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Abstract: Heap bioleaching processes are of increasing interest in the mining industry to recover
metals from secondary ores. Recently, it has been proposed to use feedback control to improve
the rate of mineral extraction. In this paper we compare two feedback approaches, namely Model
Predictive Control (MPC) and Extremum Seeking Control (ESC), to improve copper extraction
in a heap bioleaching process. Simplified linear models obtained in previous work are used to
design an MPC strategy incorporating input constraints. ESC is tuned to maximise copper
extraction rate using aeration rate. Simulation results run on a high complexity model of the
process show that similar copper extraction rates can be obtained using either strategy. While
better control efforts are obtained with MPC, ESC achieves similar results and shows potential
for this intrinsically complex process, requiring little knowledge about the plant.

1. INTRODUCTION

This paper proposes and compares two feedback control
approaches to improve copper extraction rates in heap
bioleaching processes for sulphidic ores. Heap bioleaching
is a mining technology based on the dissolution of minerals
by a percolating raffinate solution through large piles of
crushed ore. Naturally occurring microorganisms, such as
Thiobacillus Ferrooxidans, can significantly enhance ex-
traction rates in these processes under appropriate condi-
tions of temperature, acidity and humidity of the medium.
A flow of air typically blown from the base of the heap is
also known to improve cooper extraction rates.

As compared to the traditional smelting technology for
copper extraction, heap bioleaching offers a number of
advantages [Rawlings et al., 2003, Brierley and Brierley,
2001]:

• Heap bioleaching facilities are simpler and more eco-
nomical to construct and operate.

• Heap bioleaching can operate on low-grade ores that
are not economically viable for smelting.

• Heap bioleaching appears as more environmentally
friendly than smelting, since it has minimal energy
requirements and produces no emissions of hazardous
gases such as sulphur dioxide, associated with smelt-
ing of sulphidic ores.

An important limitation of the heap bioleaching technol-
ogy is the slow dynamics of the process, characterised by
slow start-ups and lower than expected extraction rates
[Watling, 2006, Petersen and Dixon, 2007, Dreisinger,
2006, Lizama, 2004]. Start-up periods are typically of the
order of 60 days, after which the extraction of the target
mineral is carried out until a pre-determined percentage
(typically 80-85 %) of the original estimated mineral in
? This work was supported in part by BHP-Billiton Innovation and
the Australian Research Council.

the heap is reached, which can lapse for 300 to 400 days
[Brierley and Brierley, 1999].

Despite important progress on the mathematical mod-
elling aspects of the process in recent years [e.g. Petersen
and Dixon, 2003, Leahy et al., 2007], the performance of
real commercial facilities has not shown significant im-
provements, which has been attributed to the complexity
of the process and the lack of information about the pro-
cess in full-scale operation [Lizama, 2004, Watling, 2006].
Setup values for the process parameters, such as aeration
rates and raffinate solution composition, are typically cho-
sen empirically [Dixon, 2000], and kept constant for the
entire life of the heap.

In Godoy et al. [2007a], the authors propose the im-
plementation of a model-based feedback control strategy
to manipulate the bioleaching process parameters during
operation to improve extraction performance. To design
a basic feedback control law, simplified linear models of
the process—valid incrementally around a slowly varying
section of the heap nominal response—are estimated us-
ing state-of-the-art system identification techniques. Such
simple models are used to design a linear control law
that yields moderate improvements in extraction rates.
These were demonstrated by simulation studies on a black-
box high complexity mathematical model of the process
developed by BHP Billiton (here referred to as the BHPB
model). The main contribution of the work in Godoy et al.
[2007a] is to explore and demonstrate the potential of
feedback strategies in the operation of a heap bioleaching
process. To the authors’ best knowledge, no other similar
study has been reported in the literature.

