

A Reliable Gateway for In-vehicle Networks

S. H. Seo*, J. H. Kim*, T. Y. Moon*

 S. H. Hwang**, K. H. Kwon*, J. W. Jeon*
�

*School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea

(e-mail: {imakeit, ssagagy, ninewolf, khkwon, jwjeon}@ece.skku.ac.kr).

**School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea

(e-mail:hsh@me.skku.ac.kr)

Abstract: This paper presents a reliable gateway for communication between the LIN, CAN, FlexRay

protocols. A gateway is indispensable device for constructing in-vehicle networks. Networks with different

protocols have to include an additional gateway in order to exchange information among different

networks. The main function of the gateway is translation. However, there is some latency when a message

is transferred from one node (source) to another (destination); further, there is a high probability of error

due to different protocol specifications such as baudrates, message frame formats, and so on. Therefore the

implementation of a reliable gateway is a challenging task. In this paper, we propose a reliable gateway

based on OSEK OS and OSEK NM for in-vehicle networks. We develop a gateway embedded system and

implement a reliable gateway mechanism. We then examine the developed gateway system and present the

results of experiments with several trials.

�

1. INTRODUCTION

The increase in the number of sensors, actuators and

electronic control units (ECUs) in automotive networks over

the last few years has increased the complexity of automotive

networks. Moreover, several communication protocols such

as LIN (Local Interconnect Network), CAN (Controller Area

Network), and FlexRay have been established and used for

in-vehicle networks (Andrew et al., 2004).

Currently, CAN is used in the automotive industry as the

primary in-vehicle network (Andrew et al., 2004) for

enabling any device to communicate and operate with any

other device on a network without placing a great burden on

the bus. This kind of communication is ideal for powertrain

and body electronic applications (Rami et al., 2004).

However, the introduction of advanced control systems,

which employ a number of sensors, actuators, and ECUs, has

begun to place boundary demands on the existing CAN

communications bus commonly used in most automobiles.

As a result, initiatives by automobile manufacturers and

suppliers have led to the creation of FlexRay an open

standard for a new deterministic, fault-tolerant, and high-

speed bus system. FlexRay is a new network communication

system targeted specifically at next generation automotive

DSSOLFDWLRQV� RU� ³E\-ZLUH´� DSSOLFDWLRQV��By-wire applications

require high-speed bus systems that are deterministic, fault-

tolerant and capable of supporting distributed control systems.

Furthermore, LIN is still widely used as it is a cheaper option.

The LIN, CAN, and FlexRay primarily will be used as future

in-vehicle networks (Weber et al., 2006); Fig. 1 presents a

example of in-vehicle network. There is a challenging issue

to exchange information between networks with different

protocol reliably. Exchanging information between different

networks has a high probability of error occurrence due to

different protocol specifications such as baudrates, message

frame formats, transmission latencies, and so on. If many

ECUs can exchange information each other reliably, the

performance of vehicles will be improved (Thomas, 2006). A

gateway will thus come to be an important and indispensable

device for in-vehicle networks (Huang et al., 2006).

Fig. 1. General Architecture of In-Vehicle Network for Next

Generation Vehicles

In this paper, we propose a reliable gateway system

(Mohinisudhan et al., 2006) based on OSEK operating

system (OS) and network management (NM) (Qiao et al.,

2005). The proposed gateway exchanges information

(messages) between the LIN, CAN, and FlexRay networks

basically. The operation of the gateway is determined along

the status of the destination node. Therefore, any unnecessary

overhead of the network is reduced, thereby ensuring reliable

operation. In this paper, we developed a gateway embedded

system and implemented a reliable gateway function based

on OSEK OS and NM. In addition, the developed gateway

provides trace information called by a log recorder. A log

recorder stores translation information continuously. Thus,

we can trace the instant at which a fault occurs just by

reviewing the log data.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12081 10.3182/20080706-5-KR-1001.2040

The remainder of this paper is organized as follows. Section

2 provides an overview of the LIN, CAN, and FlexRay

protocols and gateways. Sections 3 and 4 describe the

proposed reliable gateway mechanism and the developed

gateway embedded system, respectively. Section 5 presents

several experimental evaluations and results. Finally, the

conclusion is provided in section 6.

