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Abstract: This paper presents results on performance limitations for direct fired coal power
plants. A specific feature of this system is the existence of a very large input delay between
one of the inputs, namely coal flow, and the two outputs, load and vapour pressure. This
problem motivates the main theoretical question addressed in this paper: To examine tracking
performance limitations in one process variable when another process variable is constrained.
Our main result makes explicit the performance trade-off between the two conflicting objectives,
and also links the achievable performance to the delay structure of the plant. These results give
insights into the benefits of MIMO control for power plants and into the necessary trade-off
between fast tracking of load step changes and the need for minimizing the variations of the
vapour pressure around its nominal value. The results provide a benchmark against which
practical controller designs for power plants can be assessed.
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1. INTRODUCTION

In an increasingly competitive and distributed electricity
production market, there is a growing interest in modern
control methods for power plants (see Flynn (2003)).
However, as recently pointed out by (Poncia (2003)), “the
introduction of new concepts and technologies in thermal
power plant is difficult”. As mentioned by the author, this
is partly a cultural obstacle, but it is also due to the
fact that, over the years, classical control strategies and
procedures have been so well tuned, often using ad-hoc
techniques, that operators do not see the additional benefit
that modern control technologies can offer.

Recent work from the academic world on this topic has
focused on the introduction of multivariable control design
for several control loops in power plants (Poncia (2003);
Zhao et al. (1999); Poncia and Bittanti (2001); Mortensen
et al. (1998)).

In the current contribution, we will focus on the highest
control level of a coal-fired power plant, as considered, for
example, in Zhao et al. (1999). In this setting, the plant is
modelled as a two-input (coal flow and turbine inlet valve
position) two-output (vapour pressure and load) system.
Rather than focusing on a particular multivariable control
design methodology, we will instead study the underlying
performance limits associated with such methodologies. In
this respect, an important challenge is the presence of a
large delay associated with one of the two inputs, namely
coal flow. As can be expected, this long delay introduces

1 Corresponding author (vincent.wertz@uclouvain.be), on leave at
the CDSC, Newcastle.

severe limits on the performance of any (not necessarily
multivariable) controller design. Our purpose here is to
make these limits explicit. Specifically, we consider a mode
of operation of such a plant, similar to boiler following
mode, where fast reaction to reference changes in load is
sought by acting mainly on the turbine inlet valve, while
maintaining vapour pressure variations within acceptable
limits. In classical power plant operation, such a mode is
based on two SISO controllers and is not used in direct
fired coal power plants because of the large input delay.
We consider here an associated multivariable solution and
analyze its performance limits.

In order to solve this problem, we will build upon recent
results on performance bounds for MIMO systems with
arbitrary delay structure (see, e.g., Toker et al. (2002)
and Silva and Salgado (2005)). We extend these results to
cover the problem of interest here, namely when one has
constraints on one output variable. We also refer the reader
to Chen et al. (2003) for results that consider control
energy penalization.

The remainder of this paper is organised as follows: Section
2 presents the multivariable model that motivates this
study. Section 3 presents the main results, showing the
performance trade-off between tracking step changes on
one output and maintaining the second output around its
nominal value. Of special interest here is the specific role
of the delay structure in this trade-off. Section 4 presents
simulations that illustrates our results. Conclusions are
presented in Section 5.
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Fig. 1. Simplified scheme of a coal-fired power plant

2. COAL-FIRED POWER PLANTS

2.1 The plant model

This section introduces the model of a coal-fired power
plant relevant to our current study. A simplified scheme
of the plant is shown on Figure 1. We consider a high-
level model of the plant, with coal flow and turbine valve
opening as inputs, and load and vapour pressure as out-
puts. (This assumes that all other local control loops are
in place). Similar to the work by Poncia (2003) and Zhao
et al. (1999), a linear model has been obtained using black-
box identification applied to input-output signals obtained
from a nonlinear simulator of a 125 MW coal-fired power
plant with natural circulation drum boiler. This model
reflects the behaviour of the plant around the following
operating point : load = 122 MW, vapour pressure = 136
bar (see Bodeux (2006) for details). The identified con-
tinuous time transfer matrix, assuming proper scaling, is
given by

Gc(s) =







271.8s−1.72
3435s2+244s+1

0.2303 e−100s

7040s2+204s+1

−3.195
5133s2+206s+1

0.02661 e−100s

8052s2+188s+1






.

