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Abstract: In order to make overall consideration of the information from the original variables in the basic 

oxygen furnace (BOF) steelmaking dynamic process, an adaptive neural network fuzzy inference system 

(ANFIS) model based on kernel and greedy components is proposed. This kind of model can improve the 

endpoint predicting precision of the steel carbon contents and temperature. After hidden information is 

exposed in the high feature space through the kernel function transformation, greedy algorithm is used to 

remove redundant information and reduce the dimensions. The extracted components are used as the new 

inputs of ANFIS, and the implication relation among the inputs is reflected by rules, which simulate the 

operators experience, and consequently reduce the influence resulted from different operators. When the 

practical data are simulated, the simulated results are close to the practical values. The method is effective. 

�

1. INTRODUCTION 

The impulse from the domestic market and the abundance of 

quality raw materials have favoured the development of the 

Chinese steel industry, which contributes to the process of 

industrialization and development. There are many large Iron 

and Steel Plant (ISP) in China, and this research studied on 

one of the largest steelmaking plant in China, with a 

production capacity of dozens million tons of various types 

of steel per year. 

Steel in general is an alloy of iron and carbon(C), often with 

an admixture of other elements such as silicon(Si), 

manganese(Mn), sulphur(S), phosphorus(P) and nickel(Ni). 

Some alloys that are commercially called irons contain more 

carbon than commercial steels. Open-hearth iron and 

wrought iron contain only a few hundredths of 1% of carbon. 

Steels of various types contain from 0.04% to 2.25% of 

carbon (Fileti, Pacianotto et al. 2006), (Kurt, Orhan et al. 

2007).  

BOF is a widely preferred and effective steel making method 

due to its higher productivity and considerably low 

production cost. Therefore, today almost 65% of the total 

crude steel production in the world and 85% in China are met 

by using the BOF method. However, BOF steelmaking is a 

very complex chemical physical process. The amount, 

quality and component of scrap iron change from batch to 

batch; the grades of steel produced vary frequently; and also 

changes the height of the oxygen lance during each heat. As 

a result, controlling the steelmaking operation in the BOF is 

greatly difficult. The main objective of controlling oxygen 

converter steelmaking is to obtain the prescribed parameters 

for the steel when it is tapped from the furnace, including 

weight, temperature, and each element content. In the 

practical steelmaking process, the criterion whether the 

molten steel is acceptable or not are often decided by the 

endpoint carbon content [C] and temperature T. In general, 

the main task of BOF is two: one is the carbon percentage 

decrease from approximately 4% in hot metal to less than 

0.08% in liquid steel, and the other is the temperature 

increase from approximately 1250� in hot metal to more 

than 1650�. The sketch map of smelting is presented on Fig. 

1. 
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Fig. 1 the Sketch Map of Smelting 

Generally, the large BOF steelmaking process with sublance 

system can be divided into two stages: static control and 

dynamic control. Static control is the basic control mode for 

the converter computer. Static models include terminal 

control model, oxygen supplying model, slagging model and 

bottom blowing model; dynamic models include 

decarbonization speed model, molten steel warming model 

and the model for the amount of refrigerant (Feng, Zhang et 

al. 2006), and the dynamic control for sublance is on the 

basis of static control.  

Traditionally, the process can be effectively controlled 

through the use of mathematical models. Aiming at the 

effects of complex factors in the course of smelting, a set of 

steelmaking math-mode has been developed in a math way. 

However unfortunately, there exist a lot of theoretical 

assumptions, and too many parameters are involved in the 

traditional control methods, such as mechanism models 

based on heat balance and material balance, or statistic 

models based on regression analysis. Therefore, these models 

are often difficult in modelling precisely. Moreover, most of 

the models that have been used have been statistical and thus 
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are not suited for continuously changing conditions. As the 

development of the intelligent technology, various kinds of 

neural network model have been applied more and more. The 

concept of fuzzy logic and artificial neural network for 

control problem has been grown into a popular research topic. 

The reason is that the classical control theory usually requires 

a mathematical model for designing the controller, which 

usually degrades the performance, especially for nonlinear 

and complex control problems(Lin, Lee et al. 2006). On the 

contrary, the fuzzy logic controller and the artificial neural 

network controller, they offer a key advantage over 

traditional adaptive control systems. That is, they do not 

require mathematical models of the plants. The traditional 

neural networks can learn from data and feedback, but the 

meaning associated with each neuron and each weight in the 

network is not easily understood. Alternatively, the fuzzy 

logical models are easy to appreciate, because it uses 

linguistic terms and the structure of if-then rules. As the 

mixture of neural network and fuzzy system, the fuzzy neural 

network representations have emerged as a powerful 

approach to the solution of many problems(Liu, Yuan et al. 

