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Abstract: The dynamic models with multilevel inputs are adopted in a kind of multiple model estimator 
for highly maneuvering target tracking. While the target maneuvers with the continuous time-varying 
accelerations, the estimator increases the levels to improve the percentage of coverage, which induces two 
problems: the increase of calculation burden and the decrease of the estimation precision due to the 
competition between the models. A multilevel input-adaptive multiple model (IAMM) algorithm is 
proposed, in which the inputs are adjusted according to the prior value and the on-line estimated maneuver 
parameters by introducing a dualistic distribution. The adaptabilities of the inputs can depict the actual 
maneuver process better compared with the static multilevel inputs. The simulation proves the 
effectiveness of IAMM algorithm compared with the IMM (Interacting Multiple Model) estimator with 
models containing multilevel static inputs. 

 

1. INTRODUCTION 

Multiple-model methods are vastly adopted in highly 
maneuvering target tracking. Successful application of any 
multiple-model algorithm depends on the proper 
corresponding designs, which mainly includes parametric 
designs, structural designs and hybrid designs etc. (Li, 2005). 
The typically designed parameters include acceleration inputs, 
process noise levels and turn rates. The possible acceleration 
is quantized into multiple known levels as the acceleration 
inputs of several dynamic models used in the multiple-model 
methods. The probabilities of every model are updated 
according to the measurements and the switches among the 
models. A typical model set of this kind includes a CV model 
and several CA/Singer models with known constant 
acceleration inputs(Averbuch, 1991). The switches among 
the models are described as a time homogeneous Markov 
chain with a known transition probability matrix. Because the 
maneuvers of the target are stimulated by uncertain 
accelerating inputs, this design can reflect the actual 
maneuvering process to a certain extent. This kind of design 
has been firstly proposed in (Moose, 1975) and further 
researched and extended in (Averbuch, 1991, Li, 1999, 2000a, 
b). Under the assumptions of (Moose, 1975), the inputs are 
summed into a single combined input with probabilities as 
their weights based on GPB1 (generalized pseudo-Bayesian 
estimator of first order) algorithm. Based on IMM(interacting 
multiple model) estimator, (Averbuch, 1991) applies 1 CV 
model and 12 CA models with acceleration inputs symmetric 
distributed around zero to track a maneuvering target in a 2D 
region. To improve the performance and reduce the 
computation burden, (Li, 1999, 2000a, b) proposed one kind 
of VSMM(variable-structure multiple model) algorithms to 
dynamically adjust the model set. In present researches, 

models with discretization designs of acceleration and turn 
rates are widely used in VSMM algorithms. 

The multiple-model algorithms based on this kind of 
acceleration design are faced with two problems: improving 
the quantization levels to cover more possible acceleration 
values would increase calculation complexity and may 
decrease the estimation performance for excessive 
competitions among all the models. Prior quantization of 
possible acceleration is a trade-off between calculation 
complexity and accuracy without considering the practical 
dynamic property of the target. Because the actual 
accelerating process is always continuous, thus the current 
series of the estimated states would contain the prediction for 
maneuver property during the next sampling period. This 
paper proposes a dynamic model to fuse the prior 
acceleration quantization design with on-line maneuver 
information, which makes every level of acceleration input 
adaptive without increasing the quantizing level. The 
corresponding multiple-model algorithm to the model is 
derived based on the IMM algorithm. Compared with the 
standard IMM algorithm using constant quantized multilevel 
inputs models, the proposed algorithm with adaptive models 
has a better performance when tracking highly maneuvering 
target with continuous accelerations, which decreases the 
influence caused by the prior quantization.  

