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Abstract: This paper studies the possible application of Iterative Feedback Tuning (IFT) to
the paper machine cross-directional (CD) control. Although the CD control is naturally a multi-
input-multi-output (MIMO) problem, by enforcing the circulant assumption, IFT for CD control
is as simple as the single-input-single-output (SISO) case, i.e. only one gradient experiment is
needed for estimating the gradient. Simulation of a simple disturbance rejection problem is
included to demonstrate the main ideas.
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1. INTRODUCTION

This paper is part of a study on automatic tuning of paper
machine cross-directional (CD) control [VanAntwerp et al.,
2007], a rather special multi-input-multi-output (MIMO)
control problem. The main goals of CD control are to
maintain uniform CD paper properties at the set grade,
to reject process disturbances, and to save control energy
(or hardware from wearing). These goals can be formulated
into an L2 minimization problem. With many successful
simple-structured CD controllers working in industry, It-
erative Feedback Tuning (IFT) comes naturally into con-
sideration for further performance improvement.

The idea of IFT [Hjalmarsson et al., 1998] is to minimize
an L2 cost function J(y, u) in terms of process output and
control signals, with respect to the controller parameters
ρ via a numerical optimization algorithm, e.g. gradient-
descent methods [Gill et al., 1986]. As the exact functional
form of J(ρ) is unknown, the necessary quantities (usu-
ally the gradient and hessian) for calculating numerical
search directions are estimated based on experimental
data extracted from the real plant. The data needed for
one parameter update/iteration consist of a set of normal
outputs and some gradient experiment outputs and do
not require plant downtime. Because J(ρ) is typically a
nonlinear function, the algorithm very likely converges to
a local minimum.

IFT is often referred as data-based and model-free, al-
though the line between model-free and model-based be-
comes blurred when the IFT algorithm is performed based
on spectrum estimates [Kammer et al., 2000]. One may ar-
gue that using fresh data to perform a model-update then
a model-based controller redesign. As discussed in [Hjal-
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marsson et al., 1995], in the case of low-complexity fixed-
structured controllers, IFT shows advantages in improving
performance without increasing the controller complexity.
If high-complexity controllers were allowed, then a model-
based update should be more desirable.

IFT is reported very effective in tuning SISO systems
[Hjalmarsson et al., 1998]. Despite the number of pa-
rameters, only one set of gradient experiment is need
for an SISO system. As for MIMO case, the number
of experiments (hence time!) required to finish one up-
date may become quite large. As shown in [Hjalmars-
son, 1999], for a system with nu inputs and ny out-
puts, the required number of gradient experiments is
min(#nonzero control channels,#ρ). For the distur-
bance rejection only problem, the first element may de-
crease to nu + ny.

Paper-making is a 2D process, i.e. the paper properties
depend on both space and time. A paper machine uses
several actuator arrays, at the Headbox, the press section,
and the dryer section, to control several paper properties,
such as caliper, basis-weight, and moisture. A typical
single-actuator-array to single-property model takes the
MIMO form: the output vector consists of the samples
along the CD direction (or spatial index), the input vector
represents the actuators in an array mounted along the CD
direction, the transfer matrix between them is the product
of a constant spatial interaction matrix and a diagonal
transfer matrix whose elements are the same temporal
transfer function. The spatial interaction matrix is usually
a Toeplitz matrix characterized by only a few parameters,
usually much less than the dimension of the matrix.

In this paper, we propose using IFT to tune a square
single-actuator-array to single-property CD controller. An
industrial CD controller may involve 30 ∼ 300 actuators in
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one array and 200 ∼ 2000 output samples of one property.
The CD controller of interest is used in more than 4200
paper machines worldwide. It is often initially tuned
via the two-dimensional frequency-domain loop-shaping
[Stewart et al., 2003], which delivers a working controller
with enough robust stability margin and provides a good
initial point for an IFT scheme that may improve the
performance further.