2005). (Kubat, Taskin et al. 2004) proposed a fuzzy 

modelling for the control of BOF process. As a result of the 

application of the proposed modelling, acceptable levels of 

compatibility were achieved compared to the empirical BOF 

data in an integrated steel plant based in Turkey and targeted 

steel composition. (Xie, Tao et al. 2003), (Bigeev and 

Baitman 2006) also adopted different intelligent model to 

describe the BOF steelmaking process. Though these 

aforementioned intelligent models make up the deficiencies 

of the traditional models to some degree, they ignore the 

influence of the input simplifying on the predicting precision. 

According to (Szekely 2003), it is very necessary to simplify 

the input variables to reduce the complexity and improve the 

generalized capacity of the industrial model. 

The main contribution of the present work is improving the 

predicting precision with less dimensional and more effective 

inputs to establish simpler and more accurate endpoint 

predicting model. 

2. METHODS 

2.1 Description Steelmaking Steps 

BOF are main device of steelmaking process. Hot metal from 

blast furnace, and scrap iron are converted into steel by 

exothermic oxidation of all elements dissolved in the iron. 

Oxygen are kept blowing into the converter to eliminate the 

impurities by oxidation reactions.  

There are various steps in steelmaking process from raw 

materials up to the final products. These steps can be 

summarized as follows. 

Step 1: Charging raw materials into the furnace as being 

either iron ore or scrap iron, depending on the process. These 

are converted into molten steel. The ore-based process uses a 

blast furnace + BOF and the scrap-based process uses an 

electric arc furnace only. 

Step 2: for both routes is pouring the molten steel from the 

furnace and it is eventually solidified in a continuous caster. 

Step 3: these semi-finished products are transformed, or 

“rolled” into finished products. Some of these undergo a heat 

treatment, known as “hot rolling”. More than half of the hot-

rolled sheet is subsequently rolled again at ambient 

temperatures (known as “cold rolling”). It can then be coated 

with an anti-corrosion protective material. 

In this investigation, fuzzy modelling for the control of BOF 

process is studied. 

2.2  BOF Description 

BOF comprises a vertical solid-bottom crucible with a 

vertical water-cooled oxygen lance entering the vessel from 

above. The vessel is tiltable for charging and tapping. The 

charge is normally made up of molten pig iron (“hot metal”), 

plus scrap and fluxes. Small quantities of cold pig iron and 

iron ore may also be charged. The distinguishing feature is 

that the heat produced by reaction of the various constituents 

of the charge is used without other sources of energy to bring 

the metal to the desired final conditions of compositions and 

temperature. General view of BOF is given in Fig. 2. 
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Fig. 2 General View of BOF 

BOF can produce steel with wide range of carbon, alloy, and 

special alloy steels. Average molten steel capacity of BOF is 

normally between 100 tonnes and 400 tonnes of steel. When 

the molten iron arrives at the BOF via rail, it is processed 

through a desulphurization facility before being poured into a 

ladle in preparation for charging. In BOF steelmaking, hot 

metal and scrap are charged into a converter, along with lime 

and other fluxing materials. Oxygen is blown, and carbon, 

silicon, phosphorus, manganese, and some iron are oxidized.  

The objective is to produce a desired amount of steel, of 

specified chemical composition, at the proper tapping 

temperature. Control is difficult because the entire refining 

period takes only half an hour and there are no opportunities 

for sampling and analysis during this time. The BOF 

generally operates on a charge of 75% hot metal and 25% 

scrap. The scrap is loaded into a vessel via crane, and then 

the molten iron is poured into the vessel. A water-cooled 

oxygen lance is lowered into the vessel and high-purity 

oxygen is blown into the top of the metal at a speed of 
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16,000 cubic feet a minute. The oxygen combines with 

carbon and other elements to reduce impurities in the molten 

metal and convert it into clean, high-quality liquid steel. The 

steel is poured into a ladle and sent to the ladle metallurgy 

facility. 

In the BOF steelmaking process, when oxygen lance blows 

the oxygen to the bath surface, the hot metal impurities are 

removed and the temperature keeps increasing, accompany 

with the slags, gases, and released energies that are product 

by continually happening physical and chemical reactions. 