2. OVERVIEW OF LIN, CAN, FLEXRAY AND

GATEWAY

Today, automobiles come equipped with several in-vehicle

networks, each using the same or different communication

protocols from LIN, CAN, and FlexRay. A gateway is

essential for exchanging information between these networks.

In the subsequent section, the specification of each protocol

will be provided and the concept of a gateway will be

elucidated.

2.1 LIN

The LIN-Bus is a bus-system used in current automotive

network architectures. The LIN bus is a small, slow network

system that is used as a cheap sub-network of a CAN bus to

LQWHJUDWH� LQWHOOLJHQW� VHQVRU� GHYLFHV� RU� DFWXDWRUV� LQWR� WRGD\¶V�

automobiles.

As it is described in LIN specification documents, all

message traffic on the bus is initiated by the master device.

The slave devices respond to commands and requests from

the master. Since the master initiates all bus traffic, it follows

that the slaves cannot communicate unless requested to do so

by the master. However, the slave devices can generate a bus

wakeup call, if their inherent functionality requires this

feature. The master node uses one or more predefined

scheduling tables to start the sending and receiving process

on the LIN bus. These scheduling tables contain at least the

relative timing pertaining to the initiation of the message

sending process. More detailed specifications of LIN are

described in (LIN specification, 2003).

2.2 CAN

The CAN is a serial communication protocol that efficiently

supports distributed real-time control with a very high level

of data integrity. Therefore, CAN is used to construct the

distributed control system in many areas of industry such as

automobiles, robotics, avionics, and hydraulics.

 The CAN supports two message frame formats the

standard frame and the extended frame formats. The only

difference between the two is the length of the identifier; the

standard frame format (CAN 2.0A) supports a length of

11bits for the identifier while the extended frame format

(CAN 2.0B) supports a length of 29bits. The standard CAN

message frame comprises an SOF bit, identifier, RTR, IDE,

r0, DLC, payload, CRC, ACK, EOF, and IFS. IDE stands for

identifier extension; it is a single bit that indicates that a

standard CAN identifier with no extension is being

transmitted. ACK comprises 2bitsan acknowledgement bit

and a delimiter. When a node receives an accurate message, it

overwrites the recessive bit in the original message with a

dominant bit, thereby indicating that an error-free message

has been transmitted (CAN specification, 2003).

2.3 FlexRay

The FlexRay is expected to be a comprehensive

communication system, providing high speed, flexibility and

scalability for complex networks as it is based on time

division multiple access (TDMA) and flexible time division

multiple access (FTDMA) scheme. One of the types of

applications the FlexRay is expected to make possible are X-

by-wire systems such as brake-by-wire and steer-by-wire

systems. Sophisticated electronic systems that are less

expensive to construct and easier to maintain are used to

connect driver to these systems; therefore, X-by-wire systems

eliminate the need for hydraulic and mechanical systems.

With a gross data rate of 10 Mbps the net bandwidth

delivered by FlexRay is approximately 20 times greater than

that delivered by the CAN currently used in advanced

automotive control applications.

The FlexRay supports fault-tolerant clock synchronization

via a global time base, collision-free bus access, guaranteed

message latency, message oriented addressing via identifiers,

and scalable system fault-tolerance via the support of either a

single or a dual channel.

Fig. 2. FlexRay Timing related to the Schedule of the

Communication Cycle

Within FlexRay, communication occurs in recurring

communication cycles. Each communication cycle is built on

a timing hierarchy as shown in Fig. 2. In order to satisfy

diverse communication requirements, FlexRay provides static

and dynamic communication segments within each

communication cycle. In addition, each cycle contains a

symbol window used for run-time testing and the network

idle time, which is a communication-free period that

concludes each communication cycle (FlexRay Specification,

2005).