At first look, the paper machine CD control should fall into
the MIMO case in which a gradient experiment should be
performed for each parameter. Recall that the simplicity
in the SISO case arises from the commutative property
of the scalar transfer functions in the output gradient
calculation, which is usually invalid in the MIMO case.
However, it is a common assumption in CD controller
design that the spatial interaction matrices are circulant
as used in [Stewart et al., 2003]. According to [Gray], cir-
culant matrices commute and their sums and inverses are
still circulant. Hence, the corresponding output gradient
calculation can be simplified similarly to the SISO case
and only one set of gradient experiment is needed for
each update. The circulant assumption can be enforced
by including appropriate compensation at the edges. This
idea is studied numerically in a simple but informative
disturbance rejection problem.

2. A BRIEF REVIEW OF ITERATIVE FEEDBACK
TUNING

Suppose the plant of interest is described by

Y (t) = GU(t) + w(t), (1)

U(t) = K(ρ)(R(t) − Y (t)),

where Y (t) ∈ Rn is the plant output vector, U(t) ∈ Rm

is the control vector, w(t) ∈ Rn is the process output
disturbance, R(t) ∈ Rn is the reference signal, G is the
unknown linear transfer function matrix, and K(ρ) is
the linear feedback control law which is characterized by
parameter vector ρ ∈ Rp with ρi being the ith element.

The goal of IFT is to improve the performance via mini-
mizing the following cost function

J(ρ) =
1

2N
E

N∑

j=1

{(Y (j) − Y d(j))T (Y (j) − Y d(j))

+ λUT (j)U(j)}, (2)

where the tuning variables are the controller parameters
ρ and the desired performance/behavior of the plant is
specified via Y d(t) = T dR(t). The cost function J(ρ) is
typically non-convex in ρ. If the exact function J(ρ) were
known, then a gradient-based numerical algorithm such as
the Newton-Raphson method

ρ[k + 1] = ρ[k] − γkH−1[k]
∂J

∂ρ
|ρ=ρ[k], (3)

would bring the sequence {ρ[k]} to at least a local mini-
mum of J(ρ). In (3), the matrix H is the associated Hessian
matrix.

However, due to the involvement of the unknown plant G
in J , the calculation of its gradient is impossible. Hence
the key idea of IFT is to estimate the gradient from the
real outputs and the algorithm is changed to

ρ[k + 1] = ρ[k] − γkR−1[k]
∂̂J

∂ρ
|ρ=ρ[k], (4)

where R[k] is a positive definite matrix and R−1[k] ∂̂J
∂ρ

|ρ=ρ[k]

is still a descent direction. Usually R[k] is chosen to be the
estimated Hessian

R[k] =
∂̂J

∂ρ

∂̂J

∂ρ

T

|ρ=ρ[k] . (5)

The gradient of J with respect to ρi (or the ith element of
the gradient ∂J

∂ρ
) is

∂J

∂ρi

=
1

N
E

N∑

j=1

{(Y (j) − Y d(j))T ∂Y

∂ρi

+ λUT (j)
∂U

∂ρi

}, (6)

∂Y

∂ρi

= −S2
0G

∂K

∂ρi

GKR + S0G
∂K

∂ρi

R − S2
0G

∂K

∂ρi

w, (7)

∂U

∂ρi

=
∂K

∂ρi

(Y − R) + K
∂Y

∂ρi

, (8)

where S0 = (1 + GK)−1 and T0 = (1 + GK)−1GK are
the achieved sensitivity and the complementary sensitivity
respectively. It is evident from (6) ∼ (8) that the core issue
of estimating the gradient is to estimate ∂Y

∂ρi

.

If the plant is a SISO system, the gradient (7) can be
greatly simplified since the transfer matrices become scalar
transfer functions that commute:
∂Y

∂ρi

=
∂K

∂ρi

K−1T0(R − T0R − S0w) =
∂K

∂ρi

K−1T0(R − Y ).

