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Abstract: Parameter estimation in functional imaging provides unique quantitative measures in clinical 
diagnosis, and in the evaluation of treatment response and new drugs. Voxel-by-voxel parameter 
estimations can construct parametric images which visualize the spatial distribution of functional 
parameters. The low signal-to-noise ratio in single photon emission computed tomography (SPECT) may 
cause physiologically meaningless estimates using the general linear least square method (GLLS). A 
proof-of-principle framework is proposed in this study for constructing simultaneously multiple parametric 
images using a model-aided GLLS method and fuzzy clustering for dynamic SPECT. Computer 
simulations were performed to evaluate the accuracy and reliability of estimates for the studied methods. 
The results show that the model-aided GLLS with fuzzy clustering did enhance reliability for voxel-by-
voxel parameter estimation with a slight overestimation of the volume of distribution. The method 
employing normalization of TTAC was superior to the method without normalization.  

1. INTRODUCTION 

Kinetic modeling in functional imaging has been used to build 
suitable models for biological systems and describe in-vivo 
dynamic behavior in a concise manner. Rate constants and 
macro parameters derived from rate constants of kinetic 
models are directly related to functional processes, providing 
unique quantitative measures in clinical diagnosis, and in the 
evaluation of treatment response and of new drugs. 

Parameter estimation is a process to derive estimates of rate 
constants with regard to known functions for a biological 
system. In functional imaging, the input function (IF) is 
usually a sampling curve representing tracer activity in plasma, 
while the output function is a tissue time activity curve 
(TTAC) for a region of interest (ROI) drawn on dynamic data. 
Parametric images derived by voxel-by-voxel parameter 
estimation depict the spatial distribution of functional 
parameters without the need for manual delineation of ROIs 
(Feng 2007).  

The non-linear least square (NLS) method is a standard 
technique for parameter estimation with statistically optimal 
outcomes (Huang 1980). However, due to intensive 
computational cost and the requirement for “good” initial 
estimates, NLS is not suitable for constructing parametric 
image. Through suitable integrations, the non-linear kinetic 
model equations can be transformed into a linear algebraic 
estimation problem (Johnson 1992) and linear least squares 
(LLS) methods can then be used to estimate the parameters. 
However, overlapping integration of the noise leads to biased 
estimates with this approach. The general linear least square 

(GLLS) method has thus been proposed to address the 
problem of LLS and aimed to provide fast and unbiased 
parameter estimation (Feng 1996). GLLS has been 
successfully applied in the studies of the brain, heart and liver 
for positron emission tomography (PET) (Feng 1996; Chen 
1998; Choi 2006). 

Single photon emission computed tomography (SPECT) also 
provides functional images, but has lower signal-to-noise ratio 
(SNR) than PET. Although SPECT has the potential of 
providing quantitative information (Almeida 1999), low SNR 
in SPECT data may cause physiologically meaningless 
estimates using GLLS in voxel-by-voxel parameter estimation. 
Several approaches have been proposed to enhance reliability 
of GLLS when dealing with noisy SPECT data. One approach 
is to use a statistical resampling technique to generate a set of 
synthetic curves, with the final parameters estimates being 
derived from the mean of the parameters derived from the fits 
to the synthetic curves  (Wen 2006). The major drawback of 
this technique is the computational cost due to more curves 
having to be fitted. Recently, a fast regressive approach of 
GLLS was proposed using a flexible modeling technique to 
facilitate fast formation of parametric images.  Despite of 
improved reliability, this model-aided method did not achieve 
complete elimination of all physiological meaningless fits 
(Wen 2007).  

Clustering analysis classifies data into groups according to 
their intrinsic similarity. Clustering analysis has been applied 
to improve SNR in the spatial domain of data for constructing 
parametric images (Kimura 1999; Wen 2007). “Hard” 
clustering, such as K-mean clustering, assigns instances to one
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specific cluster. In contrast, fuzzy clustering allows each 
instance to be associated with every cluster to a certain degree, 
which is referred to as “soft” clustering. The benefit of fuzzy 
clustering is that each instance contributes to all the cluster 
centroids in terms of fuzzy membership, largely avoiding 
issues of misclassification and over-smoothing in “hard” 
clustering. 