The present paper builds on the work in Godoy et al.
[2007a] by evaluating and comparing a model-based pre-
dictive control (MPC) strategy, a modern standard in
process control applications [Camacho and Bordons, 2003,
Maciejowsky, 2002], and an extremum seeking control
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(ESC) strategy, an adaptive technique that has received
increased attention in recent years [Ariyur and Krstić,
2003]. ESC has been traditionally applied to systems where
there are no models, or existing models are unreliable or
difficult to obtain. In recent works, ESC has also been used
to find unknown parameters in nonlinear models, where an
explicit structure information for the objective function is
required [Guay and Zhang, 2003].

For simplicity, we consider heap average temperature and
copper extraction as target regulated variables, using
raffinate solution rate and aeration flow as manipulated
variables. These variables are known key factors in the
process dynamics [e.g. Dixon, 2000].

Using the linear models estimated in Godoy et al. [2007a],
our simulations on the high complexity model developed
by BHP Billiton show that MPC and ESC achieve similar
improvements in total copper extraction with respect to
that obtained by (open-loop) fixed set-point operation.
These improvements are modest, but may be increased
by incorporating more detailed process information in the
design of MPC and the tuning of ESC. Since ESC can be
implemented without recourse of a mathematical model
of the process, it thus appears as simpler and potentially
more robust alternative for practical implementations.

2. THE PROCESS

Figure 1 illustrates an implementation of a heap bioleach-
ing process. This implementation consists of a large heap
(up to several square kilometres in area and 6 to 10 metres
in height) of crushed copper mine tailings. A sulphuric
acid solution (raffinate) is sprinkled on top of the heap
by means of an arrangement of drip lines. As the solution
percolates down through the heap, it becomes enriched by
the copper dissolved from the heaped ore. The enriched
solution (pregnant leach solution, PLS) is then collected
at the base of the heap by an impervious liner and pumped
to an electro-winning facility, which produces cathodic
copper of high purity. The residual solution is recycled to
the top of the heap. Naturally occurring microorganisms
can act as catalytic agents to the leaching process, signif-
icantly increasing the rates of extraction in the process.
Heap aeration is also used (typically in sulphidic ores)
to enhance the extraction [see Watling, 2006, for more
details].

Copper for industrial use

Copper extraction plant

PLS pond

Raffinate drip lines

Impervious liner

Pump

Raffinate pond

Raffinate

3 Fe oxidation

2

1 Ore leaching
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Fig. 1. Simplified copper heap leaching process

Heap temperature is a well recognised factor in the per-
formance of heap bioleaching processes, since it affects the

kinetics of chemical reactions and promotes the mineral-
extracting microorganisms that enhance the extraction
process [Dixon, 2000, Rawlings et al., 2003, Nemati et al.,
1998]. Two macroscopic variables that can be used to drive
the average temperature of the heap are the influx rate
of raffinate solution, and the aeration rate [Godoy et al.,
2007a, Petersen and Dixon, 2007].

In a typical response of a heap bioleaching process to fixed
set-point values, the heap undergoes an initial phase of
heat development after which a peak in temperature is
produced by the dominant action of thermophile microor-
ganisms. A slower varying phase of decreasing biological
activity and decreasing temperature follows this peak until
heap exhaustion.

In Godoy et al. [2007a], linear maximum likelihood incre-
mental models were estimated around this slow varying
section of the nominal temperature response using expec-
tation maximisation methods and data generated with the
BHPB model. These models describe with acceptable ac-
curacy small variations of the response around the nominal
(fixed set-point) trajectory, and were used to increase the
heap average temperature by manipulating raffinate influx
and aeration rate in a simple feedback loop. In the present
paper we use these models to test and compare imple-
mentations of MPC and ESC using the same selection of
regulated and manipulated variables.

