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Abstract: Consensus problems in time-varying networks are studied in this paper. We consider
two cases. In the first case, the networks are basically connected and the conditions for reaching
consensus are described by means of the algebraic properties of connectivity for network graph.
In the second case, the networks are possibly disconnected all time. A concept called integral
connectivity of networks is used and by means of its algebraic characterization we study the
consensus problems with variant time-varying network cases. Necessary and sufficient conditions
of consensus over periodic time-varying networks are presented. For aperiodic time-varying
network cases some sufficient conditions are given. The estimations of convergence rate are
given in terms of the integral connectivity.
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1. INTRODUCTION

Distributed coordination of dynamical multi-agent sys-
tems in networks is an attractive topic nowadays and
consensus is one of the problems in such type. The study
of consensus for dynamical multi-agents under network
is inspired by different research motivations such as dis-
tributed computation, wireless sensor networks, mobile
robotic swarms and so on.

Recently the consensus problem over time-varying net-
works received great attention. [1] studied consensus sta-
bility over the network with switching topology. In their
work the communication networks are assumed to be bal-
anced and strongly connected at each time instant. [2], [3],
[5], [6], [7], [8], [10], [11] studied the consensus problem of
discrete-time dynamic agents over time-varying networks.
Their results are established based on jointly connectivity
of networks, that is, the graph G(t) associated to the
network topology is not necessary connected at any time
t, but the union graph of G(t), G(t + 1), · · · ,G(t + T ) is
connected. [9] discussed continuous-time dynamic agents
over time-varying networks, where the network topology
is not necessary connected, but a so-called δ-digraph asso-
ciated to the integral adjacency matrix is required to be
connected.

In this paper we consider the continuous-time consensus
problem of swarms or dynamic multi-agent systems over
? Work supported by NNSF of China (No. 10531070, 60674046),
MOST of China (No 2006CB805901), STC of Shanghai (No
07XD14011), and Australia Research Council(ARC).

time-varying networks. We first generalize the results of [1]
showing that under certain conditions the agents in time-
varying networks may asymptotically reach an agreement
in un-exponential rate. It differs from the most results
in existent literature, where only exponential stability is
discussed.

Then, we allow the network topology to be possibly
disconnected all time. We obtain necessary and sufficient
conditions of consensus problem under periodic time-
varying networks. To aperiodic time-varying networks,
we propose some sufficient conditions of the consensus
problem.

In our study a notion called Integral Connectivity of time-
varying graph is used to guarantee the multi-agent system
reaching consensus. This concept can be regarded as a
counterpart of jointed connectivity used in discrete-time
cases by [2], [8], [10].

The notion Integral Connectivity of time-varying graph
introduced in this work has some similarity with that in
[9]. For example, both discuss continuous-time systems,
and the consensus conditions for both are related to
connectivity of an integral of adjacency matrix over finite
time interval. However, there are some essential differences
between Moreau’s work and ours:

(1) When the integral connectivity (or jointed connectiv-
ity) is discussed over time-interval [t, t + T ) in [9] as well
as [2], [8], [10], the interval-length T is fixed. In our work
the interval-length T is allowed to be varying, it could
be arbitrarily large. This situation may occur in some
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dynamical process, for example, the system energy decays
as time t tends to large. With this respect the connectivity
in our framework is much weaker than that in [9].

(2) The integral graph introduced in our work is different
from the δ-graph defined in [9], and the connectivity of
the integral graph is characterized by some quantitative
algebraic values of the integral matrix, for example, the
second least eigenvalue λ2, or some other value according
to context.

(3) Our results are confined to undirected networks,
which can be easily generalized to balanced networks, but
Moreau’s results are valid for generally directed networks.
It seems that Moreau’s results are more general, however,
there are some implicit difficulties in generally directed
networks. For example, the connectivity of δ-graph can not
guarantee the convergence of consensus when the integral
matrix is defined on time-intervals with varying interval-
length (See Example 2 in this paper). When the time-
intervals are of constant length, the convergence is proved
by Moreau, however, the convergence rate may extremely
slow (See Example 3 in this paper).