2.4 The Concept of Gateway

A gateway (Taube, 2005) converts the data frame format of

one protocol to that of another protocol. As mentioned

previously, several protocols are used in automotive network

system; it depends on the feature of applications. Therefore a

gateway system is necessary for supporting multiple

protocols and satisfying demands that are not currently

addressed in the existing system architectures (Li et al.,

2005).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12082

A gateway has to provide message translation, message

routing, message monitoring, and network management, all

in real-time. Therefore, dedicated gateways must be

developed to reduce the demands on the CPU load and to

reduce message latency. In this paper, we implemented a

gateway system based on the OSEK OS with NM. In addition,

the developed gateway system records information that

includes a timestamp, message ID, protocol type, and error

during message translation.

The gateway hardware system is based on simple system

architecture. It consists of a standard CPU core, an internal

RAM or flash, especially, and several communication

controllers. Various application-specific modules may be

added. All modules are connected via a CPU peripheral bus

to a host CPU. The complexity of the communication

controller can be increased or decreased depending on the

actual requirements of the application field. The required

CPU performance will increase in order to guarantee the data

integrity and real-time operability in the overall system.

3. RELIABLE GATEWAY MECHANISM

USING OSEK OS, NM AND LOG RECORDER

OSEK OS (OSEK/VDX portal, 2007) is a real-time operating

system (RTOS) for distributed control units in vehicles. This

OS serves as the basis for the controlled real-time execution

of concurrent applications. The OSEK OS defines a small,

scalable, RTOS, ideal for embedded systems with high

memory constraints and dedicated functions. A more detailed

description of OSEK OS, NM, log recorder, and the proposed

reliable gateway mechanism will be provided in the

subsequent sections.

3.1 OSEK/VDX OS

OSEK OS manages real-time tasks, enhanced timer functions,

shared resources, task synchronization using events, and

inter-process communication. Due to the wide range of

scalability, a set of system services, various scheduling

mechanisms, and convenient configuration features, the

OSEK OS is suitable for a broad spectrum of application and

hardware platforms. The OSEK OS provides a pool of

services and processing mechanisms for task management

and synchronization, data exchange, resource management,

and interrupt handling.

3.2 OSEK NM

OSEK NM defines protocols for managing in-vehicle

networks. NM ensures the safety and reliability of a

communication network. This is done by restricting the

access to each node, making the network tolerant to faults,

and implementing diagnostic features capable of monitoring

the status of the network in a direct or an indirect manner.

Moreover, the network management also covers the

initialization of network resources, and network

configuration, the co-ordination of global operation modes,

and support for diagnosis.

As mentioned previously, OSEK NM provides two types of

network management mechanismsdirect NM and in-direct

NM. Direct NM monitors the network by dedicated NM

communication using a token principle. In other words, a

dedicated message is used in order to monitor the network.

Although it provides more precise network status information,

dedicated NM has more overhead than indirect NM. It is

suitable for time-critical systems or small network systems.

In order to use direct NM it must be implemented in all

networked nodes and a node identification (ID) must be

assigned to all nodes. On the basis of this ID, the nodes form

a logical ring in direct NM. Then, the node transmits a ring

message to the next node in the logical ring. The node that

receives the ring message transmits the message to the next

node (i.e, direct NM cycles a ring message to the logical ring

by the relaying the ring message to the next node). If some

node cannot relay ring messages to the next node within a

predefined time, the other nodes recognize that some nodes

cannot send or receive messages. Thus, other nodes form a

new logical ring excluding those particular nodes. Direct NM

considers nodes to be in the ³present state´ if they participate

in a logical ring. In contrast, nodes are considered to be in the

³absent state´ if they cannot participate in the logical ring.

The present state implies normal operation while the absent

state implies that the nodes cannot send or receive messages.

