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Abstract: The paper considers a discrete-time linear quadratic Gaussian model with con-
strained control. It is formulated with Markov systems. With the derivative equation, a
performance gradient with respect to control parameters is estimated from a sample path. Then
a learning algorithm is proposed to obtain a suboptimal feedback policy in affine linear form.
The learning algorithm can be implemented on-line. Its improving feature makes the algorithm
attain better performance than existing approaches, and the idea can be applied to more general

cases.

1. INTRODUCTION

Discrete-time optimal control systems, especially linear
quadratic systems, with constrained control have been
widely studied in recent years [11, 19, 5]. Control con-
straints may represent hard physical limits of the equip-
ment or environmental and/or safety guidelines. The gen-
eral approach to tackle such problems is dynamic program-
ming, but it is time consuming and hard to be implemented
for practical systems. For systems with stochastic distur-
bance, optimal control problem becomes more difficult.
Chmielewski and Manousiouthakis [12] provide a short
literature review on constrained linear quadratic optimal
control problem with stochastic disturbance, and discuss
some results of certainty equivalence between different
types of models, e.g. open-loop feedback policy and close-
loop feedback policy.

There are a number of suboptimal strategies for stochas-
tic linear quadratic regulator (LQR) problem with con-
strained control. A simple policy is based on the optimal
LQR for unconstrained problem (OLQRU). When apply-
ing the policy, if the control variable exceeds a control
set, then restrict it to the set with a projection function
(given in details in Section 2). When the variance of noise is
rather small compared with control constraints, the simple
policy may be good enough, but not for general cases.
By using a truncated Taylor series to approximate the
expected function loss in the Bellman equation, Toivonen
[22] provides an affine linear form suboptimal policy. Lee
and Cooley [14] suggest an open-loop optimal policy as a
suboptimal policy. Following their suggestion, Perez et al.
[17] give a suboptimal policy called certainty equivalent
control (CEC), in which, the control adopted at each
stage is the optimal control of an associated deterministic
problem. Batina et al. [2] present an algorithm which can
solve the constrained control problem approximately with
arbitrary accuracy, however, the expected value function
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is computed with a randomized algorithm which yields a
high computational complexity.

The approximate dynamic programming (ADP) [23, 7, 20,
21, 1] is an approach to solve dynamic programming by
using simulation and function approximation to alleviate
the curse-of-dimensionality. In the framework of actor-
critic network, neural networks are applied to approximate
the value function and the control policy. Most ADP
based approaches focus on approximation of the value
function, and improvement of the control policy often
requires simulation when dealing with stochastic systems.

In this paper, we consider a discrete-time linear quadratic
Gaussian (LQG) problem with constrained control. We
provide a learning method which is easy for on-line imple-
mentation for a suboptimal policy. The approach belongs
to the field of ADP and is called policy gradient [4] method
or perturbation analysis (PA) [8]. Our approach focuses
on optimization with an actor network, while the tuning
of a parameterized value function is bypassed. Marbach
and Tsitsiklis [15] propose a similar algorithm for Markov
reward processes. It deals with discrete state space and
estimates relative value with regenerative period. In con-
tinuous state space case, by estimating relative value by
truncation, our approach handles the constrained optimal
control problems well. We first fix a feedback policy in
affine linear form with parameters unknown. So the origi-
nal policy optimization problem reduces to a parameter
optimization problem. Secondly, based on perturbation
analysis theory in Markov decision processes (MDPs), the
performance gradient with respect to the parameters can
be estimated from sample path. Then the parameters are
updated with a gradient descent method so that a better
control policy is obtained. Repeating this procedure, the
approach delivers an e-optimal policy with arbitrary ac-
curacy in affine linear form. Hence it can achieve better
performance than many other suboptimal polices in affine
linear form. Many approaches in ADP require exploratory
experiments, which may intervene the normal operation
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of the system. Therefore these approaches are purely
simulation-based algorithms. Our approach is not only a
simulation-based method, but also can be implemented on-
line. It needs not exploratory experiments, and the control
policy can be improved step by step as the real system is
running. The on-line property makes our approach more
flexible for practical applications.