Our contribution can be described as follows.

(1) We not only give the necessary and sufficient con-
dition of consensus problem under periodic time-varying
networks, but also propose a general framework to inves-
tigate the continuous-time consensus problem under time-
varying networks. The connectivity of network topology
is allowed to be weaker than that in [2], [8], [9],[10].
The convergence analysis of consensus problem based on
integral connectivity over a sequence of time-intervals with
varying length plays a key issue in this work.

(2) Under our setting we show that there are variety of
convergence rates for consensus according to the properties
of networks. The estimations of convergence rate are
given in terms of the algebraic characterization of integral
connectivity.

2. THE CONSENSUS PROBLEM IN TIME-VARYING
NETWORKS

The swarm under consideration consists of n dynam-
ical members (agents) {v1, v2, · · · , vn}, the associated
communication network is described by a time-varying
graph G(t) = (V, E(t),A(t)). The vertex set V :=
{v1, v2, · · · , vn}, which is the set of members in the swarm.
A(t) = (aij(t))n×n with aij(t) ≥ 0 is the weighted adja-
cency matrix of G(t), the edge set E(t) := {(vi, vj) ∈ V ×
V | aij(t) > 0}. Moreover, the neighbor set to each member
vi at time instant t is defined as

Ni(t) = {vj ∈ V | (vi, vj) ∈ E(t)}. (1)
It is assumed that aii(t) = 0 for each i ∈ n, i.e. the vi is
not a neighbor of itself, vi 6∈ Ni(t). In this paper, we only
consider undirected graphs, i.e. aij(t) = aji(t) for all i, j.

Let xi ∈ R be the value of dynamical agent vi, and the
dynamical equation of vi, for each i ∈ n, is described by

ẋi = ui. (2)
The (average) consensus problem of the swarm aims for
finding a (distributed) control protocol such that

lim
t→∞

xi(t) = x̄, (3)

where x̄ is the average value of {xi(0)| i ∈ n}.
A well-known linear consensus protocol (See [1]) is that

ui =
∑
j∈Ni

aij(t)(xj(t)− xi(t)).

Thus the behavior of the swarm is described as follows
ẋi =

∑
j∈Ni

aij(t)(xj(t)− xi(t)) for all i ∈ n, (4)

where {aij(t) ≥ 0} are the entries of the adjacency matrix
A(t).

The time-varying degree of vi for a time-varying graph
G(t) is defined by

di(t) =
n∑

j=1

aij(t).

Let D(t) = diag(d1(t), · · · , dn(t)), then L(t) = D(t)−A(t)
is called the Laplacian of G(t).

Let x := (x1, x2, · · · , xn)τ , then the equation (4) is written
as a time-varying linear system

ẋ = −L(t)x. (5)
We will answer the equation: For dynamic system (5)
under what conditions it holds that

lim
t→∞

x(t) = x∗, (6)

where x∗ = (x̄, · · · , x̄)τ ∈ Rn is a constant vector in Rn

representing the average value of x.

The following lemma ([4]) is fundamental for this work.
Lemma 1. Let G be an undirected weighted graph and
L be its Laplacian, then L is a semi-positive symmetric
matrix with following properties.

(1) Let λk(L) be the eigenvalues of L with the order
λ1 ≤ λ2 ≤ · · · ≤ λn and ρk(e−Lt) be the eigenvalues of
exp(−Lt) with the order ρ1 ≥ ρ2 ≥ · · · ≥ ρn then

λ1(L) = 0, ρ1(e−Lt) = 1.

Moreover, the vector of ones, 1 = (1, · · · , 1)τ ∈ Rn, is the
eigenvector to λ1(L) and ρ1(e−Lt). In other words, L1 = 0,
and e−Lt1 = 1 for any t.