Indirect NM is another management scheme. It monitors

application messages; that is, a periodic application message

is used. Indirect NM does not use any additional messages to

monitor the network. Therefore, it is simpler than direct NM.

Indirect NM is suitable for large network systems that are not

time-critical. It regards the source node of a specific message

as the present state when a node receives a specific

application message successfully. If a node cannot receive a

specific message during time-out, indirect NM regards the

source node of the specific message as being in the absent

state. Unlike direct NM, indirect NM does not assign the ID

to the entire node and does not include an indirect mechanism

to all nodes in the network. In this paper, we implemented a

reliable gateway by considering node status using these NM

schemes. The in-direct NM is used for FlexRay and LIN

network managements and the direct NM is used for CAN

network management.

3.3 Log Recorder

Log recorder is storing and reporting the result of conversion

among each different communication protocol. The length of

the data frame, possible transmission data length,

transmission bit rate, error detection scheme, ID format, data

type, and composition field of the frame of each

communication protocol are different. For example, the data

length of LIN is determined as a specified ID between 0 to 8

bytes. The length of a CAN message also varies from 0 to 8

bytes. The length of the FlexRay message is up to 256 bytes

determined by initial conditions. The differences among each

protocol can possibly cause problems such as loss of data

when one communication protocol is converts into another

communication protocol. In addition, the networked node can

operate incorrectly due to message loss and latency by

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12083

gateway while a node operates correctly independently. Then,

if there are conversion reports such as what messages are

converted, and what data is lost, the developer can more

efficiently debug the errors. If the converted message didn¶t

transmit to the destination node within pre-defined time, the

log recorder writes the receive time to the transmission time

field equally. Table 1 shows the structure of the log table. A

time stamp is written in the Receive Time field when the

gateway receives a message with Message ID via input

interface. Also, a time stamp is written in the Transmit Time

field when gateway transmits the converted message to the

destination node with Message ID completely.

Table 1. The Structure of Log Table

3.4 Reliable Gateway Mechanism

We consider three factors for improving the reliability of the

gateway. First, high priority messages must be processed first.

In order to resolve this problem, full-preempt tasks are

carried out to convert the protocol of each message and we

assign a priority to each task. Then, the tasks having high

priority can be processed first.

Second, the gateway cannot transmit messages to erroneous

(fault) nodes that are unable to receive messages. In an

automotive system, loss of messages can cause hazardous

problems if the message is an important message, for

example, a brake control message. Moreover, CAN and

FlexRay provide a retransmission mechanism for failure

messages; this can increase the load of the network. Thus the

proposed gateway checks the status (present or absent) of the

destination node by using OSEK NM before transmission of

the converted messages. If the destination nodes are in the

absent state, the gateway searches other paths to reach the

destination. Then, the gateway transmits messages over

alternative paths. If no alternative paths exist, the gateway

holds the transmission of messages until the destination node

becomes present.

Third, the gateway has to provide trace information. Trace

information is log data that includes the status and result of

translation along with a timestamp. Thus, we implemented

the log recorder that stores log information. If some problem

(missed message or error in message) occurs during the

translation process, we can retrace the instant at which the

error occurred.

4. GATEWAY EMBEDDED SYSTEM

We developed the proposed gateway embedded system. The

following subsequent sections explain the hardware and

software architecture of the gateway embedded system, and

implementation of the gateway function.

4.1 Hardware Architecture of Gateway

The developed gateway embedded system is based on simple

hardware architecture. This system consists of a standard

MCU, an internal Flash, RAM, power management devices,

and several communication controllers. Fig. 3 shows the

block diagram of the gateway embedded system.

In this paper, the MCU of the gateway is a Freescale

MPC565 that is suitable for automotive applications. This

MCU is the appropriate because all its components satisfy the

industrial standard and are able to endure the harsh

conditions to which the car may be subjected. In addition,

MPC565 has sufficient memory area and includes SCI and

CAN communication controllers. A CAN communication

controller supports both low-speed CAN and high-speed

CAN. In order to supports LIN communication, we

implemented LIN communication driver by using SCI

modules. We used the MFR4200 communication controller

made by Freescale to implement FlexRay. MFR4200

supports FlexRay protocol specification v1.1.