2. ADAPTIVE MULTILEVEL ACCELERATION INPUTS 
MODEL 

Consider the following model: 

( 1) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i ix k k x k B k u k k kω+ = Φ + + Γ  (1) 
( 1) ( 1) ( 1) ( 1), 1, 2,...i i iz k H k x k k kε+ = + + + + =  (2) 
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Where 1, ,i r= "  is the index of model, r is the amounts of 
models, ( 1) n

ix k R+ ∈  is the system state vector, ( )iu k is the 
input, ( 1) mz k R+ ∈  is the measurement vector, ( )i kΦ is the 
state transition matrix, ( )iB k is input gain, ( )i kΓ is the gain 
of process noise, ( 1)iH k + is measurement matrix, ( )i kω and 

( 1)i kε + are, respectively, the discrete-time process noise and 
measurement noise, assumed to be mutually independently 
with covariances, respectively, ( )Q k  and ( 1)R k + . In the 
following parts, the next symbols will be used: mode ( )iM k  
indicates the model i  matches the actual model at time k , 
ˆ ( ) [ ( ) | ( ), ]k

i ix k E x k M k Z� , ˆ( ) {[ ( ) ( )][ ] | }T kP k E x k x k Z− ⋅� ,
ˆ ( 1 | ) [ ( 1) | ( 1), ]k

i ix k k E x k M k Z+ + +� , ( ) { ( ) | }k
i ik P M k Zμ �  

ˆ( ) [ ( ) | ]kx k E x k Z�  , ˆ( ) {[ ( ) ( )][ ] | ( ), }T k
i i iP k E x k x k M k Z− ⋅� ,

{ (1), (2), , ( )}kZ z z z k� "  , 
ˆ( 1 | ) {[ ( 1 | ) ( 1)][ ] | ( 1), }T k

i i iP k k E x k k x k M k Z+ + − + ⋅ +� . 
And the switches among the models are assumed as a time 
homogeneous Markov chain with a known transition 
probability matrix r rP R ×∈ , the elements of which are 
denoted as: ijp , , 1, ,i j r= " .   

For the purpose of tracking highly maneuvering target and 
under the assumption that the maneuvers are caused by 
acceleration inputs, CA models with multilevel acceleration 
inputs are considered. Then in (1), the system state is 

[ ]( 1) ( 1) ( 1) ( 1)i i i ix k p k v k a k+ = + + + , the corresponding 
matrixes are:  

21 / 2
( ) 0 1

0 0 1
i

T T
k T

⎡ ⎤
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥⎣ ⎦

,     

3

2

/ 6
( ) ( ) / 2i i

T
B k k T

T

⎡ ⎤
⎢ ⎥= Γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 

where T is the sampling period. The input ( )iu k  is a 
quantized value to make acceleration within its possible value 
span. Different models correspond to different inputs. For the 
structure fixed multiple model algorithms, the input levels are 
predetermined. In these algorithms, the estimation 
performance depends on the quantization steps or amounts of 
the levels. Increasing the amounts would improve the 
performance to a certain extent, but that would also increase 
the computation burden. Large amounts of models should be 
considered while the practical acceleration alters 
continuously. In a further aspect, too many models will 
decrease the estimation accuracy and thus impair the 
efficiency because of the unnecessary competition among the 
models. In the third generation of multiple model algorithms, 
the VSMM algorithms are designed to adjust the model set to 
keep most necessary ones, and many research fruits have 
been presented. For the algorithms of this kind, the task of 
producing new filters systematically in a general setting 
needs some new supporting theories. And the main drawback 
of the most algorithms of this kind is their sophistication (Li, 
2005). 

In the following subsections, a multiple model algorithms is 
designed to make every acceleration input adaptive with the 

on-line maneuver information, which makes the algorithm 
adaptive to reflect the dynamic properties of the maneuvering 
target, while keeping the scale of the model set unchanged.  