(2) For each k ≥ 1,

ρk(e−Lt) = e−λk(L)t

and the eigenvector to ρk(e−Lt) is same as that to λk(L),
i.e. for any ξ ∈ Rn, Lξ = λk(L)ξ if ond only if e−Ltξ =
e−λk(L)tξ.

(3) λ2(L) > 0 if and only if G is connected.

(4) By Rayleigh-Ritz Theorem,

λ2(L) = min
{

xτLx

xτx

∣∣∣∣ x 6= 0, xτ1 = 0
}

,

ρ2(e−Lt) = max
{

xτe−Ltx

xτx

∣∣∣∣ x 6= 0, xτ1 = 0
}

.

The following lemma is also useful in studying the behavior
of the swarm.
Lemma 2. Let L be a semi-positive symmetric real matrix,
‖ · ‖ be the Euclidean norm on Rn. If there exists t1 > 0
and ξ ∈ Rn such that ‖e−Lt1ξ‖ = ‖ξ‖, then Lξ = 0 .
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3. CONSENSUS OVER CONNECTED NETWORKS

In this section we consider the consensus problem of (5) in
connected networks.
Theorem 3. Let G(t) be an undirected time-varying graph
with Laplacian L(t). If there exists a real number K > 0
such that

λ2(L(t)) ≥ K for all t ≥ 0,

where λ2(L(t)) is the second smallest eigenvalue of L(t),
then the dynamics (6) is convergent exponentially.

‖x(t)− x∗‖ ≤ e−Kt‖x(0)− x∗‖.

This result is a straightforward generalization of Theorem
9 in [1] and its proof is omitted.

The condition λ2(L(t)) ≥ K > 0 implies that not only
G(t) for any t ≥ 0 is connected, but also the connectivity
is strong enough.

Nevertheless, under a milder assumption on the network,
next result gives an asymptotical convergence theorem
for consensus problem in the price that the exponential
convergence may be not valid anymore.

An infinite sequence {tk|k ≥ 0} is called a partition of
[0,∞) if

0 = t0 < t1 < · · · < tk < · · ·
and lim

k→∞
tk = ∞.

Theorem 4. Let G(t) be an undirected time-varying graph
with Laplacian L(t). If there exists a partition {tk|k ≥ 0}
of time interval [0,+∞), and a real number K > 0 such
that

λ2(L(t))∆tk ≥ K for all t ∈ [tk−1, tk), (7)
where ∆tk = tk − tk−1, then the dynamics (5) converges
to the average vector, i.e. the consensus is reached.

Proof. Let δ(t) = x(t) − x∗ and V (t) = δ(t)τδ(t), then
δ(t) satisfies that δ̇ = −L(t)δ and δτ1 = 0. By Rayleigh-
Ritz Theorem, we have

δ(t)τL(t)δ(t)
δ(t)τδ(t)

≥ λ2(L(t)),

i.e., δ(t)τ (−L(t))δ(t) ≤ −λ2(L(t))δ(t)τδ(t). Then

V̇ (t) = 2δ(t)τ δ̇(t) = 2δ(t)τ (−L(t))δ(t)

≤ −2λ2(L(t))V (t) ≤ −2
K

∆tk
V (t).

(8)

Hence, for any t ∈ [tk−1, tk),

V (t) ≤ exp
(
−2

K

∆tk
(t− tk−1)

)
V (tk−1), (9)

which implies ‖δ(tk)‖ ≤ e−K‖δ(tk−1)‖.
Therefore

‖δ(tk)‖ ≤ e−kK‖δ(0)‖. (10)
Thus, ‖δ(t)‖ → 0, i.e. (6) holds.
Remark 1.

(1) The coefficient e−kK in (10) make the δ(tk) looks like
an exponential decaying function. In fact, the ‖δ(tk)‖ does
not decay exponentially to zero, as the ∆tk may tend to
infinite large.