Fig. 3. Hardware Architecture of Gateway Embedded System

4.2 Software Architecture of Gateway

The gateway software architecture is based on OSEK OS

(Sun et al., 2005). Fig. 4 shows the software architecture of

gateway embedded system. We used OSEKturbo made by

Metrowerks to implement the OSEK NM mechanism. The

implemented OSEK NM specification is compatible with the

standard OSEK NM specification v2.5.3. In addition, the

communication device drivers are implemented for LIN,

CAN, and FlexRay. The gateway function is implemented in

the application layer. Log recorder operates with application

program and library layer.

Fig. 4. Software Architecture of Gateway Embedded System

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12084

Fig. 5. Flowchart of the Gateway Function

4.3 Processing Flow of the Gateway Function

The gateway function provides primarily the translation

between LIN, CAN and FlexRay. The flow of the gateway

function is shown in Fig 5. The operation of the proposed

gateway is based on OSEK OS.

The converting process among each different communication

is as follow. There is an example of conversion between

FlexRay and CAN. First, the gateway checks whether

message is arrived or not. If there is a received message, the

task of protocol dependent message receive interrupt service

routine (ISR) is activated. ISR receives the message and

copies the message to the memory buffer.

After ISR processed, second, each ISR activates a message-

processing task among LIN, CAN and FlexRay message

processing tasks. Each message-processing task is operated

full-preemptly as priority. Therefore, the proposed gateway

system processes received messages based on priority. The

message-processing task extracts ID, data length, payload

data from the received message. The message-processing task

must have knowledge about the output interface and output

message ID in order to determine the destination protocol.

Therefore, we use two mechanisms to determine the output

interface and output message ID direct forwarding and

routing table mechanisms. If the direct forwarding

mechanism is used, the output interface and output message

ID are defined such that the gateway transfers messages

immediately. However, the direct-forwarding mechanism

requires processing code for every path, which leads to an

increase in the code size.

The routing-table mechanism uses a routing table to

determine the output interface and output message ID. The

routing table contains the input (source) interface, input

message ID, output (destination) interface, and output

message ID. The input and output interface fields stores the

number of interfaces. For example, if the gateway connects

CAN A with CAN B and Channel A for CAN

communication and FlexRay, repectively, we assign interface

numbers as follows: 0 for CAN A, 1 for CAN B, and 2 for

Channel A. The gateway can identify both the interface and

the protocol of the source node and the destination node by

using the routing table. The lengths of the source ID and the

destination ID field conform to the maximum length of the

protocol used by the gateway. Table 1 shows the structure of

the routing table. The routing table mechanism uses less

memory because it requires processing code for each output

interface. Moreover, it is possible to modify the routing table

by software during runtime so that it is more flexible than the

direct forwarding mechanism.

Third, the gateway detects the destination ID and output

interface when it receives messages. It uses the direct

forwarding or routing table mechanisms selectively for this

purpose. The gateway converts the message frame format

from source to destination node. And then, gateway stores the

converted message in the stack of the destination node.

Fourth, the gateway checks whether the destination node is

accessible (present) or not (absent). If the destination node is

not accessible, the gateway searches the routing table again.

The gateway sends the message via an alternative path if it

successfully finds an alternative path. When no alternative

path is available, the gateway suspends transmission of

messages. The delayed message is still stored in the stack.

Finally log recorder stores log information in the log table.

The whole of the process is performed repeatedly every the

new message is received.

Table 2. Structure of Routing Table

5. EXPERIMENTATION AND RESULT

We setup the experimental environment as shown in Fig. 6. It

consists of one gateway, three additional node for each

protocol connected to the gateway and PC with USB-CAN

interface. FlexRay supports dual-channel scheme. We

evaluate two situations normal state, and the error node

occurrence state. In the error node occurrence state, we

retraced the instant at which an error occurred. In these

experimentations, we used the developed gateway embedded

system for each node. The gateway only has the proposed

gateway functions. Other nodes just transmit or receive

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12085

messages periodically. The number of nodes represents the

message ID to be received.