2.1  Multiple model estimation with on-line parameters 

Consider multiple model estimation algorithms, according to 
the total probability theorem: 

1

1 1

1

1

[ ( 1) | ]

[ ( 1) | ( 1), ] { ( 1) | }

[ ( 1) | ( 1), ( 1), ] ( 1)

k

r
k k

j j
j

r
k

j j
j

p x k Z

p x k M k Z P M k Z

p x k M k z k Z kμ

+

+ +

=

=

+

= + + +

= + + + +

∑

∑

 (4) 

where: 

[ ( 1) | ( 1), ( 1), ]

[ ( 1) | ( 1), ( 1)]
[ ( 1) | ( 1), ]

[ ( 1) | ( 1), ]

k
j

j k
jk

j

p x k M k z k Z

p z k M k x k
p x k M k Z

p z k M k Z

+ + +

+ + +
= + +

+ +

 (5) 

Expand the second item in the right side of the last equation: 

1

1
1

1
1 |

1
1

1

[ ( 1) | ( 1), ]

[ ( 1) | ( 1), ( ), ] { ( ) | ( 1), }

ˆ[ ( 1) | ( 1), ( ),{ ( ), ( )} ,

ˆ{ ( ), ( )} ] ( )

ˆ ˆ[ ( 1) | ( 1), ( ), ( ),{ ( ), ( )} ]

k
j

r
k k

j i i j
i
r

l l r
j i l

i
k
s i j

r
i i k

j s
i

p x k M k Z

p x k M k M k Z P M k M k Z

p x k M k M k x k P k

x s P s k

p x k M k x k P k x s P s

μ

=

=
=

−
=

−
=

=

+ +

= + + +

≈ + +

= + +

∑

∑

∑ | ( )i j kμ

 

 (6) 
where | ( ) { ( ) | ( 1), }k

i j i jk P M k M k Zμ +� . 

In the standard IMM algorithm, kZ are approximated with 
1ˆ{ ( ), ( )}l l r

lx k P k = . To reserve more information about the 
maneuver, we approximate kZ  with 1ˆ{ ( ), ( )}l l r

lx k P k =  and the 
estimated states series: 1

1ˆ{ ( ), ( )}k
sx s P s −
= . Because the estimated 

states series reflects the moving process of the target, 
including it into the algorithm may provide more maneuver 
information to modify the parameter of multilevel inputs. 

For the model (1), the following equations exist: 

[ ( 1)] [ ( )] [ ( )]
[ ( )] ( [ ( 1)] [ ( )]) /

i i i

i i i

E a k E a k T E u k
E u k E a k E a k T

+ = +
⇒ = + −

i
 (7) 

Considering the continuity of the practical altering 
acceleration, we assume that the change rate of the 
acceleration at time k  is correlated with the one at time 1k − . 
For all the estimated states, { }1

1ˆ ˆ( ), ( ),{ ( ), ( )}i i k
sx k P k x s P s −
= , are 

included into the pdf(probability density function) of the state 
vector’s one-step prediction, as shown in (6), the approximate 
posterior estimate of the actual change rate of the acceleration 

( 1)iu k −  can be derived:  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4055



 
 

     

 

( )ˆ ˆ ˆ( 1) ( ) ( 1) /i iu k a k a k T− ≈ − −  (8) 

where ˆ ( )ia k  and ˆ( 1)a k − are respectively the acceleration 
member variable of the estimated state vectors ˆ ( )ix k and 
ˆ( 1)x k − . Reserving the ˆ ( 1)iu k −  and neglecting other history 

of the estimated states make (6): 

|
1

[ ( 1) | ( 1), ]

ˆ ˆ[ ( 1) | ( 1), ( ), ( ), ( 1)] ( )

k
j

r
i i

j i i j
i

p x k M k Z

p x k M k x k P k u k kμ
=

+ +

≈ + + −∑
 (9) 

Here ˆ ( 1)iu k −  is defined as on-line maneuver parameter, thus 
(9) is the pdf of the state vector’s one-step prediction at time 

1k + .  