(9)

Based on (9), the following three experiments should
generate data that are necessary for estimating ∂Y

∂ρi

, i =
1 . . . p,

(1) R1 = R, Y 1 = T0R + S0w
1;

(2) R2 = R+F (R−Y 1), Y 2 = T0R+T0F (R−Y 1)+S0w
2;

(3) R3 = R, Y 3 = T0R + S0w
3.

In the above proposed experiments, a signal with super-
script i = 1, 2, 3 means an N -sample realization of that
signal, the controller is parameterized by the current ρ[k],
and F is a pre-filter. These three experiments are similar
to the ones described in [Hjalmarsson et al., 1998], except
the second one using R2 = R + F (R − Y 1) instead of
R = (R−Y 1), in the hope that most of the products (Y 2)
generated in the second experiment are still acceptable.
The output gradient can be estimated as follows:

∂̂Y

∂ρi

=
1

N

N∑

j=1

{
∂K

∂ρi

K−1F−1(Y 3(j) − Y 2(j))},

=
1

N

N∑

j=1

{
∂K

∂ρi

K−1T0(R(j) − Y 1(j))

+
∂K

∂ρi

K−1F−1S0(w
3(j) − w2(j))}. (10)

Note that the pre-filter F should be designed so that i) the
noise term ∂K

∂ρi

K−1F−1S0(w
3(j)−w2(j)) is insignificant in

the gradient estimate (10), which requires F to be a high-
pass filter, and ii) most of Y 2 can still be accepted as
products. The estimate (10) is unbiased if the noises w2

and w3 are zero-mean and independent.
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For the MIMO case, as shown in [Hjalmarsson, 1999],
the gradient experiment needs to inject ∂K

∂ρi

(R1 − Y 1)

into the closed-loop system as the input disturbance and
the N -sample gradient experiment should be repeated
min(p,mn) times in order to generate ∂J

∂ρi

for all i =

1, . . . , p. Thus the time required to finish one update of
the parameters in the MIMO case may be inadmissible
to many and become the limiting factor to apply IFT to
MIMO systems.

Once the estimated output gradient ∂̂Y
∂ρ

is obtained, the

estimated gradient of the cost function can be obtained by

∂̂J

∂ρi

=
1

N

N∑

j=1

{(Y 1(j) − Y d(j))T ∂̂Y

∂ρi

+ λUT (j)
∂̂U

∂ρi

},

(11)

∂̂U

∂ρi

=
1

N
E

N∑

j=1

{
∂K

∂ρi

(Y 1 − R1) + K
∂̂Y

∂ρi

}. (12)

Then the update direction should follow:

∆ρ[k] = R−1[k]
∂̂J

∂ρi

, (13)

with R−1[k] being the estimated Hessian (5). The new
parameters are obtained by (4):

ρ[k + 1] = ρ[k] − γkR−1[k]
∂̂J

∂ρ
|ρ=ρ[k] .

In numerical optimization context [Gill et al., 1986], choos-
ing the proper γk is known as the line search problem for
speedy convergence of the algorithm. However, in IFT, a
more important question is whether K(ρ[k + 1]) will be
a stabilizing controller — the problem of cautious tuning.
For SISO systems, the ν-gap measure between K(ρ[k]) and
K(ρ[k + 1]) may provide certain guidance to determine
ρ[k+1] as proposed in [Kammer et al., 2000] and a relaxed
version is proposed in [Kammer, 2005].

3. IFT FOR PAPER MACHINE CD CONTROLLER

In the paper machine CD control context, the model is
developed under the standard assumptions that (1) the
paper-making process is linear, temporally and spatially
invariant; (2) the process response is separable, i.e. it can
be factored into a temporal-only response times a spatial-
only response; (3) the spatial response is symmetric.

A typical paper machine model describing one actuator
array to one paper property is

Y (t) =
1

1 − a0z−1
z−dBU(t) + w(t), (14)

where the output Y ∈ RNa is the CD-profile of the paper
property, the input U ∈ RNa is the CD-profile of the
actuator array, the machine direction (dynamic) model
is a first-order element with a pole at a0 and a pure
delay element z−d. The spatial interaction matrix B =
Toeplitz(b̄, Na) is a Na × Na Toeplitz matrix generated
from a vector b̄, where Na is the number of actuators
and the spatial response is captured by the vector b̄ =
[blb , . . . , b1, b0, b1, . . . , blb ], lb ≪ Na. Although (14) is an
empirical model, it will be used as the real plant in our
IFT study.