3. MODEL PREDICTIVE CONTROL

3.1 Overview

In brief, model predictive control is a form of optimal
control in which the control action is calculated by solving
in real time, at each sampling time, a finite horizon open-
loop optimal control problem with the current plant state
as initial state. The optimisation yields a sequence of
optimal control actions of which only the first control
action is applied to the plant. The optimisation is then
solved again with the time horizon shifted one sampling
time using the updated plant state. The first control action
of the optimal sequence is applied, and the procedure is
continued in the same way. This is the so called receding
horizon strategy. See for example Rawlings [2000] for more
details.

Following Goodwin et al. [2005], we consider the MPC
strategy for a plant assumed stabilisable and detectable
and given by discrete-time linear state space equations of
the form

xk+1 = Axk + Buk

yk = Cxk + Duk + dk,
(1)

where xk ∈ Rn, yk ∈ Rny , and uk ∈ Rnu represent
the state, the output and the input of the system, and
dk ∈ Rny represents an output disturbance. A minor
difference with the approach as presented in Goodwin et al.
[2005] is that the plant (1) contains a direct feed forward
term, that is, D 6= 0, which is convenient for our models.

The optimal control sequence {u0, . . . , uM−1}, with control
horizon M > 0, is found to minimise a finite horizon cost
function of the form
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ǔT
k DT QDǔk + 1
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ǔT
k Rǔk,

(2)
where N is the prediction horizon, N ≥ M , ek = yk − ys

is the error with respect to a set-point ys, ǔk = uk − us is
the control effort with respect to a set-point us, x̌N is the
corresponding final state, and P ≥ 0, Q ≥ 0 and R > 0
are weighting matrices.

With the cost function (2), the optimisation problem can
be re-written as [see Godoy et al., 2007b, for details]

min
u

VN,M =
1
2
uT Hu + uT [F (x0 − xs)−Gus], (3)

where the vectors u ∈ RM and us ∈ RnuM are defined as

u :=
[
uT

0 uT
1 . . . uT

M−1

]T
,us :=

[
uT

s uT
s . . . uT

s

]T
, (4)

The expressions for the matrices H, F and G can be found
in Godoy et al. [2007b].

The unconstrained solution of the minimisation problem
in (3) is given by

uopt := −H−1[F (x0 − xs)−Gus]. (5)

The vector formed by the first M components of (5) has
a linear time-invariant feedback structure of the form

uopt = −K(x0 − xs) + Kuus, (6)
where K, Ku are defined as the first M rows of the
matrices H−1F , H−1G, respectively.

3.2 Constraints

Real actuators have a limited range of action and/or a
limited slew rate. In chemical processes, the imposition of
constraints may be also due to scarcity or cost of resources,
aiming at keeping low production costs.

In the case of heap bioleaching process, we aim to improve
the process performance by considering constraints on
the inputs (control signals), so that they remain close to
nominal values previously defined, such as those found
through the experience of open-loop operations [Petersen
and Dixon, 2007].

Input constraints can be generally written as
umin ≤ uk ≤ umax, k = 0, . . . ,M − 1,

∆umin ≤ uk − uk−1 ≤ ∆umax, k = 0, . . . ,M − 1,
(7)

where the inequalities are taken component-wise. For k =
0, u−1 represents the input that is used before the receding
horizon implementation is applied.

In a more compact notation, constraints of the form (7)
can be represented as as linear constraints on the vector u
[e.g. Goodwin et al., 2005, pp.107],

Lu ≤ W. (8)

The minimisation problem (3) subject to inequality
constraints is a quadratic programming (QP) problem
[Fletcher, 1987], which can be written in the form

min
u

1
2
[uT Hu] + uT [F (xo − xs)−Gus],

subject to: Lu ≤ W.
(9)

The constrained optimal solution is uopt(x) in the form

uopt = arg min
Lu≤W

1
2
[uT Hu] + uT [F (xo − xs)−Gus]. (10)

There are standard numerical procedures to solve the QP
problem, as for example, Active Set Methods and Interior
Point Methods [Fletcher, 1987]. In conjunction with a
receding horizon strategy, the QP problem is solved at
every sampling time, which yields a control law in the form

uk = K(x,ys), (11)
where xk = x is the current value of the state x. The same
procedure is done at the next sampling time keeping the
same optimisation horizon length.