2.2 Dynamic models with multilevel adaptive acceleration 
inputs 

To fuse the on-line maneuver parameter with the prior 
defined input of every level, a kind of explanation on the 
relationship between every model and its corresponding input 
is adopted here. Assume the actual acceleration 

max max( ) [ , ]a k A A∈ − , then the acceleration rate 

max max( ) [ 2 / , 2 / ]u k A T A T∈ − . The state space of ( )u k can be 
partitioned into r parts as: 

1

( ) , ( )
r

i i j
i

u k S S S i j
=

∈ = ∅ ≠∩∪  (10) 

where iS is a state subspace of u .  

Defining: 

 ( 1) { ( ) }j jM k u k S+ ∈�                                                      (11) 

Substitution of (11) into (4) yields:  

1 1

1

1

[ ( 1) | ] [ ( 1) | { ( ) }, ]

{{ ( ) } | }

r
k k

j
j

k
j

p x k Z p x k u k S Z

P u k S Z

+ +

=

+

+ = + ∈

∈

∑
i

 (12) 

As to the pdf 1[ ( 1) | { ( ) }, ]k
jp x k u k S Z ++ ∈  in (12), 

( 1) { ( ) }j jM k u k S+ ∈�  is an abstract description of the input 
( )u k . To simplify the expansion of (12) and make the 

estimation realizable, the pdf is approximated as: 
1

2 1

[ ( 1) |{ ( ) }, ]

[ ( 1) | { [ ( )] ( ),cov( ( )) ( ) }, ]

k
j

k
j j

p x k u k S Z

p x k E u k u k u k k Zσ

+

+

+ ∈

′≈ + = =
 (13) 

where { ( ) }ju k S∈  is replaced with a Gaussian distributed 

variable with ( )ju k  and 2( ) jkσ  respectively as its mean and 
covariance. Off-line design of the input models of this kind is 
reviewed in (Li, 2002). 

While all the other assumptions about the properties of the 
multiple model, including the Markov assumption etc., left 
unchanged, (12) and (13) provide an physical explanation of 
every level of the acceleration inputs ( )ju k , i.e., ( )ju k  and 

the process noise ( )i kω  in (1) can be treated as an 
approximation of the condition { ( ) }ju k S∈ , and all the 
conditions together compose the possible state space of the 
acceleration rate ( )u k . Thus, comparing (1) (3) with (13) 
yields:  

2( ) ( ), ( ) ( ),i j i ju k u k Q k k i jσ′= = =  (14) 

In other words, for the multilevel acceleration input model 
(1), every input ( )iu k  have an subspace of effect: jS .  

As defined in (9), ˆ ( 1)iu k −  is the on-line maneuver 
parameter, which reflects the actual acceleration rate during 

1k − th sampling period. To fuse ˆ ( 1)iu k −  with the predefined 
acceleration input ( )iu k , referring to the ternary-uniform 
mixture distribution adopted in (Singer, 1970), we propose 
that the acceleration input of model i during the k th sampling 
period obeys to the following binary distribution: when 
ˆ ( 1)i iu k S− ∈ , the probability of  predefined input ( )iu k  is iP , 

the probability of ˆ ( 1)iu k −  is 1 iP− ; otherwise, when 
ˆ ( 1)i iu k S− ∉ , the probability of  predefined input ( )iu k  is 1, 

the probability of ˆ ( 1)iu k −  is 0. With this distribution 
assumption, the mean and the covariance of model i ’s input 
during the k th sampling period are: 

( )2

ˆ( ) ( ) (1 ) ( 1)
ˆ, ( 1)

ˆ( ) (1 ) ( ) ( 1)

( ) ( )
ˆ, ( 1)

( ) 0

i i i i i
i iu

i i i i i

i i
i iu

i

u k Pu k P u k
u k S

Q k P P u k u k

u k u k
u k S

Q k

⎧ = + − −⎧⎪ − ∈⎪⎨
= − − −⎪⎪⎩⎨
=⎧⎪

− ∉⎨⎪ =⎩⎩

 (15) 