The paper is organized as follows. Problem formulation is
given in Section 2. In Section 3, an MDP-based formu-
lation is introduced. With derivative equation, estimates
of performance gradient, and the corresponding gradient-
based algorithm are given. In Section 4, we consider two
special cases: scalar control set case and positive control
set case. In Section 5, numerical examples and comparison
with other approaches are presented. Conclusion is given
in Section 6.

2. FORMULATION
Consider a stochastic linear system:

xk—‘,—l :Axk+Buk+wk
st.uy €U k=01, (1)

where k is discrete time epoch, z; € R™ is system state,
uy, is control variable, and U C R™ is a closed and convex
set which contains the origin. wy € R™ is an n-dimensional
i.i.d. normal distributed random variable with mean zero
and covariance ¢. ¢ is a positive definite matrix. Denote
the probability density function of random variable w as

1 1
pw(x) = (27‘[‘)"/2|¢|1/26XP{ _QxT(b_lx} , (2)

where |¢| is the determinant of ¢. A and B are matrices
with suitable dimensions. It is well known (see [18]) that
such a system can be globally asymptotically stabilized
via feedback, only in the case that all eigenvalues of the
system matrix A lie on or inside the unit circle. In the
paper, we assume this condition to be satisfied.

The criterion to be minimized is long-run average perfor-
mance

| V-l
n= lim E{= Z f(zr, ur)}, (3)
k=0

N—o0 N

where cost function f(z,u) = 2TCx + uT Du. Assume C
and D are positive semi-definite matrices. For a stable
system, (3) exists. Define a projection function as

v ifvel,
Iy (v) = § argmin||v — || if v & U. (4)
pnel

The admissible control adopted at time k is up =
Iy (p(xzr)), where p(z) is a function of state (called a
feedback control policy). Our objective is to find a control
policy ¢(x),Vx € R™ such that v = Iy (p(z)) minimizes
(3). We consider only the control policies which stabilize
the system.

In this paper, we assume the control policy ¢(z) to be
affine linear in x: p(z, o, §) = ax + 5, where « and 3 are
parameters to be optimized. For linear quadratic system,

affine linear control policy is a reasonable and widely used
approximation [22, 5]. Let Vec{M } represent the vector-
ization of matrix M by concatenating all the columns
of M, and “®” represent Kronecker tensor product. Let
0 = [Vec(a)T BT]T. 0 is an (mn + m)-dimensional vector.
Then we have

30(1‘,04,5) = 90(1"79) =F9, (5)

where F = [¢7 1] ® I,,,, and I,,, is m x m identity matrix.
Under a given parameter 0, system dynamic (1) becomes

Thy1 = Axy + BHU<F9) + wg. (6)

The original policy optimization problem reduces to a
parameter optimization problem to find out the optimal
parameter 6* to minimize the performance criterion (3).

3. LEARNING ALGORITHMS

In the section, we present an iterative approach to opti-
mize 6. At each iteration round, a control policy ¢(x,0)
is applied to the system subject to the control set U,
then the system evolves. By observing system behaviors,
performance gradient with respect to # can be estimated
from sample path. Then 6 is updated with a gradient
descent algorithm and a better control policy is obtained.
The key point of our approach lies on estimation of the
performance gradient from a sample path. In the following
we first present the learning algorithm for the performance
gradient.

3.1 Performance gradient

It is well known that dynamic systems can be formulated
as Markov processes. Define the transition function from
state x to a Borel set B as P(B|z), and for ergodic systems
[16], there is a unique invariant probability measure m(B)
such that

(B) = / (dz)P(B|z). (7)

reRn”

For any measurable function f(x), define transition oper-
ator P as

Pi(x) = / P(dyl)/(y). (8)

yeR™

It represents the expected cost at the next time epoch, if
the current state is z, i.e., Pf(x) = E{f(z1)|xzo = x}. The
k-step transition operator is P~:

P* () = / P(dyla)P* f(y)
yeR™

with POf(z) = f(z). Then P¥f(z) = E{f(zx)|vo = x}.