model
Linear

MPC

constraints

zoh

BHPB
model

model
Linear

observer

∆r

x̂

∆u

ȳ

∆ybhpb

+

ū + +
-

Fig. 2. Closed-loop MPC implementation on the heap
bioleaching process

3.3 Application of MPC to the heap bioleaching process

For the application of the MPC strategy to the heap
bioleaching process we use a simplified incremental model
of the process estimated in Godoy et al. [2007a], as
described in Section 2. This linear model is of the form (1)
and describes small increments of the average temperature
around a nominal trajectory, denoted ∆yk ∈ R, as driven
by the a 2×1 input vector with the increments in aeration
flow and influx raffinate flow around their nominal set-
point values, denoted by ∆uk ∈ R2.

Figure 2 illustrates the implementation scheme used for
the MPC strategy using the incremental linear model. The
block “linear model-observer” represents an observer that
estimates the states of the incremental model (1) using the
input ∆u, and ∆ybhp, the temperature measurements of
the heap—in this case the BHPB model.

The linear model is also used in the block “Linear model-
MPC” to obtain predictions of the future outputs of the
incremental model, which are used in the MPC algorithm.
Constraints and incremental references are implemented
in this block, which produces the sequence of incremental
control values ∆u.

Input aeration is limited to a maximum of 2.2 [kg/h.m2],
which is directly implemented via the MPC optimisation
algorithm. The response obtained with such incremental
feedback control strategy is compared to the nominal
(open-loop, constant aeration) response and feedback un-
constrained input response in Figure 3. We can observe
that, even when aeration is constrained, feedback results
yield increased copper extraction.

The time evolution of the second control variable, influx
raffinate, is shown in Figure 4. We see that the feedback
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Fig. 3. Aeration rate for a target heap average temperature
increase ∆r = 12oC (top), and corresponding per-
centage of copper extraction (bottom) produced by
unconstrained and constrained MPC strategies. Also
shown: response to nominal (fixed) aeration

strategy produces a reduction in flow to obtain an increase
in temperature, which is consistent with previous studies
[Dixon, 2000].
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Fig. 4. Influx raffinate for a target heap average tempera-
ture increase ∆r = 12oC. This reduction in irrigation
for heat conservation in the heap is consistent with
previous studies [Dixon, 2000]

4. EXTREMUM SEEKING CONTROL

4.1 Overview

Extremum Seeking Control (ESC) is an adaptive feedback
control strategy that can be applied without the need of a
model to an important class of nonlinear control problems
[Ariyur and Krstić, 2003]. The goal of this control strategy
is to drive an observable system output or objective cost to
an optimal extremum value by use of adaptive feedback.

Figure 5 shows a typical discrete-time scheme implementa-
tion structure of an ESC strategy. The plant is a stable (or
stabilisable) nonlinear system assumed to be represented
by state equations of the form

xk+1 = f(xk, uk)
yk = h(xk),

(12)

where xk ∈ Rn is the state, uk ∈ R is the input, yk ∈ R is
the output, and f , h are smooth functions, not necessarily
known for the implementation of ESC.

ESC implements a real-time optimisation using the system
observed output yk to estimate and drive the gradient
of the objective cost to zero by imposing a probing
(oscillatory) behaviour in the system to seek and maintain
the optimising input, uopt.

+

+
HPFLPF

Heap Bioleaching Process

×

xk+1 = f(xk, α(xk, θ))

yk = h(xk)

γ

z − 1

ε

A sin(ωk)

ykθk

θ̂k

Fig. 5. A general ESC scheme for a discrete-time non-linear
system.