To apply standard Kalman filter to every modified model, 
Gaussian variable with the same first order and second order 
as in (15) is used to replace the modified input. Thus the 
modified model can be formulated as: 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u
i i i i i i i i ix k k x k B k u k B k k k kω ω+ = Φ + + + Γ  
        (16) 

where ( )iu k  is the same as in (15), ( )u
i kω  and ( )i kω  are 

uncorrelated Gaussian noises with variances ( )u
iQ k  and 

( )iQ k  respectively. It should be noticed that this replacement 
is an approximation to simplify the calculation. 

Let 1iP =  or ˆ ( ) ( )i iu k u k= , then ( ) ( )i iu k u k=  and 0u
iQ = , 

(16) is transformed into the standard model with multilevel 
inputs. In other words, dynamic model (1) is a special form 
of (16). Because iP  is defined offline, the adaptability of 
model (16) depends directly on the maneuver parameter 
ˆ ( 1)iu k − , which is obtained in (8). 

3. MULTIPLE-MODEL ALGORITHM BASED ON 
MODELS WITH ADAPTIVE INPUTS  

Approximate the last term of (9) with a single Gaussian 
probability function: 
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1

|

[ ( 1) | ( 1), ]

ˆ ˆ[ ( 1); [ ( 1) | ( 1), ( ), ( 1)]

,cov[ ]] ( )

k
j

r
i

j i
i

i j

p x k M k Z

N x k E x k M k x k u k

kμ
=

+ +

= + + + −

⋅

∑
i

 

1

|

ˆ ˆ[ ( 1); [ ( 1) | ( 1), ( ), ( 1)]

( ), cov[ ]]

r
i

j i
i

i j

N x k E x k M k x k u k

kμ
=

≈ + + + −

⋅

∑
i

 (17) 

If the one-step prediction function of the Kalman filter is 
linear, (17) can be further simplified to the IMM algorithm 
with mixed initial condition for the filter matched to 

( 1)jM k +  using 1ˆ{ ( ), ( )}i i r
ix k P k =  at time 1k + . Nevertheless, 

for the dynamic model (16), the variance ( )u
iQ k is a nonlinear 

equation of ( )iu k  and ˆ ( 1)iu k −  as shown in (15). Thus, the 
interacting process can only be executed to the one-step 
predictions of the Kalman filters matched to ( 1)jM k +  using 
every estimated results acquired at time k , which includes 

1ˆ{ ( ), ( )}i i r
ix k P k =  and 1ˆ{ ( 1)}r

i iu k =− , as shown in the last term 
of (17).  

Based on the above equations, the multi-level input adaptive 
multiple-model algorithm can be synthesized as the following: 

1. Construction of the adaptive models with multi-level 
inputs. 

Firstly the on-line maneuver parameter is estimated based on 
(8), and the mean and variance of the acceleration rate input 
is calculated using (15). After this, the dynamic equation (16) 
of model j is generated. 

2. One-step prediction 

Based on (16), for model 1, ,i r= " : 

ˆ ˆ( 1 | ) ( ) ( ) ( ) ( )i i i i ix k k k x k B k u k+ = Φ +  (18) 

( 1 | ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T u T
i i i i i i i

T
i i i

P k k k P k k B k Q k B k

k Q k k

+ = Φ Φ +

+ Γ Γ
 (19) 

3. Interacting and mixing the one-step predictions 

For model , 1, ,i j r= " : 

0 |
1

ˆ ˆ( 1 | ) ( 1 | ) ( )
r

j i i j
i

x k k x k k kμ
=

+ = +∑  (20) 

0 |
1

( 1 | ) ( ){ ( 1 | )

ˆ ˆ[ ( 1 | ) ( 1 | )][ ] }

r

j i j j
i

T
i i

P k k k P k k

x k k x k k

μ
=

+ = +

+ + − + ⋅

∑  (21) 