In this study, we propose a proof-of-principle framework for 
constructing simultaneous multiple parametric images using 
the model-aided GLLS method and fuzzy clustering. Monte 
Carlo simulations were used to simulate dynamic SPECT data 
with the kinetics of the nicotinic receptor tracer 5-[123I]-iodo-
A-85380. Quantitative analysis was performed to evaluate the 
proposed methods with and without normalization of TTACs. 

2. METHODS 

2.1 Model-aided GLLS 

In system identification, several potential kinetic models can 
be used in the search of the best model which describes a 
biological system. For example, three-compartment four-
parameter kinetic model (Fig.1) was the best kinetic model for 
the nicotinic receptor study, while two-compartment two-
parameter model (Fig.2) may provide approximate estimation 
of some parameters with higher reliability.  

 
Fig.1. Three-compartment and four-parameter kinetic model 

for neuroreceptor studies. Cp(t) is IF, Ci(t) is TTAC. K1, k2, 
k3 and k4 are the rate constants connecting adjacent 
compartments.  

 

 
Fig.2. Two-compartment and two-parameter kinetic model. 

The definitions of the variables are the same as above 
(Vd=K1

’/k2
’). 

 
Volume of distribution, Vd, is a relatively stable functional 
parameter, demonstrating the equilibrium distribution of 
tracer in the tissue. Equation (1) gives the definition of 
volume of distribution using rate constants for the three-
compartment four-parameter model (Fig.1).  
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Our previous investigation found that there was a linear 
relationship for Vd

 between the two models (Figs. 1 and 2) . 
This implied that Vd derived from the two compartment model 
could be used as a prior for parameter estimation from the 3 

compartment model. The rate constants k3 and k4 are relatively 
sensitive to noise compared to K1 and k2, thus the model-aided 
GLLS assumed that estimates of K1 and k2 can be obtained 
using traditional GLLS (see Appendix for GLLS), while the 
prior Vd can estimate k3 using the slope of linear plots of X(t) 
vs. Y(t) according to equations (2) and (3), 
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where )/( 121 KkVK d −=β , followed by estimate of k4 
shown in (4). 

34 kk ⋅= β  (4) 
An optimization procedure was then applied to adjust Vd 
regressively to minimize the residual sum of squares between 
measured Ci(t) and estimated Ce(t) (5). 
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n is the number of dynamic frames. The initial Vd was derived 
from Vd for the two-compartment and two-parameter model 
(Fig.2). 

2.2 Fuzzy Clustering  

A weighted least-square distance was used as a measure of 
closeness between the candidate voxel and centroid of cluster 
in the clustering (6). 
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Cj is the TTAC of voxel j, Rk is the centroid of cluster k. The 
weight function w is proportional to the frame duration. A 
fuzzy C-means (FCM) algorithm was used in the data analysis 
with the objective function (7) (Pham 1999). 
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Here, Ω is the set of the voxels, M is the total number of the 
clusters, jku is the membership value at voxel location j for 

cluster k with ∑
=

=
M

k
jku

1
1, q is a weighting exponent on each 

fuzzy membership.  

FCM also employs an iterative process to achieve the 
objective function of (7) by updating fuzzy membership (8) 
and new centroid of each cluster (9), where Φ denotes the set 
of the clusters.  
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According to our prior investigation (Choi 2006; Wen 2007), 
total cluster number was set to 128 with q = 1.1. Cluster 
centroids were initialized from randomly selected voxels. 
When the maximum change in the centroids over all clusters 
is less than a given value in an iteration, then convergence is 
deemed to have been reached. 

2.3 Proposed Methods   

Our currently proposed method (FM-GLLS) extends the 
recently developed model-aided GLLS with the aid of fuzzy 
C-mean clustering. Instead of parameter estimation for each 
voxel, the model-aided GLLS was used to fit the centroids of 
clusters. If any of the rate constants are negative or higher 
than 1 for a fit to a particular cluster centroid curve, then the 
memberships associated with that cluster are simply set to 
zero. 

