such that (A − LC) is
stable. (iv) Choose any matrices Q ≥ 0, R > 0, S > 0
and determine P = P ∗ by solving (35). On-line: At each
time step k ≥ 0, solve [PN,Nǫ ], using x = x̂k, then apply
uk = [I 0 · · · 0]U∗(x̂k) to (4).

For nominal performance purposes, we would like P ∗ to
be a “tight” upper bound on the “nominal” cost function
P{Q,R,S} defined by

Σ{Q,R,S}

(
P{Q,R,S}

)
= 0. (37)

Note that, since Σ{Q,R,S} (P ∗) ≤ 0, we always have P ∗ ≥
P{Q,R,S}. The following theorem shows that the added
weighting P ∗−P{Q,R,S} will be arbitrarily small provided
that the model uncertainty is sufficiently small.

Theorem 8. For any given ǫ > 0, there exists a δ > 0, such
that, if we make the assignments G21(z) ← δG21(z) and
G22(z)← δG22(z), then trace

(
P ∗ − P{Q,R,S}

)
≤ ǫ.

Proof See Løvaas et al. (2007b).

Remark 4.2. Note that replacing G21(z) and G22(z) with
δG21(z) and δG22(z), respectively, amounts to “shrinking”
the uncertainty by a factor δ, see Remark 2.1.

Theorems 2 and 8 show that Algorithm 4 converges to
a certainty equivalence implementation of the design of
Scokaert and Rawlings (1999) as the model uncertainty
decreases (i.e., [G21(z) G22(z)] → 0), provided we make
the choices T = T∞, t = t∞ and N = Nǫ sufficiently
large. For a numerical example illustrating Algorithm 4,
see Løvaas et al. (2007b).

5. CONCLUSIONS

In this paper, we have proposed a novel robust output-
feedback MPC design for open-loop stable systems. The
proposed design respects hard input constraints and treats
soft state constraints using quadratic penalty functions.
Global robust stability in face of unstructured model
uncertainty is achieved by choosing the cost function
parameters so as to satisfy an LMI condition.
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