Impurities such as sulphur, phosphorus, and silicon are 

removed in the preprocessing time and prior blowing period, 

as a result, the main task of the BOF is decarbonization and 

temperature rising. Before blowing, the static model 

estimates the oxygen consumption value of the total 

steelmaking process. When the blowing reaches 85% of the 

value, the sublance goes down to the liquid steel to detect [C] 

and T. Comparing these values with the target values, the 

second blow oxygen volume and the re-added coolant weight 

are recalculated, then continue blowing until steel component 

and temperature are acceptable. The BOF endpoint 

predicting model mentioned here uses carbon content 

detected by sublance [Cf], second blow oxygen volume and 

re-added coolant as original input, to predict endpoint [C] 

and T. 

2.3  Refined Mechanics 

The preparation of the charge can be efficiently controlled by 

using a statistical model based on the material and heat 

balances, but a dynamic model is needed to control the 

blowing process. The second blow oxygen and re-re-added 

coolant weight are two important parameters (Zhang, Xiao et 

al. 1993). 

Assume that k stands for the current heat, t stands for the 

sublance time. The second blown oxygen volume 

1set , ( )ku t t�+  can be expressed as follows: 

^
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where u1, k(t) denotes the second blow oxygen volume at t; 

u2,k(t) denotes the re-added coolant at t; WST is the target 

tapping weight (t); �k, /k, 0k is the warming coefficient (°C/t); 

k0 is the cooling coefficient(°C/t); y1,k(t), y2,k(t) respectively 

denotes the carbon content and temperature of the liquid steel 

at t; if t=0, f(t)=1, else f(t)=0.  

At ( )t t�+ , the re-added coolant 2set , ( )ku t t�+  can be 

expressed as follows: 
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where .k and �k are decarbonazition coefficient; C0 is a 

constant(critical constant); h0 denotes the unit oxygen content 

of accessories (Nm3/t). 

According to (1) and (2), we calculate the theoretical value to 

estimate the abnormal data pairs and remove them. This is 

essential to assure the accurate modeling from the data 

source. 

3. ENDPOINT PREDICTING MODEL 

3.1  Question Proposed 

As the complexity of the BOF steelmaking process, it’s hard 

to acquire the intermediate information by real-time and 

continuous detection, the data gathered are practically 

important. Generally, the original variables of the BOF 

endpoint predicting model are these seven factors: second 

blow oxygen volume Vo, iron strap Wtp, lime Wsh, mixture 

Whl, ore Wks, dolomite Wby, and carbon content detected by 

sublance [Cf] or temperature Tf. In the ordinary intelligent 

models, such as radial basis function RBF network, back 

propagation BP network, they use these all variables as 

inputs to establish models based on input-output data. As a 

result, the distributed characteristics of the data are ignored. 

This paper emphasize the characteristic of the input data, for 

example, data from variables VO or [Cf] are concentrated and 

without value zero, therefore, it is necessary to expanding 

dimensions to mining the hidden information; while data 

from variables Wtp or Whl are sparse and zero value is 

frequently present, so we reduce the dimension to remove the 

redundant information. In order to reduce the complexity and 

improve the adaptability of the model, we take all the 

original input variables together into consideration when 

expanding or reducing the dimension. 

3.2  Extraction Components Based on Greedy Kernel 

Extraction Kernel Principal Components is a nonlinear 

expansion of principal component analysis (PCA) (Müller, 

Mika et al. 2001). Supplying 
X

T  is a subset of the n-

dimensional training set. l stands for the number of inputs: 

^ `1,..., , , 1, ,
X

n

l iT x x x i lF � �  \ "                                 (3) 

XT  is mapped into a high dimensional feature space by 

: FI F o , and the training set becomes 
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^ `1( ), , ( )lT x xI I I " . In general, the exact form of I  is 

hardly estimated, so the kernel functions are introduced, 

which convert the nonlinear problem in the sample space to 

the inner multiplication in the feature space. 

( , ) ( ), ( )i j i jk x x x xI I � !                                                     (4) 

where i, j=1,…,l, and i � j; ,� � � !  donates inner production. 

Then the kernel vector can be expressed as: 

1( ) [ ( , ), , ( , )]k x
T

i i lk x x k x x "                                              (5) 

After reducing to m-dimensional, m�z \  and satisfies: 

( )z A k x b
T � , where [ ]l muA  is parameter matrix, [ 1]mub  is 

bias vector. 