The CD controller of interest K(z) is defined as follows

K(z) = [1 − Dz−1]−1D · c(z)INa
· C, (15)

C = Toeplitz(c̄, Na), c̄ = [clc , . . . , c0, . . . , clc ], lc ≪ Na,

c(z) =
(1 − α)(1 − a0z

−1)

(1 − a0)[1 + (1 − α)
∑d−1

i=1 z−i]
, α ∈ [0, 1],

D = Toeplitz(d̄, Na), d̄ = [dld , . . . , d0, . . . , dld ], ld ≪ Na.

This CD controller consists of three parts: (1) the spatial
decoupling filter C; (2) the Dahlin controller c(z); (3)
the actuator profile smoother [1 − Dz−1]−1D. The initial
tuning of this controller is usually done via 2D loop-
shaping [Stewart et al., 2003], where the model parameters
a0, d are used directly in the Dahlin controller part and
the main tuning parameters are c̄, α, and d̄.

If the CD controller (15) were to be tuned via IFT, it
would fall into the MIMO case discussed in Section 2. This
means between the two normal experiments, we ought to
run size(c̄) + size(d̄) + 1 gradient experiments if we were
to tune c̄, α, and d̄ as lc, ld ≪ Na. However, the paper
machine measuring mechanism, the transversing scanner
[VanAntwerp et al., 2007], is typically a slow process
producing 2 ∼ 3 CD-profiles per minute. This means
it may take days to collect the necessary data to finish
one update of the parameters while assuming the plant
is producing the same grade of paper 24/7. This scenario
makes IFT much less appealing.

Note that, the simplicity in the SISO case arises from
reducing (7) to (9) via exercising the commutative prop-
erty of the scalar transfer functions under multiplication.
Although, in general, the transfer matrices do not com-
mute (neither do the Toeplitz matrices B, C, and D), a
common circulant approximation can lift this hindrance
on the CD control tuning. The circulant approximation
was used in [Stewart et al., 2003] to greatly simplify the
2D loop-shaping process, in which the Toeplitz matrices
B, C, and D were replaced by circulant matrices generated
by the same vectors. In other words, the process is thought
to be producing “paper tube” instead of “paper sheet”. In
the real paper making process, there exist compensating
actuators beyond the edges described in the model (14)
and (15) to reduce the edge effect. Hence the circulant
approximation may be valid if the compensating actuators
for one edge are set to be the reflection of the actuators
near the opposite edge. Then the following lemma can
guarantee that the reduction from (7) to (9) works for
the paper machine CD control.

Lemma 1. (from [Gray]). If B and C are circulant n × n
matrices, then

(1) B and C commute;
(2) B + C is a circulant matrix;
(3) for nonsingular B, B−1 is a circulant matrix.

Therefore, the SISO IFT scheme described in Section 2
should work for the paper machine CD controller with
circulant spatial interaction matrices.

For the tuning of the spatial elements c̄ and d̄, non-causal
transfer functions [Ammar and Dumont, 2005] can be used
so that the tuning of c̄ and d̄ becomes equivalent to the
tuning of the parameters in the corresponding non-causal
spatial filters. For example, if c̄ is the impulse response of
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the following noncausal filter C(q, q−1)

C0(q) =
e0q

nc + e1q
nc−1 + · · · + enc

qnc + f1qnc−1 + · · · + fnc

,

C(q, q−1) = C0(q) + C0(q
−1), (16)

where q and q−1 are the right- and left- shift operators in
the spatial index, then the tuning of c̄ is equivalent to the
tuning of {e0, . . . , enc

, f1, . . . , fnc
}.