In this work we will use a discretized version of Gc(s) using
a 5 sec sampling period. Assuming a zero order hold at
the plant inputs, the corresponding discrete time transfer
function is

G(z) =







0.327z−0.3376
z2−1.695z+0.7011

10−4(3.897z+3.714)
z20(z2−1.862z+0.8651)

−0.007282z−0.006811
z2−1.814z+0.8182

10−4(3.974z+3.822)
z20(z2−1.887z+0.8898)






. (1)

The structure of G(z), i.e., its order, number of zeros and
poles, delay structure, etc., is similar to that of the model
used by Zhao et al. (1999) who dealt with a similar power
plant, although of larger size. A special feature of this
model is the very large delay on the second input which
is typical of coal-fired power plants. This delay is a coarse
approximation to the behaviour of the coal mill. (A much
more detailed modelling of such coal mills can be found
in Rees and Fan (2003)). However, the model used here is
adequate to capture the key phenomena of interest in the
current context. The value of 100 seconds for the delay is
the best fit obtained for one set of experiments, but it is
likely to be an underestimate of the actual delay.

Note also that there is a non-minimum phase (NMP) zero
in the transfer function from turbine inlet valve to load,
i.e., G11(z). 2 This is easily explained from a physical
point of view. We note, however, that this zero is not a
transmission zero of the MIMO transfer function G(z).
This is further motivation to consider a MIMO control
architecture for the plant, and not just decentralised SISO
controllers. Indeed, in the latter case the NMP zero of
G11(z) may impose fundamental limitations that are not
present in MIMO designs (see, e.g., Goodwin et al. (2005)).

2.2 Control strategy

Here we define the design objective. We want the plant to
respond as quickly as possible to load reference variations,
while maintaining the vapour pressure variations as small
as possible. This is the objective pursued when controlling
the power plant in boiler following mode. In this mode,
the turbine inlet valve controls the load, while the coal
flow controls the vapour pressure. This is classically a
decentralized control strategy comprising two SISO con-
trollers in parallel. This is commonly used in plants with
fast boiler dynamics (e.g., oil or gas fired plants). Direct
fired coal power plants, however, usually operate in turbine
following mode (i.e., the load is controlled by the coal flow
and the vapour pressure by the turbine inlet valve).This
configuration is favored because the boiler following strat-
egy is unable to maintain the vapour pressure within its
bounds due to the large delay on the coal flow. As a
result, direct fired coal power plants cannot participate
in secondary grid frequency control (which requires the
ability to rapidly follow large and frequent load reference
variations without delay). This kind of plant may, however,
participate in the primary grid frequency control. From
a process control point of view, this is achieved through
a continuous modulation of the produced load. This is
obtained by an additional action on the turbine valve
computed by a proportional controller: ∆u1(t) = K∆f(t)
where ∆f(t) is the instantaneous deviation of the electrical
grid frequency from its nominal value and ∆u1(t) is added
to the value of u1(t) computed by the pressure controller.
The coal flow is also corrected appropriately to limit the
impact of this action on the vapour pressure. (Observe that
the additional control actions are of the boiler following
type). Yet, even in this case, direct fired coal power plants
quickly reach their performance limits, because primary
control requires an action of the form ∆y1(t) = K∆f(t)
where ∆y1(t) is a correction of the produced load. This is
equivalent to ∆u1(t) = K∆f(t) only if the vapour pressure
can be perfectly controlled by the coal flow, as there holds
y1(t) ≈ u1(t)y2(t). It seems clear from the above that
the turbine valve can be used to produce more load by
exploiting the capacity of the boiler as a steam (and,
hence, energy) buffer. However, the new load level won’t
be maintained unless the vapour pressure fall is arrested by
injecting more energy (and, hence, coal) into the system.