In the first experimentation (normal state), node 1 transmits

sequential data (65535, «, 0) to node 2. Node 2 transmits the

sequential data (0, «, 65535) to node 1. Node 3 transmits

sequential data(0, «, 127) to PC. Fig. 7 shows the result of

conversion from FlexRay to CAN. We monitored the

received data from node 2 via CAN.

In the second experimentation, we disconnect the node #2

with the gateway in the middle of conversion process (during

the first experimentation). Fig. 8 shows the result of log

report at the instant of error occurrence. The log information

includes the receive time, source interface, source ID,

destination interface, destination ID, and transmit time.

Fig. 6. The Configuration of Experimental Environment

Fig. 7. The Result of Gateway at Normal State

Fig. 8. The Result of Gateway at Fault State

6. CONCLUSION

We proposed a reliable gateway for in-vehicle networks with

different protocols. The proposed gateway operates based on

OSEK OS and NM. In addition, the gateway provides log

information for us in order to analyze the gateway effect

within the environment of networked control system.

+RZHYHU�� WKH� GHYHORSHG� JDWHZD\� GRHVQ¶W� LQFOXGH� WKH� IDXOW-

tolerant mechanism yet. In the future, we will improve the

reliability and safety of the gateway by adding the fault-

tolerant mechanism called by OSEK FTCOM.

REFERENCES

B. Andrew, C. Stephen, M. Peter (2004) The Requirement of

Future In-Vehicle Networks and An Example

Implementation. SAE 2004 World Congress &

Exhibition, 2004-01-0206.

B. Rami, A. Nizar, R. Asif (2004) Dynamic Discovery

Service Protocols for Next Generation Vehicle Network.

SAE 2004 World Congress & Exhibition, 2004-01-0199.

CAN Specification 2. 0(2003), http://www.can-cia.org/can/

FlexRay Protocol Specification V2.1 Rev. A, 2005,

http://www.flexray.com

G. Mohinisudhan, S. K. Bhosale, B. S. Chaudhari (2006)

Reliable On-board and Remote Vehicular Network

Management for Hybrid Automobiles. Internation IEEE

Conference on Electric and Hybrid Vehicles(ICVHV'06),

pp.1-4

H. Thomas (2006) In-vehicle Network Design Methodology.

The 2nd IEE Conference on Automotive Electronics,

pp.47-71

J. Taube (2005). Gateway Concepts for Automotive

Networks. Automotive 2005 Special Edition FlexRay,

http://www.hanser-automotive.de

LIN Specification Package 2.0 (2003), http://www.lin-

subbus.org/

OSEK/ VDX Portal (2007), http://www.osek-vdx.org

Q. Huang, J. S. Smith, Tuo Li (2006) Web-based Distributed

Embedded Gateway System Design. WI2006, pp.905-

908

T. Weber (2006) Management of Complex Automotive

Communication Networks. Design, Automation and Test

in Europe (DATE'06), Vol. 1, pp.1-2

X. Qiao, Z. Wang, Y. Sun, F. He, F. Y. Wang (2007) A CAN

and OSEK NM based Siren for Automobiles. 2007 IEEE

international Conference on Networking, Sensing and

Control, pp.868-873

Y. Li, F. Wang, F. He, Z. Li (2005) OSGi-based Service

Gateway Architecture for Intelligent Automobiles.

Proceedings IEEE of Intelligent Vehicles Symposium

Intelligent Vehicles Symposium, 861-865

Y. Sun, F. Y. Wang (2005) A design Architecture for

OSEK/VDX-based Vehicular Application Specific

Embedded Operating Systems. Proceedings IEEE of

Intelligent Vehicles Symposium, pp.882-887

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12086