(2) With a similar proof, the assumption (7) can be
replaced by a condition in integral form

∫ tk

tk−1
λ2(L(t))dt ≥

K, which can be simply written as∫ ∞

0

λ2(L(t))dt = ∞. (11)

4. CONSENSUS OVER INTEGRALLY CONNECTED
NETWORKS

In this section we discuss the case that the time-varying
graph G(t) is possibly disconnected all time. A notion
called Integrally Connected Graph is used and defined in
what follows.
Definition 1. Let G(t) = (V,A(t), E(t)) be a time-varying
graph and assume that A(t) = (aij(t))n×n is integrable.
Define

Ā =
1
T

∫ τ+T

τ

A(t)dt, (12)

Ē =

{
(vi, vj) ∈ V × V

∣∣∣∣∣
∫ τ+T

τ

aij(t)dt > 0

}
.

Then the graph
Ḡ[τ,τ+T ) := (V, Ē , Ā)

is named the integral graph of G(t) over time interval
[τ, τ + T ).
Definition 2. A time-varying graph G(t) is said to be
integrally connected on [τ, τ + T ) if its integral graph
Ḡ[τ,τ+T ) is connected.

Lemma 5. Let G(t) be a time-varying graph, L(t) and L̄
be the Laplacian of G(t) and Ḡ[τ,τ+T ) respectively. Then
one has

L̄ =
1
T

∫ τ+T

τ

L(t)dt.

Moreover, G(t) is integrally connected on [τ, τ + T ) if and
only if λ2(L̄) > 0.

Proof. It is easy to be verified according to definition 2.

For simplicity, we assume that the time-varying graph G(t)
is piecewise time-invariant, which is defined as follows.
Definition 3. A time-varying graph G(t) is called piecewise
time-invariant if there exists a partition {tk|k ≥ 0} of
[0,∞) such that the adjacency matrix A(t) is constant
on each interval [tk−1, tk).

Note that the assumption of piecewise time-invariance is
of obvious engineering significance. Besides, the methods
used here can be easily generalized to some general time-
varying networks such as A(t) is a piecewise continuous
matrix or a measurable matrix.

4.1 Consensus in Periodic Cases

Let G(t) be a periodic graph that G(t + T ) = G(t) for all
t ≥ 0 and there exists a partition of [0, T )

0 = t0 < t1 < · · · < tm = T,

such that A(t) is time-invariant on each [tk−1, tk).

Correspondingly, let Lk = L(t) for t ∈ [tk−1, tk), then
ẋ(t) = −Lkx(t) for all t ∈ [tk−1, tk).
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Recalling a notation in linear system theory. Given lin-
ear time-varying system (5) its transition matrix Φ(t, τ)
satisfies

∂Φ(t, τ)
∂t

= −L(t)Φ(t, τ), Φ(τ, τ) = I. (13)

Then we have x(t) = Φ(t, τ)x(τ) for any τ ∈ [0,+∞) and
t ≥ τ .

Now we denote
P := Φ(T, 0) = e−Lm∆tm · · · e−L1∆t1 . (14)

As the matrix P is no longer symmetric, the second largest
eigenvalue of P τP , denoted by ρ2(P τP ), will play a key
role in the analysis of consensus for the dynamical agents.
Lemma 6. Ḡ[0,T ) is connected if and only if⋂

k∈m

Ker(Lk) = span{1}. (15)

Proof. It is obvious that span{1} ⊆
⋂

k∈m

Ker(Lk) as

Lk1 = 0 for all k > 0. Thus, we need to prove that Ḡ(0,T )

is disconnected if and only if there exists a nonzero vector
ξ such that ξτ1 = 0 and Lkξ = 0 for all k.

If
⋂

k∈m

Ker(Lk) 6= span{1}, then there exists ξ 6∈ span{1}

such that L(t)ξ = 0 for all t ∈ [0, T ). It implies that
L̄ξ = 0. Thus there exist two independent eigenvectors of
L̄ corresponding to eigenvalue zero, which implies Ḡ[0,T ) is
unconnected.