Define an operator A as

Af() = (P*f(w) —n). 9)

k=0

with 1 being long-run average performance defined in (3).
LQG model is an ergodic system, and the above integrals
and limitation exist [13]. For more details about transition
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operator and invariant probability measure of dynamic
systems, one can refer to [13, 24].

From (6) we have
P(dylz) = pu(y — Az — Blly (F0))dy.

The transition function depends on the control parameter
0, thus it is written as P(B|x, 6). For simplicity, we write
cost function f(x,u) = f(z, Iy (F0)) as f(x,d). Therefore,
the original problem is equivalent to an MDP with tran-
sition function P(B|z,0) and cost function f(z,6). The
performance of the MDP is written as n(#). From [8, 24],
we have the performance derivative equation with respect
to the ith element of 0, 6;:

(10)

on(0) _ OP(dy|z,0)
zERP yERn
of(@,0)] . _
—l—aei], =12+ mn+m, (11)

which provides the performance gradient

Vi(6)= / r(dz) [ / VP(dylz, 0)g(y,6) + Vf(x.0)|, (12)

z€R™ yeR®

where the symbol V represents the gradient with respect
to 6. In above equations, g(z, 0) is called the performance
potential [8] (or bias, or relative value) of state x under
control parameter 6. It is defined as

g(m,e) :.Af(l‘ 9)

:IQEHOOE{Z (z,0) = n(0))|zo = x}. (13)

The derivative equation plays an important role in PA and
performance optimization of Markov systems, especially
when the actions at different states are correlated [9]. In
our problem, 6 is the coefficient of the feedback policy,
so the control variables at different states are mutually
decided by the same 6. This is not a standard MDP and
policy iteration is not applicable. However, optimization
with derivative equation is a proper way. There are a num-
ber of learning algorithms based on derivative equation in
[10]. In the paper we only apply the results but not go
deep into the details.

For LQG model, by the chain rule for differentiation, from
(2) and (10) we have

P(dy|x,0) = py(y — Az — Blly (F0))V (y (F0))
BT¢~!(y — Az — BIly(F0))dy ~ (14)
and
Y f(x,0) = 2V(Ily (FO)) DIy (FY). (15)

V(IIy (F)) may not exist because the projection function
(4) is not differentiable on the boundary of control set U.
However, the measure of the boundary is zero, it does not
affect the integral in (12).

From (12), we can apply the technique of changing mea-
sures, which is the basic idea in mportance sampling to

estimate the derivative from sample path. A standard as-
sumption for importance sampling is that if VP(dy|z, 0) >
0, then P(dy|z,0) > 0. The optimal control problem
in the paper satisfies this assumption naturally because
pw(x) > 0,Vz € R", thus P(dy|z,6) > 0 always holds. Let

_ VP(dyl|z,0)
— V(I1y (F9))B ¢~ (y — Az — BILy(F6)). (16)

Then performance gradient (12) becomes

v = [ w(dx>[ [ Lol 0)Paste, 09000
TER™ yeR?
+Vf(x,0)} (17)

From [10], the performance potential g(x, ) can be esti-
mated from a sample path by truncation. Choose a fixed
integer K and estimate g(z,6) by

K—1

9(x,0) = B{Y flax, 0)lwo =z} — Kn(d).  (18)
k=0

From the derivative equation (11), if the potential g(z,6)
is applied, then g(x, 0)+c for any constant ¢ is also applied
to (11), since we have fyGR“ P(dy|z,0) = 1 and therefore

fyeRn %;M = 0. Then the performance potential has

infinite forms which only differ on a constant. We may
ignore the constant K7 (6) in (18) and use its first term as
an estimate:

K-1
0) ~ E{) _ f(zx,0)|z0 = x}.