Find the reconstructive vector i( )xI  which makes the error 

of reconstruction lowest. Thus the error of reconstruction can 

be expressed as: 

2

KMS i i

1

1
( , ) || ( ) ( ) ||A b

l

i

x x
l

H I I
 

 �¦ �                                       (6) 

Greedy method is employed to select the principal 

component. Greedy method comes from the idea of greedy, 

which makes the best decision and gets the largest profit. The 

greedy method constructs the optimal solution step by step. 

In each step, the optimal decision is chose and the local 

optimal solution is evaluated following the decision. Once 

the decision has been made, it has never been changed. An 

alternative optimization algorithm is genetic algorithm, 

compared to the greedy algorithm: the next generation 

consists of new individuals while the next generation consists 

of the optimal individuals in the greedy algorithm. Therefore, 

the greedy algorithm converges faster than the genetic 

algorithm. The details of the greedy algorithm are following: 

Step 1: A random possible principal component is selected as 

current principal component x  . 

Step 2: Find a new principal component x  by searching the 

neighbourhood of the current principal component x  with 

greedy method. 

Step3: If x  is closer to the optimal solution xopt, the current 

principal component is set to x .In fact, xopt is unknown. 

Step 4: Repeat step 2 and 3, until all principal components 

have been found and the quality of them is unchanged.  

The idea of combining the greedy algorithm and kernel 

principal component not only detects the hidden information 

of the intensive variables, such as VO, [Cf], but also compress 

the sparse variables, such as Wtp, Whl. All inputs are 

normalized by this algorithm to control the complexity of the 

model and improve the generalization performance. 

Compared to the traditional model, the normalized inputs are 

applied to the predictive model which gets a better 

performance. 

Input 
X

T satisfied 

( )Sz A k x b
T �                                                                   (7) 

introducing  

1( ) [ ( , ), , ( , )]Sk x
T

i i lk x s k x s "                                            (8) 

where [ ]l muA is the parameter matrix, ( )Sk x  are kernel 

functions whose centres are 1{ , , }S dT s s "  and ST  is a 

subset of XT  , d is the size of ST . 

The interests of the greedy kernel principal component are 

ST  instead of XT , which reduces the complexity of (7). 

Therefore, the specified steps to extract components are: 

The input variables are mapped into the high dimensional 

feature space by I . 

According to (7), map the feature space n
\  into lower 

dimensional space m
\ ; 

Evaluate out
x

n�\ , which satisfied (9), where in( )I� x  

denotes the optimal closed reconstruct vector.:  

2

out inarg min || ( ) ( ) ||
x

x x xI I � �                                            (9) 

Kernel functions include linear kernel function, polynomial 

kernel function and sigmoid kernel function. In this paper, 

RBF kernel function is employed, which can be expressed as: 

2

2

|| ||
( , ) exp( )

2

x y
k x y

V
�

 �                                                  (10) 

3.3  Fuzzy Neural Network 

After kernel transformation and greedy optimization methods, 

the original variables are expressed as three inputs, and then 

act on the fuzzy neural network to establish the BOF 

endpoint modelling. The fuzzy neural network used here is 

adaptive neural network fuzzy inference system ANFIS (Jang 

1993). ANFIS is a mixed product which has both advantages 

of fuzzy inference system FIS and neural network NN: FIS 

can extract the rules in the data, which is capable of handling 

the structured knowledge; NN is of great learning adaptive 

capacity. The 5 layers architecture of ANFIS is shown on Fig. 

3. 
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Fig.3 Architecture of ANFIS 

Lay 1: signal fuzzification. The output is  
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(1)
( )kii i

ik iA
o xP                                                                      (11) 

Where xi denotes the input of note i, ( )ki
i

iA
xP denotes the 

membership degree that xi belongs to ki

i
A , (1)

iki

o is the output. 

Lay 2: calculate the confidence of the rules: 

1 2
1 2

1 2( ) ( ) ( )k k km
m

i mAA A
w x x xP P P "                                        (12) 

Lay 3: normalizing: 

/
i i ii

w w w ¦                                                                 (13) 

Lay 4: calculate the output of the rules:  

(4)

i i io w f                                                                            (14) 

Lay 5: calculate the final output: 

(5)

1 i ii
o w f ¦                                                                  (15) 