In constructing parametric images, parameter estimates from 
cluster h then form the parameters for all the voxels which 
have their highest membership associated with cluster h (10). 

hj kkkKClusterkkkKVoxel },,,{},,,{ 43214321 =  

Φ∈Ω∈= kjuh jk  ),max(arg     (10) 

Here, jkkkKVoxel },,,{ 4321 denotes parameter estimates 

for individual voxel j, hkkkKCluster },,,{ 4321 is the set of 
parameter estimates for the centroid of cluster h by the model-
aided GLLS. 

We also investigated a second approach (FMN-GLLS), which 
incorporates normalization of TTAC and is based on FM-
GLLS. The assumption of FMN-GLLS was that influx rate K1 
is a scale factor of the TTAC (Kimura 2002), whereas k2, k3 
and k3 describe the shape of TTAC. Voxel-by-voxel TTAC 
was normalized by its amplitude according to (11) before the 
clustering. 
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Here, T is the total study duration. After the clustering and 
parameter estimation, equation (10) was then used in 
constructing parametric image except the estimate of K1 was 
scaled as shown in equation (12). 
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2.4 Computer Simulation and Parameter Evaluation 

High-count Monte Carlo simulations were performed to 
generate static projection data for individual brain structures 
based on a mathematical human brain phantom (Zubal 1994). 
The specifications of a Triad XLT triple head gamma camera 
(Trionix Research Laboratories, Twinsburg, OH, USA) were 
used in the simulation. Effects of attenuation, scatter, limited 
spatial and energy resolution, high-energy photon penetration 
of 123I were included in the simulations. The experimentally 
observed kinetics of the nicotinic receptor tracer 5-[123I]-iodo-
A-85380 (Kassiou 2001) was used to generate dynamic 
projection data according to a sampling schedule consisting of 
fifteen 1min scans, nine 5min scans and twelve 10min scans. 

Five different levels of Poisson noise were added based on 
experimental observed noise levels and 20 sets of dynamic 
projection data were simulated at each noise level. The images 
were reconstructed by the OS-EM iterative method with 20 
subsets and 2 iterations. Corrections were applied for 
attenuation, scatter and septal penetration of the high-energy 
photons of 123I.  

GLLS, FM-GLLS and FMN-GLLS were used to generate 
parametric images. Influx rate K1 and volume of distribution 
Vd were chosen as the parameters of interest. Volumes of 
interests (VOI) derived from the mathematical phantom were 
used to generate the average parameters for the thalamus, 
cerebellum, and frontal cortex. Percentage bias and coefficient 
of variation (CV) of K1 and Vd were derived according to 
equations (13) and (14). 
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Here, MC  is the total number of data sets, N is number of 
voxels within a VOI, op  is the parameter reference value 
used to simulate the data. 

3. RESULTS 

3.1 Percentage Bias 

Fig.3 shows the percentage bias for the frontal cortex at 
various noise levels. Despite similar bias (around -26%) 
achieved for the data without noise (noise level 0), GLLS 
substantially and increasingly underestimated K1 with 
increasing noise levels. In contrast, stable estimates of K1 
were observed for the two investigated methods 
with -35.2±0.5% for FM-GLLS and -33.5±0.3% for FMN-
GLLS. 

High variation of bias of Vd was obtained by GLLS with 
17.1% for the moderate noise level and -29.5% for the highest 
noise level. Interestingly, FM-GLLS and FMN-GLLS 
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somehow compensated for the partial volume effect (PVE) 
and bias was slightly reduced for larger noise levels. 

The higher bias of the estimates by GLLS was also evident in 
the thalamus. For a moderate noise level (noise level 3), the 
percentage bias of K1 was -91.5% by GLLS, -31.6% 
and -14.4% by FM-GLLS and FMN-GLLS, respectively, 
while bias of Vd was 53.8% by GLLS, -10.7% and -4.4% by 
FM-GLLS and FMN-GLLS.  