k=0

(19)

By (17) and (19), with the algorithm in [10] we have
the following estimate of the performance gradient from
a sample path, for given N and K:

1 N*K K
Vﬁ(@) = m 2 $k+1|$k> lzzlf $k+la
+ Vf(zg, 0)], (20)

where V f(z,0) and L(xg41|2zk, ) can be calculated from
(15) and (16). Cao [10] shows that for ergodic systems, we
have

Vn(0) = lim

N —o00,K—00

Vi(0), w.p.1. (21)

3.2 Gradient descent method

So far we propose a simple gradient descent method to

obtain an e-optimal parameter 0.

Algorithm 1. (1) Choose an integers K, simulation length
N, a small positive number § > 0, and 0 < k < 1.
Choose an initial control policy o(z,a(®,3)) =
a@gz + O which stabilizes the system. 60 =
[Vec(a)T (BO)T]T | Choose a sequence of step sizes

7(8) s =0,1,..., satisfying:
ny(s) = 00, Z(,y(s)>2 (22)
=0 s=0

Set s = 0.
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(2) Run the system for N periods under control policy

o(x,0)) = FO©). Estimate VA(0) by (20).

(3) (a) Let 6D = 9() — v()V7(h).

(b) Obtain o>+ by 86+ If |p(A + BalstD))| < 1,
go to the next step; otherwise set (%) = (%)
and go to step 3a. p(M) represents the spectral
radius of a matrix M.

(4) If [|0CFD —0B)|| < 8, set § = D and algorithm
stops; otherwise set s := s+ 1, and go to step 2. || - ||
represents the Lo-norm of a vector.

We consider convergence and optimality of the algorithm.
We give these conditions:

Condition 1. Both #* and 6 are inner points of the
stable region © = {0 : 0 = [Vec(a)™, BT]T,

|o(A+ Ba)| < 1}.

Condition 2. Performance n(f) is strong convex: there
exists a number v > 0 such that

(Vn(0) = V(0")T (0 — 0") > v]|0 — 0|2 (23)

holds for all 4,6 € ©.

This condition is a strengthened form of convexity (Propo-
sition (B.5), p. 679, [6]). Lots of convex functions, i.e.,
quadratic functions, satisfy this condition.

Step 3b is to guarantee the stability of the new parameter
6+ by reducing step size. Since penalty on state vari-
ance T Cz is involved in cost function, thus if the system
is not stable, performance must be very bad. The perfor-
mance gradient must point to the stable region. Therefore,
if the current parameter makes the system stable, there
exists a proper step size to obtain a new parameter under
which the system is still stable. The procedure in Step 3b:
7(8) = k() will stop in finite number of reductions. As
Condition 1 holds, initial parameter #(®) makes the system
stable, then each iteration round obtain a stable control
policy.

Please note that, for any given integer K, (19) is a biased
estimate. Thus V7j(6) is also a biased estimate. Define

2(0) = E{Vi(6)} = lim Vi(6), (24)

and z(8) = Vn(#). Consider convergence of above algo-
rithm, we have the following results:

Lemma 1. If Conditions 1 holds, and K and N are large
enough, Algorithm 1 converges to 6§ satisfying 2(8) = 0.

Proo{f. Denote step size applied in the sth iteration round
as 7(3) = k¥)~y(*) where d(s) is the number of reduction
of step size in Step 3b. From above discussion, it is obvious
that step sizes 4(*) also satisfy condition (22), and the
estimate V7)(6) has finite variance. It is easy to verify that
Hessian matrix V27(#) is bounded. For large enough N
and K, V7j(0) must be a proper descent direction satisfying
conditions in Proposition 3.5 from page 96 of [7]. By this
convergence theorem, and a stable initial parameter as
Condition 1, Lemma 1 is proved. O

Theorem 2. If Conditions 1 and 2 hold, then for any small
number ¢, and a stable initial parameter (°), there exist
a positive integer K, such that for all K > K, |n(6*) —

n(0)| < e

Proof. From definition of () and z(6), we have
=z

lim 2(0) = 2(0).