Same as in IMM algorithm, the probability | ( )i j kμ  is:  

1

|
1

( ) ( ) ( )
r

i j ij i ij i
i

k p k p kμ μ μ
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (22) 

4. One-step prediction 

Updating the state with the measurement at time 1k + : 

0ˆ ˆ( 1) ( 1) ( 1| )j j je k z k H x k k+ = + − +  (23) 

0( 1) ( 1) ( 1 | ) ( 1) ( 1)T
j j j j jS k H k P k k H k R k+ = + + + + +  (24) 

0ˆ ˆ ˆ( 1) ( 1 | ) ( 1) ( 1)j j j jx k x k k K k e k+ = + + + +  (25) 

0( 1) ( ( 1) ( 1)) ( 1 | )j j j jP k I K k H k P k k+ = − + + +  (26) 
1

0( 1) ( 1 | ) ( 1)j j jK k P k k S k −+ = + +  (27) 

5. Mode probability update and estimate combination 

The estimate results are combined to output the final 
estimation of state and its covariance according to (4): 

1

ˆ ˆ( 1) ( 1) ( 1)
r

j j
j

x k x k kμ
=

+ = + +∑  (28) 

1

ˆ ˆ( 1) ( 1){ ( 1) [ ( 1) ( 1)][ ] }
r

T
j j j

j
P k k P k x k x kμ

=

+ = + + + + − + ⋅∑  (29) 

where: 

1

1

1

( 1)

{ ( 1) | }

1 [ ( 1) | ( 1), ] { ( 1) | }

1 ( 1) { ( 1) | ( ), } { ( ) | }

1 ( 1) ( )

j

k
j

k k
j j

r
k k

j j i i
i

r

j ij i
i

k

P M k Z

p z k M k Z P M k Z
c

k P M k M k Z P M k Z
c

k p k
c

μ

μ

+

=

=

+

+

= + + +

= Λ + +

= Λ +

∑

∑

�

 (30) 

where 
1

( 1)
r

j j
j

c k c
=

= Λ +∑ ,
1

( )
r

j ij i
i

c p kμ
=

= ∑ , ijp is the known 

mode transition probabilities in the transition matrix P . 

The likelihood functions 

1/ 2 1

ˆ( 1) [ ( 1);0, ( 1)]

1 ˆ ˆ[(2 ) | |] exp
2

j j j

m T
j j j j

k N v k S k

S v S vπ − −

Λ + = + +

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (31) 

4. SIMULATION RESULTS 

Because the proposed adaptive model is coordinate-
uncoupled, without losing generality, target tracking of a 
maneuvering object moving at one direction is considered 
during the simulation. The measurements of the target are 
assumed to be the positions, and CA models are adopted, thus 
the measurement matrix is [ ]( 1) 1 0 0iH k + = . The 
sampling period is assumed to be one second: 1.0T s= . 
Initially, the target was at the position [2000m], with velocity 
20 m/s flew at constant velocity for the first 5 seconds. Then 
the target maneuvered with the constant acceleration 30 m/s2 
from 5s to 15s and returned to constant velocity motion from 
15s to 25s. The target then performed a maneuver during 25s 
to 45s with acceleration 2 sin ( 25)a r tω ω= − , where 
r =3000 m, ω =0.1 rad/s. The results are the root mean 
square(RMS) values of position, velocity and acceleration 
estimation errors with 1000 simulation experiments.  
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The simulation compares the performance of IAMM and 
IMM algorithms, the following assumptions are made:  

1. The CA models with three input level are adopted. The 
corresponding parameters of CA model are the same as 
in (3). The values of levels are respectively 

max max{ , 1,2,3} { ,0, }iu i u u= = − , where maxu =8m/s3. The 
known transition matrix of the modes is 

0.90 0.05 0.05
0.05 0.90 0.05
0.05 0.05 0.90

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. It needs to be noticed that the 

simulation just compare the performances of 
maneuvering target tracking, no CV model is included. 
In practice, CV can be included to improve the tracking 
performance while no maneuver happens. The subspaces 
corresponding to the levels iu are assumed respectively 
as: { , 1,2,3}iS i =  = {[-60 m/s3, -1 m/s3), [-1 m/s3, 1 m/s3], 
(1 m/s3, 60 m/s3)}.  