One key assumption for the nonlinear system to be con-
trolled by ESC is that it has an extremum in the map
between the input uk and the output yk [Ariyur and
Krstić, 2003, Chapter 5]. If that extremum exists, then
an external sustained excitation, (A sinωk) in Figure 5,
is used to find the extremum value of the system output
by making the system to oscillate around its operating
point. The frequency of such oscillatory behaviour needs
to be in a faster time scale than that of the dynamics of
the operating point, which thus is gradually driven to its
optimal value.

It is worth to notice that the control input uk may be, in
general, a function of the state xk and a parameter θk, as
shown in Figure 5. We will consider the simplified case of
a control law not directly dependent on the system state,
that is, uk = θk. Hence, the closed loop equation for the
system (12) is given by

xk+1 = f(xk, θk). (13)
where θk is slowly driving the system operating point.

4.2 Application of ESC to the heap bioleaching process

In the bioleaching process, an extreme in extraction rates
arises with respect to aeration. As is known, aeration
increases copper extraction Dixon [2000], but an excess
of aeration tends to cool down the heap, reducing micro-
bial activity and extraction rates. The existence of such
extremum is shown in a sensitivity study performed using
the BHPB model and reported in Godoy et al. [2007a].

We implement the ESC strategy to find the value of
aeration that maximises concentration of sulphate copper
CuSO4 in the pregnant leaching solution (PLS). We
use the scheme shown in Figure 5, and evaluate it by
simulations using the BHPB model as the actual plant.

The implementation of ESC requires adequate selection of
the exciting input signal, with parameters A and ω, and
the cut-off frequency ωc for the high-pass filter (HPF). The
low-pass filter (LPF) is not strictly necessary, and was not
used in the present implementation. These parameters are
chosen as follows

• Frequency of the exciting signal, ω: the frequency
of the exciting signal should be chosen large as
compared with the system dynamics. Given that the
dynamics of the system with aeration as the input and
CuSO4 concentration as the output is dominated by
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a frequency fo ≈ 1 [day−1], we choose ω ≤ 2πfo, and
in particular ω = 2 [rad/day].

• Amplitude of the exciting signal, A: the amplitude
of the exciting signal should be chosen small as
compared to the nominal value of the output, in order
to get small steady state output error. We select it as
a 10% of the magnitude order of the output variable,
namely, A = 0.1.

• Cut-off frequency of the high-pass filter, ωc: the cut
frequency of this filter is chosen as ωc = 0.01ω
by trial-and-error. A sensitivity analysis carried out
for this parameter shows that it does not have an
significant effect on the total copper extraction at the
end of the heap life (350 days), as shown in Figure 8
below.

• Gain γ: without loss of generality, this value is chosen
γ = 1.

The results of the simulations are shown in Figures 6
and 7. Figure 6 (top plot) shows the evolution of copper
sulfate concentration in PLS with nominal (fixed set-
point) and ESC feedback manipulating aeration. The
corresponding aeration curve is shown below. Figure 7
shows the corresponding evolution of percentage of copper
extracted. An appreciable improvement on the velocity of
extraction is seen using ESC. The total extraction rates at
the end of the heap life are similar to those obtained with
MPC.

Figure 8 shows the effect of different values in the cut-
off frequency of the high-pass filter on copper extraction,
which is negligible.
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Fig. 6. ESC applied to maximise concentration of [CuSO4]
(top) by manipulating aeration (bottom)
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Fig. 7. Total copper extraction [%] for ESC to maximise
concentration of [CuSO4] using aeration

Thus, ESC shows potential to improve copper extraction
in the bioleaching process (≈ 5% of improvement), with

the appropriate tuning of the parameters given in a general
ESC scheme. One disadvantage of the ESC strategy is that
input constraints are not intrinsically dealt with, which is
possible with MPC.
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Fig. 8. Sensitivity of the cut-off frequency, for the high-pass
filter, on the total copper extraction rate. Aeration
(top) corresponds to different values of ωc. Copper
extraction curves (bottom) show that the effect of this
parameter is negligible

5. DISCUSSION AND FURTHER WORK

In the present paper we have implemented two feedback
strategies to improve copper extraction rates in a heap
bioleaching process by manipulating the process set-points
in real time using measurements of average temperature
and copper concentration in PLS. An MPC design was
implemented on a high complexity mathematical model of
the process using an incremental linear model fit around
a slowly varying phase of the nominal response of the
process. We have also tuned and simulated an implementa-
tion of ESC that does not require a mathematical model
to operate. Both feedback strategies show improvements
in copper extraction with respect to the fixed set-point
process performance.