The use of the non-causal model in IFT may bring us the
following advantages:

(1) The vector c̄ is subject to a structural constraint —
its length lc is fixed. Thus the tuning may reduce the
length of c̄, but it is not clear when to extend it. The
non-causal model does not suffer this limitation.

(2) Similar to temporal industrial controllers, where low-
order filters can produce good performance, if we
entrust first- and second-order C0(q) to product good
enough performance, then only a small number of
parameters need to be tuned and the necessary cal-
culation load to generate gradient estimates is also
reduced.

(3) The robust stability result using ν-gap measure devel-
oped in [Ammar and Dumont, 2005] may be extended
to provide cautious spatial controller tuning criteria
that are similar to the temporal case as in [Kammer
et al., 2000] and [Kammer, 2005].

4. SIMULATION STUDY

In this Section, we apply the proposed IFT to a simple
paper machine disturbance rejection problem. The model
used as the plant is

Y (t) =
1

1 − a0z−1
z−dBU(t) + w(t),

where the number of CD actuators and measurements is
Na = 54, the process pole is a0 = 0.8311, and the delay
is d = 3. The spatial interaction matrix B is the circulant
matrix generated by

b̄ =[0.0713, 0.0337,−0.0167,−0.02,−0.005, 0.0006,

0.0005, 0.0001].

The disturbance w(t) has normal distribution N(0, I54).
Except for w(t), the model corresponds to a paper mill
producing ‘telephone book grade’ paper.

Usually the cost function (2) can be regarded as the sum
of three costs: tracking error, disturbance rejection, and
control energy. Here as the first attempt of applying IFT
on paper machine control problem, we consider only the
disturbance rejection part by setting R(t) = Y d ≡ 0 and
λ = 0. Therefore the cost function becomes

J(ρ) =
1

2N
E





N∑

j=1

Y T (j)Y (j)



 . (17)

As the disturbance is w(t) ∼ N(0, I54), the optimal
parameters are simply: α = 1 or c̄ = 0 or d̄ = 0 and
the optimal cost is cov(w(t)) = 54, i.e. by shutting down
the controller we have the output behave just like the
uncontrollable white noise w(t). Here we consider the
tuning of c̄ only. Since R = 0, only two experiments are
needed:

(1) R1 = 0, Y 1 = S0w
1;

(2) R2 = −Y 1, Y 2 = −T0Y
1 + S0w

2;

where no pre-filter F is considered and the gradient
estimates are calculated by

∂̂Y

∂ρi

=
1

N

N∑

j=1

{
∂K

∂ρi

K−1(Y 2(j))},

∂̂J

∂ρi

=
1

N

N∑

j=1

{Y 1(j)T ∂̂Y

∂ρi

}.

With this simple, though unrealistic problem, we can
demonstrate certain features of applying IFT to paper
machine.

4.1 Tuning of spatial interaction matrices

We first study tuning the matrix C in the controller K(z)
which is defined in (15)

K(z) = [1 − Dz−1]−1D · c(z)I54 · C,

C = Circulant(c̄, 54), c̄ = [clc , . . . , c0, . . . , clc ],

c(z) =
(1 − α)(1 − a0z

−1)

(1 − a0)[1 + (1 − α)
∑d−1

i=1 z−i]
, a ∈ [0, 1],

D = Circulant(d̄, 54), d̄ = [dld , . . . , d0, . . . , dld ].

The initial parameters are

α = 0.96, {d0, . . . , d3} = {0.986, 0.0046, 0.002, 0.0004},

{c0, . . . , c5} = {10.4708, 3.5297,−1.4841, 0.0042,

− 0.0017,−0.0006}.

And here we assume that the dynamical part (a0 and d)
of the plant is known. The tuning process was stopped
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Y: 0.04659

X: 19
Y: 0.02174

Fig. 1. The cost and the predicted decreases in cost via
tuning c̄.

after 20 iterations. In each iteration 2000 CD-profiles were
measured. The step size γk in the parameters update (4)
is set to 1. Figure 1 shows the cost function values and the
predicted decreases of the cost against the number of itera-
tions. The cost was reduced from 85.40 to 55.62 and the fi-
nal c̄ is [4.6346,−0.8876,−0.1951, 0.9509,−0.2574, 0.0417].