K—oo

Thus for any small number € > 0, there exists an integer
K, such that for all K > K, we have ||z(0) — 2(0)|| < ¢ for
all 8. Choose ¢ = /ve. Consider Taylor series expansion

of 1(6*) around 6:

n(0*) = n(0) + z(0)T (0" — ) + o(6* — 6). (25)
From Lemma 1,
12O)I] = [|12(6) — 2(0)|| < e. (26)

Then we consider upper bound of ||§*—8||. From Condition
2 we have

V16 = 01 < ((6°) — 2(0))7 (0" - 6)
= —2(0)"(0" —0) <||6" = 0]]]|2(0)]|.
Then

(27)
From (26), (27) and Taylor series expansion (25), we have

In(0%) — ()| < =

— = 28
= (28)
This completes the proof. O

This algorithm is a simple steepest descent gradient
method. Particularly, it’s a good idea to let N increase
when s increases. Since at the beginning of iteration,
the parameter 0 is far away from the optimum, then
the estimates need not be very accurate. When € moves
towards the minimum, N increases and V#(#) becomes
more accurate. This idea saves computation, and is applied
to examples in Section 5.

Different from other approaches, our approach can be ap-
plied to on-line performance optimization of real systems.
By observing system behaviors, we learn the performance
gradient, then obtain a better policy. Repeating the pro-
cedure, the system goes on and its performance improves
step by step. There is no need for exploratory experiments
that may intervene the normal operation of the system.
In order to obtain accurate estimates, the approach re-
quires a long sample path. The on-line property makes the
requirement computationally feasible, particularly for the
optimization of high-speed sampled-data control systems,
in which hundreds of sampled data is obtained in a second
and, hence, the estimation may be implemented promptly.
Batina et al. [2, 3] propose a simulation-based algorithm,
which is looking for a general feedback map from state to
control. Their algorithm can achieve the optimal control
policy with arbitrary accuracy, but has no the on-line
property because of its huge computation and requirement
of exploratory experiments.

4. SPECIAL CASES

In this section, we introduce two special cases: scalar
control set case and positive control set case in which the
above results can be simplified.
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4.1 Case 1: scalar control set

If control variable uy € U C R, then U must be an
interval denoted as U = [b;,by],—c0 < b < b, < 0.
Define a subset of state space: x = {z : F§ € U}. When
x ¢ x, projection function is active, then u = Iy (F0) is a
constant (either b; or b,,). So we have V(IIy (F@)) = 0 for
f X. And for z € x, Iy (F0) = F and V(IIy(F0)) =

Then we have Vf(z,0) = 2FTDF@ and L(y|z,0) =
FTBT(;S Yy — Az — BF0). The gradient equation (17)
becomes

Vi(h) = / r(da)| / L(y|.0) P(dy|z, 0)g(y. 0)

TEX yeR?
+V(z,0)], (29)
and the corresponding estimation equation (20) becomes
1 N-K
n(0) = 1
Vi) = v 1 Z (@)
K

l $k+1‘xk7 Z xk+la +Vf($k7 ) ) (3())

where 1, (z) is an indicator function

1, ifx ey,
Ix(@) = { 0, otherwise. (31)

Then Algorithm 1 can be implemented by using above
equations.

4.2 Case 2: positive control set

If every element of control vector u = [uy, ..., U] T is non-
negative, then U is a positive control set. Each integer
0 < w < 2™ — 1 corresponds to a binary number w =
(wi,wa, ., wm),w; = 0or 1 for all i = 1,...,m. Define
an index set I, = {i : w; = 1}. The control space R™ can

be partitioned into 2™ subsets: R™ = Uglgl V., where

Uy ={u:u; >0foralliée€ I, and u; < 0 otherwise}.
Then we have U = Uom_1.