3.4  Algorithm Flow 

BOF steelmaking process is greatly influenced by input. The 

changing tendency of the inputs will has determined the 

endpoint hitting rate. Consideration of the distributed 

characteristics of the original variables present, it is helpful 

for reflecting the BOF steelmaking essence if we can handle 

the input data properly. The input variables are projected into 

high dimensional feature space using kernel function, so that 

the latent information can be extract, then greedy algorithm 

is used to select principal components, remove redundant 

information and reduce the input dimensions. In view of the 

large quantity of manual experience in the process, the 

ANFIS model is used here to analogue the experience 

through rules. Therefore, the BOF steelmaking endpoint 

predicting model is established by two structure similarity 

ANFIS. Fig. 4 is the flow chart of the greedy kernel 

component ANFIS. 
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inner production by kernel funtionk(x)

greedy optimization algorithm
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components finished�
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output
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ANFIS

start

φ

 

Fig.4 GKC-ANFIS flow chart 

When smelting, some heats need re-added and re-blow 

several times, which cause to the data according to these 

heats are dense, therefore it is necessary to expanding these 

data, so as to mining the hidden information, while other 

heats do not need the re-added coolant or slag former, if 

these data remain in the modelling, they are probably become 

disturbance in modelling. In this paper, we expand the 

variables and compress them at the same time to get the 

effective and simple inputs. The theoretical support is 

detailed in part 3.2.  

4. SIMULATION 

To determine the accuracy of values of finishing endpoint 

carbon content and temperature predicted by the model, we 

conducts 60 groups of the practical data from some Iron and 

Steel Plant in China. The heats were made in converters with 

a capacity of 180 tons. 

The first 50 groups are the training data set, and the last 10 

groups are the testing data set of GKC-ANFIS model. When 

training, we normalize all the data firstly to eliminate the 

adverse effect by different order among the variables. 

The number of primary components is 3, that is the inputs of 

the ANFIS is 3; the width of RBF kernel is 0.05; the 

linguistic values of input are equal 3; the error criterion is 0. 

After training, the nodes number of the model is 38, and the 

total rule number is 5. The predicting results of GKC-ANFIS 

about BOF endpoint [C] and T are shown in Fig. 5, and Fig. 

6. 
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Fig.5 Predicting endpoint carbon content 
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Fig.6 Predicting endpoint temperature 
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Comparing the GKC-ANFIS with the RBF and ANFIS 

models, mean squared error MSE and relative error RE are 

shown in Table 1. The structure and predicting accuracy of 

ANFIS models after changing are shown in Table 2. 

Table 1 Error Comparison of the Three Models 

temperature carbon content predicting 

model MSE(°C) RE MSE(%) RE 

RBF 12.0916 0.0038 0.0678 1.7404

ANFIS 10.8888 0.0052 0.0634 0.1584

GKC-ANFIS 9.8382 0.0046 0.0406 0.1469

 

Table 2 Comparison of ANFIS and GKC-ANFIS 

[C] predicting 

models 

number of 

nodes 

number of 

rules 
accuracy

ANFIS 90 11 80.0%

GKC-ANFIS 38 5 88.3%

 

It can be seen from Table 1 that when RBF model is used to 

predict the endpoint temperature, the MSE is around 12°C; 

when ANFIS model is used, the MSE decreased, resulted 

from excellent ability to analogue manual experience. When 

GKC-ANFIS model is adopted, the MSE is less than 10°C. 

In the predicting of [C], the GKC-ANFIS model also 

achieves higher accuracy, and the predicting values are more 

approach to practical values. From Table 2, after simplified 

the original variables, the predicting model becomes simpler, 

with the network scale from 90 to 38 and rules number from 

11 to 5. When specifying the [C] error is ±0.05%, the 

predicting accuracy rises from 80.0% to 88.3%.  

5. CONCLUSION 

The paper indicates how the extracted components acting on 

ANFIS would be effectively used for improved process 

control of BOF in steelmaking industry. This paper studies 

the BOF steelmaking endpoint predicting model with a new 

way, which is not on model itself, but on the original 

variables. The new way different from the literatures and 

research before is to expand and to compress the original 

variables at the same time, taking as full consideration of the 

data as possible to describe the complex BOF steelmaking 

process in the severe environment and limited detection 

facilities. Original variables own their unique characteristics, 

which may help us understand the essence of the BOF 

steelmaking process profoundly. Compare to traditional 

models, GKC-ANFIS is more understandable with strikingly 

physical meaning, simple inputs, effective result and accurate 

output. This research proves that the original variables may 

have great effect on the endpoint [C] and T, even to the final 

hitting rate. Higher steel output at lower cost is one of the 

main objectives of modern steelmaking methods. This model 

should be accurate enough so that the parameters of the 

tapped steel will deviate as little as possible from the 

specified values. 
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