The question addressed in this paper is whether a MIMO
control strategy could overcome the limitations that arise
in decentralized SISO strategies, such as those described
above. Formally, we aim at solving the following problem:

2 for every matrix X, [X]ij , Xij denotes its (i, j)-th component.
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Problem 1. (Main Problem). Consider a MIMO one degree-
of-freedom control loop for the two-input two-output
model of coal-fired power plant described by G(z) (see
(1)). Under these conditions, specify the best achievable
performance, as measured by the L2-norm of the load
tracking error for load reference step changes, when there
is a bound (say M) on the L2-norm of the vapour pressure
variation.

3. PERFORMANCE BOUNDS

As foreshadowed in Section 2, our aim is to identify
the minimal load tracking error norm, whilst satisfying a
bound on the vapour pressure deviation norm, associated
with a step change in the load reference signal. To give an
answer to this question, we will first adopt a more general
point of view. We will begin by studying the problem of
simultaneously minimizing both load tracking error norm
and vapour deviation norm. Towards that goal we define

J ,

∞
∑

k=0

e1(k)2, R ,

∞
∑

k=0

e2(k)2, (2)

where ei is the i-th component of the tracking error when
the reference is given by r = ǫ1µ. 3 J is the corresponding
load tracking error norm and R is the corresponding
vapour pressure variation norm. With the aid of Parseval’s
relation and the well known Youla parameterization of
controllers for stable plants (see, e.g., Francis (1987)), both
J and R can be written as a function of a free parameter
Q(z) ∈ RH∞. 4 Namely,

J(Q(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

ǫT
1

I − G(z)Q(z)

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (3)

R(Q(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

ǫT
2

I − G(z)Q(z)

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (4)

where I − G(z)Q(z) is the loop sensitivity function (see,
e.g., Goodwin et al. (2001)).

The problem of simultaneously minimizing J and R is a
special case of so-called multiobjective optimization (see,
e.g., Boyd and Vandenberghe (2004)). We define the set of
achievable objectives as

A ,
{

(αJ , αR) ∈ R
2 : J(Q(z)) ≤ αJ and

R(Q(z)) ≤ αR, for some Q(z) ∈ RH∞} . (5)

Since both objectives are competing ones, A does not have
a minimal element, 5 i.e., there exist no Q∗(z) such that
J(Q∗(z)) ≤ J(Q(z)) and, simultaneously, R(Q∗(z)) ≤
R(Q(z)) for every Q(z) ∈ RH∞. We will thus focus on
the points in A that achieve the best trade-off between
both objectives, i.e., we will focus on the Pareto optimal
points of A (see Boyd and Vandenberghe (2004)). The next
theorem characterizes these points, as well as those in A.

Theorem 2. (Characterization of achievable specifications).
Consider the definition of J and R in (3)-(4) and define

Lλ(Q(z)) , J(Q(z)) + λR(Q(z)), (6)

Qλ(z) , arg min
Q(z)∈RH∞

Lλ(Q(z)). (7)

Then:
3 µ denotes a unit step function that changes at k = 0 and ǫi is the
i-th component of the canonical basis in R

2.
4 RH∞ is the set of all stable and proper rational transfer matrices.
5 except in very special cases.

(1) The set of Pareto optimal points associated with A is
given by

P =
{

(αJ , αR) ∈ R
2 : αJ = J(Qλ(z)),

αR = R(Qλ(z)), for some λ ≥ 0} . (8)

(2) The set A is given by

A =
{

(αJ , αR) ∈ R
2 : αJ ≥ J(Qλ(z)),

αR ≥ R(Qλ(z)), for some λ ≥ 0} . (9)

Proof. The proof follows from well known results and is
omitted for the sake of brevity (see, e.g., Section 4.7 in
Boyd and Vandenberghe (2004)). �

Theorem 2 allows one to characterize the set of achievable
specifications for load tracking error norm and vapour
pressure variation norm, in terms of a set of convex
optimization problems. These problems, namely finding
Qλ(z) for every λ ≥ 0, can be tackled using standard
model matching techniques. To that end, we will denote
the i-th row of G(z) by Gi∗(z) and a left unitary interactor
for Gi∗(z), having unity DC-gain, by ξi(z) (see, e.g., Silva
and Salgado (2005)). We also define

G̃i∗(z) , ξi(z)Gi∗(z). (10)

Lemma 3. (Characterization of Qλ(z)). Consider the def-
inition of J and R in (3)-(4) and assume that G(z) is stable
and has non singular DC-gain. Then:

(1) If λ > 0, then

Qλ(z)ǫ1 = (ξΛ(z)GΛ(z))
−1

Λǫ1, (11)

where

Λ , diag
{

1,
√

λ
}

, GΛ(z) , ΛG(z) (12)

and ξΛ(z) is a left unitary interactor for GΛ(z) having
unit DC-gain.