Conversely, if λ2(L̄) = 0, then there exists ξ 6= 0 such
that ξτ1 = 0 and L̄ξ = 0. Thus ξτ L̄ξ = 0, which implies∫ T

0
ξτL(t)ξdt = 0. Notice that L(t) is semi-positive, then

we have ξτL(t)ξ = 0 at almost all t ∈ [0, T ). Moreover,
as L(t) is piecewise constant, there is no t such that
ξτL(t)ξ 6= 0. For a semi-positive matrix, ξτL(t)ξ = 0
implies that L(t)ξ = 0. Hence, ξ ∈

⋂
k∈m

Ker(Lk), i.e.,⋂
k∈m

Ker(Lk) 6= span{1}.

Lemma 7. Ḡ[0,T ) is connected if and only if ρ2(P τP ) < 1.

Proof. It is obvious that ρ2(P τP ) ≤ 1 whatever Ḡ[0,T )

is connected or not. Hence, we show that Ḡ[0,T ) is uncon-
nected if and only if ρ2(P τP ) = 1.

If Ḡ[0,T ) is not connected, then there exists ξ(6= 0) ∈⋂
k∈m

Ker(Lk) satisfying ξτ1 = 0. It implies Lkξ = 0 and

e−Lktξ = ξ. Since e−Lktξ = ξ for all k, we have Pξ = ξ.
Recall the Rayleigh-Ritz Theorem,

ρ2(P τP ) ≥ ξτ (P τP )ξ
ξτξ

= 1. (16)

As ρ2(P τP ) ≤ 1, (16) implies that ρ2(P τP ) = 1.

Conversely, if ρ2(P τP ) = 1, by the Rayleigh-Ritz Theo-
rem, and notice that the set {x| xτ1 = 0, xτx = 1} is
compact, there must exist ξ 6= 0 such that

ξτ (P τP )ξ
ξτξ

= ρ2(P τP ) = 1.

Take ξ0 = ξ and ξk = e−Lktξk−1. Recalling the fact
‖e−Lk∆tkξ‖ ≤ ‖ξ‖, we have

‖ξ‖ = ‖Pξ‖ = ‖ξm‖ ≤ · · · ≤ ‖ξ1‖ ≤ ‖ξ0‖ = ‖ξ‖.

Hence, ‖e−Lk∆tkξk−1‖ = ‖ξk−1‖. By Lemma 2, we have
Lkξk−1 = 0. Thus, we know ξk−1 ∈ Ker(Lk) and ξk =
ξk−1. This implies that ξ = ξk−1 ∈ Ker(Lk) for all k, i.e.,
ξ ∈

⋂
k∈m

Ker(Lk), then, Ḡ[0,T ) is not connected.

Theorem 8. Let G(t) be a piecewise time-invariant graph
with period T , then (5) implements consensus if and only
if Ḡ[0,T ) is connected. Moreover, let δ(t) = x(t)− x∗, then

‖δ(t)‖ ≤ e−γ(t−T )‖δ(0)‖, (17)
where γ = − 1

2T ln ρ2(P τP ).

Proof. If Ḡ[0,T ) is unconnected, then by Lemma 6, there
is ξ 6= 0 such that ξτ1 = 0 and Lkξ = 0 for all k. Let
x(0) = ξ, then x(t) = ξ for all t > 0, thus (6) does not
hold.

When Ḡ[0,T ) is connected, notice that P1 = 1, then Px∗ =
x∗. Thus P (x(0)−x∗) = x(T )−x∗, i.e., Pδ(0) = δ(T ). By
Rayleigh-Ritz Theorem,

ρ2(P τP ) ≥ δ(0)τ (P τP )δ(0)
δ(0)τδ(0)

=
δ(T )τδ(T )
δ(0)τδ(0)

.

We have ‖δ(T )‖ ≤ ρ2(P τP )
1
2 ‖δ(0)‖, Therefore,

‖δ(kT )‖ ≤ ρ2(P τP )
1
2 k‖δ(0)‖.