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10948



The reduction in the cost was significant during the first
a few iterations. After that, the predicted change of cost

∆J [k] = ρ[k]
∂̂J

∂ρ
,

is close to zero, where ρ[k] is c̄ in the kth iteration. The
simulation shows that small ∆J [k] agrees with near-zero

gradient estimate of the cost function ∂̂J
∂ρ

. In general, near-

zero ∂̂J
∂ρ

should indicate one of the following situations:

(1) the controller parameters are close to the global
optimal ones, or;

(2) the current controller parameters in the loop are near
a local minimum but not the global one, or;

(3) the signal-to-noise ratio in the gradient experiment
is very low so that the gradient estimate is mainly
calculated from the measured noises.

Further improvement is possible for the latter two cases.
To increase the low signal-to-noise ratio, we may include a
proper pre-filter F in the gradient experiment. The local
minimum case could be viewed as the current controller
parameters ρ[k] being a ‘bad’ initial point for minρ J(ρ)
via the gradient-descent algorithm (4), if it were treated
as a numerical optimization problem. However, as J(ρ) is
unknown, it is impossible to guess a good initial point.
More importantly, abrupt change in the controller para-
meters in the loop can be very dangerous to the plant.
Hence to keep the algorithm going, changing ρ[k] cannot
be the driving force, we should change the desired behavior
T d instead — we may regard the current situation as the
desired behavior T d in the cost function being, in a sense,
far away from the achieved behavior T0. Therefore, using
a less demanding T d

1 may fix the problem and the original
T d can be injected back later. The specific how-to’s are
left for future study. Figure 2 shows the distributions of

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2
x 10

4 output histogram of the initial parameter c

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2
x 10

4 output histogram of the final parameters c

Fig. 2. The distributions of the output corresponding to
the initial and final c̄.

the measured outputs corresponding to the initial and final
c̄, where the final distribution is more concentrated.

4.2 Tuning of the non-causal model

As discussed in Section 3, the vector c̄ is equivalent to the
impulse response of a non-causal filter. Here we consider
using a second-order non-causal filter:

C0(q) =
e0q

2 + e1q + e2

q2 + f1q + f2
,

C(q, q−1) = C0(q) + C0(q
−1). (18)

The tuning parameters are ē = [e0, e1, e2] and f̄ = [f1, f2]
with initial values ē = [10.4700, 3.5310,−1.4960] and
f̄ = [0.0001,−0.0011] that generate the same initial c̄ in
Section 4.1. The simulation was done by using the spatial
matrices configuration (15), while c̄ was taken to be the
impulse response of (18) whose small magnitude (< 10−4)
elements were set to zero. The simulation results Figure 3
and Figure 4 are very similar to those in Section 4.1.
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Fig. 3. The cost and the predicted decreases in cost via
tuning ē and f̄ .

5. CONCLUSIONS AND FUTURE WORKS

We have shown that IFT is a good candidate of au-
tomatic tuning schemes for paper machine CD con-
troller. By enforcing the circulant approximation, IFT for
single-actuator-array to single-property CD control can
be greatly simplified like IFT for SISO systems. Future
studies may include:

– running simulation to include more realistic distur-
bance rejection and tracking problems (although the
latter is less important for CD control);

– extending the ν-gap measure to 2D controllers (spa-
tial and temporal) that provides guide to stable pa-
rameter update for CD control;

– developing a concrete IFT scheme tailored for paper
machine CD controllers tuning that includes pre-filter
design, parameter update criteria, stopping criteria,
etc;
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Fig. 4. The distributions of the output corresponding to
the initial and final ē and f̄ .

– exploring the possibility of IFT for multiple-actuator-
array to multiple-property CD control that utilizes
the existing MIMO IFT results.
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