Define subsets of state space xo = {2 : F0 € ¥ }. Let
M be any matrix with m rows, and I',(M) be a matrix
whose ith row is zero if ¢ ¢ I, and other rows are the
same as M. For z € x, we have

HU(FQ) = Fw(Fe)a
V(I (F9)) = Do (F)T. (32)

Substitute (32) into (20), the estimate of the performance
gradient can be obtained and Algorithm 1 achieves a feed-
back control policy for positive control set case. Optimal
control of LQG with positive control is not well studied
because the control set is not bounded, which may be
hard to handle in traditional approaches. However in our
learning approach, it is settled well without any difficulties.

5. NUMERICAL EXAMPLES

Ezample 1. Scalar control set example:

Table 1. Comparison

Suboptimal polices w(z) n
OLQRU (CEC) ~0.604z 0.689
Toivonen [22] —0.801x — 0.113  0.636
Our approach (Algorithm 1) —0.586x —0.217  0.577

Tpq1 = Axy + Buy + wy,

fz,u) = Cx? + Du?.
where A = 0.983,B = 1,C = 1,D = 1. The covariance
matrix of w is 0.04, control set U = [—0.01, 0.09]. This

example appears in [12].

In the example, a and (8 are two scalars. Initial control
policy can be chosen arbitrary provided it stabilize the
system. For a fair comparison, Algorithm 1 starts from
an arbitrary given parameter: #(9) = [—0.6 0.2]T. Choose
K =500, N = [100,000 x (£%)], where the symbol [[sc]]

represents the nearest integer of z. § = 0.001, 4(*) = %,
k = 0.5. Algorithm 1 terminates at iteration round 41,
and its improvements on performance and control policy
are shown in Figure 1 and 2. The comparison with other
approaches is shown in Table 1. The first row is to apply
OLQRU to the constrained problem. In scalar case, the
policy obtained by CEC [17] is the same as OLQRU. The
second row is a suboptimal policy from Toivonen [22], and
the third line is the policy obtained by Algorithm 1. It
shows that Algorithm 1 achieves the best performance. It is
obvious that when the control set U is not symmetrical, the
optimal policy has a drift from the origin. In our approach,
the unsymmetrical U is involved in learning procedure, so
we have a control policy with drift §. However, such drift
is absent in OLQRU. In Toivonen’s policy, a truncated
Taylor series is used approximately so that the result is
not good enough. The performance of our approach is 16%
better than OLQRU and 9% better than Toivonen’s policy.

—Alg. 3.1

---OLQRU
0.9k

et

S 0.8l

©

£

207

[0]

o

o
)
:

0.5

10 20 30 40
Iteration rounds

Fig. 1. Performance improvement

FEzxample 2. Positive control set example:

Tpy1 = Axy + Bug + wy,
f(z,u) = Cx? +u" Du.

where A = 0.983,B = [-0.5, 1],C = 1,D = [

103
0.7 2|

The variance of w is 0.04.
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Fig. 2. Improvement of parameters

In this example, we take OLQRU as its initial policy, that
is, p(x) = [0.40490 — 0.42040]"z. Step size v = 1/(10s).
Other parameter settings are the same as Example 1.
Algorithm 1 terminates at iteration round 39, and the
feedback control policy is o(z, 0) = [0.4780 —0.4329]Tx +
[0.0548  — 0.0035]T. The performance is 0.091, while
the performance under OLQRU is 0.104. Our approach
achieves 14% improvement.

6. CONCLUSION

The paper presents a learning algorithm for optimization
of LQG problem with constrained control. The iterative
algorithm converges to an e-optimal policy in affine linear
form with arbitrary accuracy. The on-line property makes
the algorithm suitable for implementation on practical sys-
tems. Examples illustrate that the control policy obtained
with Algorithm 1 is better than other suboptimal polices.

The similar idea of the paper can be easily applied to han-
dle optimal control problem of nonlinear systems. In this
case, the assumption of affine linear feedback policy may
not be feasible and an approximation of feedback control
policy with more complex structure becomes necessary.
This may be our future work.
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