(2) If λ = 0, then

Q0(z)ǫ1 =
(

G(1)−1 + G̃1∗(z)†A1(z)+

z − 1

z
B1(z)X1(z)

)

ǫ1. (13)

(3) In the limit λ → ∞,

Q∞(z)ǫ1 =
(

G(1)−1 + G̃2∗(z)†A2(z)+

z − 1

z
B2(z)X2(z)

)

ǫ1. (14)

In (13) and (14), and for i ∈ {1, 2}, G̃i∗(z)† ∈ RH∞ is a

generalized right inverse of G̃i∗(z),

Ai(z) , ǫT
i − G̃i∗(z)G(1)−1, (15)

Bi(z) , I − G̃i∗(z)†G̃i∗(z), (16)

and Xi(z) is any transfer function in RH∞.

Proof.

(1) Elementary properties of the 2-norm, and the fact
that ξΛ(z) is unitary and has unit DC-gain, allow one
to write
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Lλ(Q(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

Λ − GΛ(z)Q(z)

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=

∣

∣

∣

∣

∣

∣

∣

∣

ξΛ(z) − I

z − 1
Λǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

Λ − ξΛ(z)GΛ(z)Q(z)

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (17)

Since G(z) is assumed non singular and λ ∈ (0,∞),
then ξΛ(z)GΛ(z) is non singular. Moreover, the prop-

erties of interactors guarantee that (ξΛ(z)GΛ(z))−1 ∈
RH∞. The result is now immediate. We note that if
λ ∈ {0,∞}, then GΛ(z) is singular and we cannot
proceed as above.

(2) If λ = 0, then standard properties of the 2-norm and
the fact that ξ1(z) is unitary, allow one to write Lλ

as follows:

L0(Q(z)) = J(Q(z))

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

ξ1(z)ǫT
1 − G̃1∗(z)G−1(1)

z − 1
− G̃1∗(z) ˜Q(z)

z

)

ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=

∣

∣

∣

∣

∣

∣

∣

∣

ξ1(z) − 1

z − 1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

A1(z)

z − 1
− G̃1∗(z)Q̃(z)

z

)

ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (18)

where Q̃(z) is implicitly defined via 6

Q(z) , G(1)−1 +
z − 1

z
Q̃(z). (19)

We note that Q(z) ∈ RH∞ ⇔ Q̃(z) ∈ RH∞ and,

by definition of ξ1(z), G̃1∗(z) is right invertible in
RH∞. Using a standard generalized inverse result
(see, e.g., Chapter 8, Section 6, in Ben-Israel and
Greville (2003)), the result follows.

(3) When λ → ∞, then minimizing Lλ amounts to
minimizing R. Proceeding as above, we conclude that

R(Q(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

A2(z)

z − 1
− G̃2∗(z)Q̃(z)

z

)

ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (20)

where Q̃(z) is defined as before. The result is then
immediate. �

Remark 1. Note that (11), (13) and (14) only define the
first column of the corresponding Youla parameters. This
is because of the problem formulation, where only step
references in the first input are considered (see also (3)
and (4) where it is becomes clear that only Q(z)ǫ1, i.e.,
the first column of Q(z), plays a role in our problem). The
same equations, when one drops the ǫ1 factor, define (not
necessarily unique) 2× 2 Youla parameters that provide a
solution to our problem. N

It is also illustrative to study the behaviour of J(Qλ(z)).
To that end we let m denote the relative degree of G(z),
i.e., the number of zeros at infinity, and mij denote the
relative degree of Gij(z) ((i, j) ∈ {1, 2} × {1, 2}).
Lemma 4. (Load tracking error norm as a function of λ).
Consider the notation introduced in Lemma 3 and assume
6 This guarantees that Q(z) defines a controller with integral action,
which is needed to be able to have a finite cost J . This constraint
was automatically satisfied in Part 1.