As ‖δ(t)‖ is not increasing, for t ∈ [kT, kT + T )

‖δ(t)‖ ≤ ‖δ(kT )‖ ≤ ρ2(P τP )
1

2T kT ‖δ(0)‖

≤ ρ2(P τP )
1

2T (t−T )‖δ(0)‖.
Hence (17) holds.
Example 1. Consider a graph G(t) which consists of three
vertices v1, v2, v3. Suppose G(t) is a periodic graph such
that G(t + 3h) = G(t), and the edge set E(t) is defined
as follows. When t ∈ [0, h), E(t) = {(v1, v2)}; when
t ∈ [h, 3h), E(t) = {(v1, v3)}. The network is unconnected
at any time.

The Laplacian of G(t) for t ∈ [kh − h, kh) for k = 1, 2, 3
are as follows.

L1 =

( 1 −1 0
−1 1 0
0 0 0

)
, L2 = L3 =

( 1 0 −1
0 0 0
−1 0 1

)
and the integral Laplacian L̄ = 1

3 (L1 + L2 + L3) satisfies
the condition λ2(L̄) > 0.

The trajectory of the state is given by

x(t) = e−Lk(t−kh) x(kh) for t ∈ [kh, kh + h)
where Lk = L(k mod 3)+1.

Let h = 0.5 and x(0) = (0, 0, 1)τ ∈ R3. Figure 1 shows
that each xj(t), j ∈ 3, tends to the average value 1

3 .

Fig 1
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To verify (17), we define

p(t) =
‖δ(t)‖
‖δ(0)‖

, r(t) = −1
t

ln(p(t)),

and their trajectories are demonstrated in Figure 2 .

Fig 2(a) and Fig 2(b)

4.2 Consensus in Aperiodic Cases

Definition 4. A time-varying graph G(t) is said to be piece-
wise integrally connected if there is a partition {Tk|k ≥ 0}
of [0,∞) such that G(t) is integrally connected over each
interval [Tk−1, Tk).

We emphasize that for each k, ∆Tk = Tk − Tk−1 < ∞,
however it is possible that limk→∞∆Tk = ∞.

According to the previous results one gets:
Lemma 9. The following statements are equivalent:

(1) G(t) is integrally connected over [Tk−1, Tk).

(2) λ2(L̄k) > 0, where L̄k = 1
∆Tk

∫ Tk

Tk−1
L(t)dt.

(3) ρ2(Rk) < 1, where Rk = Φ(Tk, Tk−1)τΦ(Tk, Tk−1).

It is easy to understand that the piecewise integral connec-
tivity is a necessary condition for the consensus of system
stability of (5). However, it is not a sufficient condition un-
der general time-variant networks. Let’s examine a simple
example.

Given system (5) in the form that ẋ = α(t)Lx where L
is a Laplacian matrix of a time-invariant connected graph
G0. Let α(t) = e−t. Then the communication network is
connected all time, of course, it is also piecewise integrally
connected. One gets its trajectory of the system, x(t) =
exp(Le−t)e−Lx(0). As

lim
t→∞

x(t) = e−Lx(0).

Thus, it does not reach consensus.

Therefore, we need some additional condition to solve the
consensus problem under general time-variant networks.
The following gives a sufficient condition for the consensus
problem.

Theorem 10. Suppose G(t) is a piecewise time-invariant
graph and integrally connected on each interval [Tk−1, Tk).
If there exists a constant number K > 0 such that

− ln ρ2(Rk) ≥ 2K, (18)
then (5) converges to the average vector.

The condition (18) in Theorem 10 can be replaced by a
condition in more general form

−
∞∑

k=1

ln ρ2(Rk) = ∞. (19)

It is easy to see that (18) implies (19). On the other hand,
if (19) holds, we can redefine a new partition using the
union of [Tk−1, Tk)∪· · ·∪ [Tk+j , Tk+j+1), as a new integral
interval, such that (18) holds for the new partition. So
essentially two conditions (19) and (18) are equivalent.