Trends in the cerebellum were consistent with the findings in 
the thalamus and frontal cortex except for the overestimation 
of Vd by FM-GLLS and FMN-GLLS as shown in Fig.4. 
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Fig.3 Plots of percentage bias for the frontal cortex as a 

function of increasing noise level (the number values of 
the abscissa denote simulated level of noise with 0 
representing noise free) 
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Fig.4 Plots of percentage bias for the cerebellum as a function 

of increasing noise level 
In contrast to the estimates of Vd for the noise-free data, 
higher Vd was achieved for noisy data, e.g. Vd by FMN-GLLS 
with an increased value of around 10% at the highest noise 
level for the three regions. This implies that the model-aided 
GLLS enhanced reliability for noisy voxel-wise TTACs at the 

expense of slight overestimation of Vd. For those regions 
suffering from PVE like thalamus and frontal cortex, the 
overestimation of Vd to some extent compensates for PVE and 
provides more accurate estimates, but leads to over-estimation 
of Vd in the cerebellum which is less affected by PVE. 

3.2 CV 

CVs for the frontal cortex are plotted in Fig.5 as a function of 
noise level.  High reliability was achieved for K1 by all three 
methods with low values of CV (≤2.2%). However, extremely 
poor reliability of Vd

 was also achieved by GLLS with values 
of CV exceeding 160%. This indicates that GLLS severely 
suffered from physiologically meaningless fits when dealing 
with voxel-wise parameter estimation. In contrast, high 
reliability of Vd was achieved by FM-GLLS and FMN-GLLS 
(CV ≤2.9%).  
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Fig.5 Plots of CV for the frontal cortex as a function of 

increasing noise level 
Similar CV results were observed in the thalamus and 
cerebellum. The overall results of bias and CV demonstrated 
that the incorporation of FCM substantially improved the 
reliability of the model-aided GLLS. FMN-GLLS achieved 
more accurate estimates of K1 and Vd than FM-GLLS method 
due to normalization of TTAC, which allowed TTACs with 
similar shapes, but different scaling to be attributed to the 
same cluster, thus further improving the reliability of the 
estimates by reducing the dimensionality of the estimation. 

3.3 Computational Cost 

Due to the required calculation of memberships associated 
with each cluster (128 clusters) for each voxel (around 90,000 
voxels), the iterative updating of cluster centroids in FCM 
required substantial computational cost to achieve 
convergence. In this proof-of-principle evaluation of the 
proposed framework, the maximum number of iteration in 
FCM was limited to 20 for both FM-GLLS and FMN-GLLS. 
The total computation time of FM-GLLS and FMN-GLLS 
were about 6.5 and 5.0 times that of GLLS, respectively. 
Despite the similar run time, iteration number of FM-GLLS 
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reached 20 for all the data analyses, while FMN-GLLS 
required approximately 18 iterations. This demonstrates that 
the TTAC normalization step was efficient in reducing 
computational cost without affecting accuracy and reliability. 

3.4 Parametric Image 

Fig. 6 shows the parametric images of K1 and Vd for the 
simulated data at the highest level of noise. There was a large 
number of ‘black holes’ in the parametric images by GLLS, 
showing physiologically meaningless fits. The two methods 
using FCM and model-aided GLLS clearly provided more 
reliable parametric images. 

 
Fig.6 Parametric images of K1 and Vd for the highest noise 

level 
Some outliers with higher value were also observed in the 
derived parametric images by FM-GLLS and FMN-GLLS. 
However, the fuzzy clustering technique largely improved 
SNR while conserving details of TTACs. 

6. CONCLUSIONS 

We propose a proof-of-principle framework for simultaneous 
formation of reliable multiple parametric images from noisy 
SPECT data. The proposed framework uses fuzzy c-mean 
clustering combined with a model-aided GLLS method. The 
simulation results demonstrate that the proposed methods 
achieve more accurate and reliable parametric images, but 
with a tendency to slightly overestimate Vd. Further 
investigations such as adaptive FCM clustering and optimal 
cluster number are warranted to maximize benefits of fuzzy 
clustering. The performance on clinical data will be 
investigated as well. 
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Appendix 

For the three-compartment and four-parameter kinetic model 
(Fig.1), parameter estimation of GLLS can be given in (A1) 
for a given N-point TTAC. 
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The values of 3̂P  and 4̂P  are denoted from the previous 

iteration of GLLS, followed by defining 1λ and 2λ in (A2). 

2/)ˆ4ˆˆ( 4332,1 PPP +±−=λ  (A2) 

The values of 1ψ and 2ψ  are given in (A3) and (A4). 
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Thus estimates of K1 and k2 are given in (A5) and (A6). 
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