that G(z) is stable, minimum phase (MP) and having a
non singular DC-gain matrix. If, in addition, m > m21,
m22 > m21 and G21(z) is MP, then:

(1) If λ > 0, then

J(Qλ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

ǫT
1

I − Λ−1ξΛ(z)−1Λ

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (21)

(2) If λ = 0, then

J(Q0(z)) = m11 (22)

(3) When λ → ∞, then

J(Q∞(z)) = m − m21 + D(X2(z)), (23)

where D : RH∞ → R is a function such that

min
X2(z)∈RH∞

D(X2(z)) = 0. (24)

Proof.

(1) Immediate from (11), (3) and the definition of GΛ(z).
(2) For λ = 0 the result follows immediately from the

proof of Lemma 3 (see (18)) and Theorem 2 in Silva
and Salgado (2005) (restricted to the SISO case).

(3) For λ → ∞, we can proceed as follows: Since m22 >
m21 and G21(z) is MP, it follows that a right inverse

for G̃2∗(z) is given by

G̃2∗(z)† =

[

(ξ2(z)G21(z))
−1

0

]

∈ RH∞. (25)

From Lemma 3 and Theorem 2 in Silva and Salgado
(2005), we have that choosing G̃2∗(z)† as above yields
(after some standard manipulations)

J(Q∞(z)) = m − m21 + D(X2(z)), (26)

where

D(X2(z)) ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − zm−m21 detG(z)
G21(z)

(

G21(1)
det G(1) + z−1

z
[X2(z)]21

)

z − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Since G(z) is MP and stable, so is det G(z). This,
jointly with m > m21, implies that the parameter
X2(z) ∈ RH∞ that minimizes D, say X

opt
2 (z), is such

that
[

X
opt
2 (z)

]

21
=

z

z − 1

(

G21(z)

zm−m21 det G(z)
− G21(1)

detG(1)

)

,

and, moreover, D(Xopt
2 (z)) = 0 as claimed. �

Lemma 4 shows that by means of varying λ, one can attain
a load tracking error norm that ranges from the relative
degree of G11(z) (when λ → 0) to the difference between
the relative degree of the MIMO model and that of G21(z)
(when λ → ∞). If, as is the case for the coal fired power
plant described in Section 2, the plant has large relative
degree (i.e., large delays) concentrated in the second row,
then it may be possible to achieve good performance by
means of choosing a small λ. Of course, this comes at the
expense of large error norm on the second output.

We are now in a position to give a solution to Problem 1.
For this purpose, we define the minimal load tracking error
norm that is achievable when the vapour pressure variation
norm is no greater than M via

Jopt , min
Q(z)∈RH∞

R(Q(z))≤M

J(Q(z)), (27)
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and the associated optimal Youla parameter by

Qopt(z) , arg min
Q(z)∈RH∞

R(Q(z))≤M

J(Q(z)). (28)

Theorem 5. (Solution to Problem 1). Consider the nota-
tion and assumptions in Lemmas 3 and 4 and define

R0 , min
X1(z)∈RH∞

R(Q0(z)), (29)

R∞ , R(Q∞(z)). (30)

Then:

(1) If M ∈ (R∞, R0), then the optimal Youla parameter
Qopt(z) is given by

Qopt(z) = (ξΛo
(z)GΛo

(z))
−1

Λo, (31)

and the corresponding minimal cost satisfies

Jopt =

∣

∣

∣

∣

∣

∣

∣

∣

ǫT
1

I − Λ−1
o ξΛo

(z)−1Λo

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (32)

where Λo and ξΛo
(z) are defined as Λ and ξΛ(z),

considering λ = λo, and λo is the (unique) positive
real that satisfies

∣

∣

∣

∣

∣

∣

∣

∣

ǫT
2

I − Λ−1
o ξΛo

(z)−1Λo

z − 1
ǫ1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= M. (33)

(2) If M ≥ R0, then Jopt = m11 and Qopt(z) = Q0(z),
with X1(z) = arg minX1(z)∈RH∞

R(Q0(z)).
(3) If M = R∞, then Jopt = m−m21 and Qopt = Q∞(z),

with X2(z) = arg minX2(z)∈RH∞
D(X2(z)).