2. Variances of process noises are ( )iQ k =0.001 m2/s6, 
i =1,2,3. Variance of the measurement noise: 2100R m= . 

3. In IAMM algorithm, the prior probability of ( )iu k in 
every model is iP =0.8, i =1,2,3. Other parameters used 
in IAMM algorithm are the same as in IMM algorithm. 

Figure 1, figure2 and figure 3 compare the root-mean-
square(RMS) error of position, velocity and acceleration 
estimations of the two algorithms. Table 1 shows the root 
mean square of the accumulated estimation error. According 
to the simulation, the two algorithms have similar 
performance when no maneuver happens. When target moves 
at a uniform acceleration, IAMM and IMM algorithms 
perform comparably(from 5s to 15s). Because the IAMM can 
only adapt with altering acceleration, when accelerating 
uniformly, the acceleration parameter adopted in the IAMM 
algorithm keeps steady, which makes the IAMM algorithm 
reduced into standard IMM algorithm with static inputs.  

When target maneuvers with time-varying accelerations, 
IAMM performance better than IMM algorithm on either 
position, velocity and acceleration estimation, which can be 
found in the RMS error of estimation during 25s and 45s 
shown in the figures. When target acceleration altering 
continuously, the maneuver parameter ˆ ( 1)iu k −  can reflect 
the on-line maneuver characteristics. IAMM algorithm 
modifies the mean and the variance of the multilevel inputs 
according to the real-time maneuver status, which makes the 
considered models contain acceleration rates closer to the real 
ones. This modification makes the IAMM performs better 
when accelerating process happens as shown in the figures 
and table 1. 

The probability iP  used in (15) actually indicates the degree 
of confidence of the predefined input. 1iP =  means that the 
prior input parameter totally coincides with the practical 
parameters. Because the probability of the on-line maneuver 

parameter ˆ ( 1)iu k −  is 1 iP− , decrease iP  can include more 
on-line maneuver information, which means the models 
process more adaptabilities. Whereas, because the estimation 
error of the ˆ ( 1)iu k − , more uncertainties will also be 
included into the state estimation. Simulations show that 
proper compromise can be acquired when iP  between 0.8 
and 0.98. 

 

Fig.1. RMS error of position estimation 

 

Fig.2. RMS error of velocity estimation 
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Fig.3. RMS error of position acceleration 

Table 1.  Accumulated Estimation Error(Root Mean 
Square) 

 IMM IAMM 
Acceleration(m/s2) 21.3101 15.3215 

Velocity(m/s) 26.9158 17.4052 
Position(m) 12.6842 9.6692 

5. CONCLUSIONS 

In this paper, an IAMM algorithm is presented for highly 
maneuvering target tracking. Based on the multiple model 
algorithms with multilevel-input models, the IAMM 
algorithm introduces an on-line estimated maneuver 
parameter to modify the predefined input parameters, and the 
estimation structure is re-derived according to the 
modification. The modification makes the multiple models 
adaptive. Compared with the IMM algorithm with same 
amounts of models, IAMM is proved effective when tracking 
highly maneuvering target with continuously altering 
accelerations by the simulation without increasing models. 
IAMM algorithm needs a probability to reflect the confidence 
of the predefined multilevel inputs. Proper value of the 
probability can acquire a compromise between the precision 
of the steady state estimation and the maneuvering tracking 
performance. A value span of this probability is presented by 
simulation and recommended as a general reference for the 
application of the IAMM algorithm, and its precise value 
needs further discussions. 
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