The incremental model used in the MPC design describes
the relation between the variations of the average temper-
ature in the heap (as the output), and the variations of
the influx raffinate and aeration rate (as the inputs). The
results show that, for the MPC strategy, the differences of
having constraints on one of the inputs has a little effect on
the final copper extraction, as shown in Figure 3. However,
if the constraints exist, then they can be easily included
in the MPC algorithm.

Although ESC was implemented using little knowledge
about the process, it provided improvements in extraction
comparable to those with MPC, as shown in Figure 7. One
disadvantage of the proposed ESC implementation is its
inability to deal with constraints, in contrast with MPC.
Further work can improve the proposed implementation of
ESC by including an anti-windup scheme.

Percentages of copper extraction and aeration curves for
MPC and ESC strategies are shown together in Figure 9.
The performance improvements with respect to the fixed
set-point strategy are noticeable but modest in both cases.
For MPC, this may be attributed to the use of simple linear

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9372



time-invariant models for the design, which only describe
small variations around nominal trajectories. In the case
of ESC, we can also say that the tuning procedure was
based on simple model assumptions derived from the step-
response of the BHPB model.
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Fig. 9. Comparison of constrained MPC and ESC, with
cut-off frequency ωc = 0.1ω for the high-pass filter.

Further work will try and increase the performance im-
provements obtained by these feedback strategies by incor-
porating more process information in the design. In partic-
ular, a better input-output model of the process could be
developed, so that the design of the MPC strategy is not
tied to a neighbourhood of a nominal trajectory. One pos-
sible modelling approach that would still be amenable to
MPC design is nonlinear modelling using Volterra Series.
Volterra Series models lead directly to implementations of
MPC [Doyle III et al., 2002, Chapter 8].

For the case of ESC, further work will be focused on
incorporating more process knowledge in the selection of
input variables and the tuning of the parameters of the
ESC scheme. With a nonlinear model based on input-
output data or on physical principles, we can use the fact
that a heap bioleaching process could be interpreted as a
continuous-stirred tank reactor and follow ideas given in
Wang et al. [1999].
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K.B. Ariyur and M. Krstić. Real-Time optimization by
Extremum Seeking Control. Wiley-Interscience, 2003.

C.L. Brierley and J.A. Brierley. Bioheap Processess: Oper-
ational requirements and techniques, chapter 2: Copper
Leaching, Solvent Extraction, and Electrowinning Tech-
nology. Society for Mining, Metallurgy, and Exploration
Inc., 1999.

J.A. Brierley and C.L. Brierley. Present and future com-
mercial applications of biohydrometallurgy. Hydromet-
allurgy, 59(5):233–239, 2001.

E.F. Camacho and C. Bordons. Model Predictive Control.
Springer, second edition, 2003.

D.G. Dixon. Analysis of heat conservation during copper
sulphide heap leaching. Journal of Hydrometallurgy, 58
(84):27–41, 2000.

F. J. Doyle III, R. K. Pearson, and B. A. Ogunnaike. Iden-
tification and Control Using Volterra Models. Springer,
2002.

D. Dreisinger. Copper leaching from primary sulfides:
Options for biological and chemical extraction copper.
Hydrometallurgy, 83(5):10–20, 2006.

R. Fletcher. Practical Methods of Optimization. John
Wiley and Sons, second edition, 1987.

B.I. Godoy, J.H. Braslavsky, and J.C. Agüero. A model-
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