(4) If M < R∞, then Problem 1 is infeasible.

Proof.

(1) This result is a consequence of the definition of Qλ(z),
Pareto optimality and the convexity of the involved
functionals.

(2) Immediate from the definition of R0 and Part 2 of
Lemmas 3 and 4.

(3) Immediate from the definition of R∞ and Part 3 of
Lemmas 3 and 4.

(4) Immediate from the definition of R∞. �

Theorem 5 characterizes the minimal load tracking error
norm as a function of the maximum allowable vapour
pressure variation norm, M . Except for special cases,
this characterization is made in terms of a single scalar
parameter, λ. This parameter can be found by means
of a simple line search. Implications of these results on
the control of coal-fired power plants are investigated in
Section 4.

4. SIMULATION RESULTS

In this section, we shall present simulations illustrating
the results of this paper. We consider the model of a
power plant as given in Section 2. Fig. 2 shows the set
of achievable objectives, A, calculated using Theorem 2
and Lemma 3.

Fig. 2 allows one to better understand the trade-off be-
tween vapour pressure variation and load tracking perfor-
mance. Put differently, if a precise limit on the energy of
the regulation error of the vapour pressure can be set, one
can obtain from Fig. 2 the optimal tracking performance
of the load, when a step reference change occurs in the
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Fig. 2. Power Plant Model : The achievable performance.

corresponding reference. For any given M , this optimal
performance can be obtained with the controllers param-
eterized as in Lemma 3 and Theorem 5.

As an illustration of the different performance that can be
obtained depending on the value of M (and hence of λ in
(6)), consider Figure 3. Five different simulations are pre-
sented, with λ ∈ {10−3, 0.5, 1, 5, 10}. (The corresponding
values of M are indicated on the figure in the same order.)
As shown in Lemma 4, the results for lower values for λ
(or larger values for M) achieve faster tracking of the load
reference step change at the price of large variations in the
vapour pressure. If the latter need to be minimised, then,
inevitably, tracking of the load reference step changes can
only be achieved by using the second input (coal flow) and
here the large model delay comes into play, as predicted
by our results.

Note that the controllers obtained by using the results
of Lemma 3 are by no means optimised with respect to
robustness issues and, as such, are not appropriate for
real implementation. They are also constructed based on
a discrete time model of the plant and a discrete time
formulation of Problem 1. Intersample issues are also of
importance in practice and this may be studied by appro-
priate extensions of recent results on limits of performance
for sampled-data systems (see, e.g., Chen et al. (2002)).
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Fig. 3. Power Plant Model : Simulations with various
controllers.
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(This is the subject of on-going research). Hence, the
results presented here are useful as a benchmark with
respect to which robust controllers can be assessed.

It is also interesting to study the different terms of the
cost function, as a function of the weighting parameter λ
(see Figure 4). In that figure, notice, in particular, that
the lowest value of the load tracking error norm, J = 1,
corresponds to λ tending towards zero. The associated cost
is equal to the relative degree of G11(z). The maximum
value of the cost, J = 21, corresponds to λ tending towards
∞, and is equal to 22−1, i.e., the total number of zeros at
infinity of the plant minus the number of zeros at infinity
of G21(z) (see Lemma 4 and Theorem 5).
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Fig. 4. Power Plant Model : The different cost terms.

5. CONCLUSIONS

This paper has been motivated by a specific application,
namely multivariable high-level control of coal fired power
plants. We have studied tracking performance limitations
arising in one output of two-input two-output stable and
minimum phase multivariable discrete time systems, when
the second output tracking error norm is constrained. Our
results characterise the region of achievable performance,
establish limiting values for the optimal tracking cost
and propose explicit characterizations of the optimal con-
trollers, given a bound on the norm of the second output
variations. A key feature of the results is that, for the class
of stable plant models considered here, the values of the
tracking cost can be directly related to the delay structure
of the plant.

The results presented here form a benchmark against
which practical controllers can be assessed. Further work
could consider practical designs, robustness issues and
intersample behaviour.
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