When (18) holds, it does not mean the convergence being
with exponential rate, we have pointed out this before.

Because the calculation of λ2(L̄k) is more straightforward
to check the connectivity of graph, there is an interest-
ing problem: whether one can use the algebraic value
of λ2(L̄k), instead of ρ2(Rk), to describe the sufficient
condition of Theorem 10? The relation between ρ2(Rk)
and λ2(L̄k) is unclear up to now. It remains a lot for our
further work.

Finally, we present two examples to show the differences
between our work and that of [9].

When the network is directed, consensus problem can also
be described by (4). The only difference from undirected
network is that aij(t) may not be equal to aji(t). We
consider a system under directed network.
Example 2. A swarm consists of three agents v1, v2, v3. Let
{tk|k ≥ 0} be a partition of [0,∞). The dynamics of the
swarm is described as follows:

ẋ1 = x2 − x1, ẋ2 = ẋ3 = 0 if t ∈ [t3k, t3k+1),
ẋ2 = x3 − x2, ẋ3 = ẋ1 = 0 if t ∈ [t3k+1, t3k+2),
ẋ3 = x1 − x3, ẋ1 = ẋ2 = 0 if t ∈ [t3k+2, t3k+3).

Take a coarser partition {Tk|k ≥ 0} with Tk = t6k, then
the communication network of the swarm is integrally
connected over each interval [Tk−1, Tk). According to the
definition in [9], the δ-digraph relative to

∫ Tk

Tk−1
L(t)dt is

connected and satisfies his consensus stability condition if
∆T = Tk − Tk−1 for all k.

Now we discuss the case when ∆tk can be arbitrarily large
and chose {tk|k ≥ 0},

t6k+1 = t6k + (k + 1) ln 4 + ln(8 + 8 · 4−k−1),
t6k+2 = t6k+1 + (k + 1) ln 4 + ln(8 + 7 · 4−k−1),

...
and the states are calculated in the following values.

t x1 x2 x3

t6k 1− 4−k 9 + 4−k 1− 3 · 4−k−1

t6k+1 9 + 3 · 4−k−1 9 + 4−k 1− 3 · 4−k−1

t6k+2 9 + 3 · 4−k−1 1− 2 · 4−k−1 1− 3 · 4−k−1

t6k+3 9 + 3 · 4−k−1 1− 2 · 4−k−1 9 + 2 · 4−k−1

t6k+4 1− 4−k−1 1− 2 · 4−k−1 9 + 2 · 4−k−1

t6k+5 1− 4−k−1 9 + 4−k−1 9 + 2 · 4−k−1
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One gets

lim
k→∞

x1(t6k) = 1 but lim
k→∞

x2(t6k) = 9.

Thus, the consensus is not achieved.

Example 3. The system of dynamical is the same as in
Example 2, but the time-interval [tk−1, tk) is of constant
length ∆t. In such a situation, the system will achieve
consensus according to the theorem in [9]. However, the
convergence rate of consensus is

‖δ(t)‖ ≤ (1− e−∆t)‖δ(0)‖.
This fact implies that the convergence speed is extremely
slow for large ∆t. Figure 3 demonstrates the trajectory
of x2(t) when ∆t = 10. Notice that it is convergent with
oscillation. However, the convergence is too slow to have
practice meaning.

Fig 3: An example of consensus convergence
using the result given by [9]

5. CONCLUSION

Consensus problem under time-variant network is a chal-
lenge research problem. There still are some fundamental
problems opening to researchers. According to our results,
the integral connectivity is a key concept for solving the
consensus problem under time-variant network. Integral
connectivity is a necessary and sufficient condition to
achieve consensus over periodic networks, but not suffi-
cient over aperiodic networks.

When the integral connectivity is valid, the convergence
of consensus could be with quite different rates. In certain
case we can estimate the convergence rate by means of the
algebraic characteristic value of connectivity of integral
graph.

Finally, some examples show that there are essential differ-
ences between undirected networks and directed networks
to the consensus problem.
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