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Abstract: This paper presents a stable schooling scheme for multiple autonomous underwater vehicles 
(AUVs) where the number of independent actuators for each vehicle are less than the degrees of freedom 
(DOF). In most of the formation schemes presented so far, the multiple dynamic agents usually have been 
modeled as particle systems whose motions can be expressed as simple double-integrator. Therefore, these 
formation algorithms could not directly apply to the most of actual systems, typically to the case of 
underwater vehicle systems whose dynamics are highly nonlinear. Moreover, the AUVs considered in this 
paper are underactuated that each vehicle’s 6 DOF motion is steered only by one thruster, one rudder, and 
one stern plane.  For this kind of multiple underwater vehicles, proposed schooling scheme can guarantee 
the stability of the formation and further guarantee the velocity and heading matching of the group while 
keeping obstacle avoidances. Numerical simulations are carried out to illustrate the effectiveness of the 
proposed schooling scheme. 

1. INTRODUCTION 

Recently, the multiple AUVs are being widely applied in the 
applications of various underwater inspections (Guo et al., 
2004; Edwards et al., 2004; Fiorelli et al., 2006; Sousa and 
Pereira, 2002). Compare with traditional inspections using 
single ROV (Remotely Operated Vehicle), AUV, or some 
other underwater equipment, using multiple AUVs has great 
benefits in efficiency improvement and cost saving. Since the 
dynamics of the underwater vehicles are highly nonlinear and 
further according to the vehicles mechanical restricting 
characteristics such as underactuation in flying AUVs, it is 
usually difficult to derive satisfactory tracking control 
scheme for each vehicle. For this reason, formation control 
for these multiple underwater vehicles now emerges as a 
tough challenge in the control community. 

In this paper, we consider the schooling of multiple torpedo-
type AUVs where only three control inputs (surge force, yaw 
and pitch moments) are available for each vehicle’ 6DOF 
motion. In fact, most of the present commercial AUVs, such 
as the REMUS AUVs (Pestero, 2001) and the HUGIN AUVs 
(Marthiniussen et al., 2004), all have this kind of mechanical 
structure. By now, various formation algorithms have been 
presented for multiple agent systems (Reynolds, 1987; 
Leonard and Fiorelli, 2001; Fiorelli et al., 2006; Saber and 
Murray, 2002, 2003; Saber, 2006; Do, 2007). However, in 
these works, all of the dynamical agents are modeled as 
certain particle system expressed as simple double-integrator. 
Besides these works, some nonlinear models are also used for 
underwater vehicles (Dubar and Murray, 2002) and wheeled 
robots (Fax and Murray, 2004). In both of Dubar and Murray 
(2002) and Fax and Murray (2004), the nonlinear dynamics 
are fully actuated. Therefore, all of these results cannot be 
directly applicable to the schooling of multiple underactuated 
vehicles. 

On the other hand, for each of these underactuated vehicles, 
since there is a non-integrable constraint in the acceleration 
dynamics (Reyhanoglu, 1997), the underwater vehicles do 
not satisfy the Brockett’s necessary condition (Brockett et al., 
1983) and therefore cannot be asymptotically stabilizable to a 
desired equilibrium point using traditional time-invariant 
continuous feedback laws (Reyhanoglu, 1997; Bacciotti and 
Rosier, 2005). Moreover, the vehicle’s dynamics is not 
transformable into a driftless chained form (Murray and 
Sastry, 1993), therefore the tracking algorithm presented in 
(Jiang and Nijmeijer, 1999) cannot be directly applicable to 
the tracking of these underactuated vehicles. To overcome 
this kind of difficulty, in this paper we apply a certain polar 
coordinates transformation to convert the vehicle’s model to 
a form which can be easily handled. 

The common method of formation algorithms currently is to 
apply certain potential function to conduct the group behavior 
(Leonard and Fiorelli, 2001; Fiorelli et al., 2006; Saber and 
Murray, 2002, 2003; Saber, 2006; Do, 2007). The potential 
function method has been initially used in the robotics for 
mobile robot motion planning (Latombe, 1991; Rimon and 
Koditschek, 1992), and, recently, has been applied in the 
formation of multiple agent systems. In this paper, similar to 
Saber (2006), the potential function consists of three different 
components: one is for the interactions between vehicles, the 
second is for the group navigation, and the last one is for the 
obstacle avoidance. Proposed formation scheme guarantees 
asymptotic stability of the vehicles schooling and the velocity 
and heading matching of the group while keeping obstacles 
avoidance. 

2. AUV’S DYNAMICS MODEL 

In this paper, we consider a group of n torpedo type AUVs 
where only the surge force and the yaw moment are available 
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for the vehicle’s 3D1 horizontal motion (Prestero, 2001; Lee 
et al., 2003). For this kind of underactuated underwater 
vehicles, their horizontal model can be expressed as 
following (Fossen, 2002) 
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where ni ,,1L= , ),( ii yx  is the coordinate of ith vehicle and 
iψ  is yaw angle both in the earth-fixed frame, and ii vu ,  and 

ir  denote the velocities in the surge, sway and yaw directions 
in the vehicle’s body-fixed frame. )(),( ⋅⋅ viui ff  and )(⋅rif  
denote the vehicle’s nonlinear dynamics including hydrody-
namic damping, inertia and added mass terms each in the 
surge, sway and yaw directions. The surge force uiτ  and the 
yaw moment riτ  are two available control inputs with 
constant control gains uib  and rib . 

Remark 1. In general, the underwater vehicles are designed 
to have non-symmetry in y-z plane. This means that the 
vehicle’s backward dynamics is not exactly equal to its 
forward dynamics. Moreover, because of high nonlinearity, 
the exact mathematical model of the vehicle dynamics is hard 
to be obtained and usually a simplified model is applicable in 
most of practical applications. And this kind of simplification 
highly depends on the vehicle’s forward speed. This indicates 
that, for given nonlinear dynamics )(),( ⋅⋅ viui ff  and )(⋅rif , 
they are validated under certain restricting conditions such as 

0min >≥ uui  (Fossen, 2002). For this reason, in the rest of 
this paper, we only consider the case where 0>iu  for all 
time. 

As aforementioned, for the underactuated vehicles, since the 
sway force is unavailable, most difficulty in the tracking is 
how to properly handle the vehicle’s sway dynamics. To deal 
with this problem, this paper introduces a polar coordinates 
transformation which is defined in the vehicle’s body-fixed 
frame as following 

aiiliiili ψψψvuu +=+= ,22 ,                                           (2) 

where )/arctan( iiai uvψ =  is the polar angle or so-called 
sideslip angle (Fossen, 2002). Since 0>iu , aiψ  is smooth in 
the domain )2/,2/( ππ− . Differentiating the first equation of 
(2) and further according to ailii ψuu cos=  and lii uv =  

aiψsin , we have 

aiiaiili ψvψuu sincos &&& += .                                                   (3) 

Using polar coordinates liu  and liψ , the vehicle’s kinematics 
can be rewritten as  

liliililii ψuyψux sin,cos == && .                                           (4) 

Consequently, the vehicle model (1) can be rewritten as 

                                                 
1 For the convenience of discussion, in this paper we only consider the 
vehicle’s 3 DOF motion in the horizontal plane instead of its 6 DOF motion. 
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It is easy to see that (5) is in the form where the vehicle’s 
sway dynamics can be kinematically handled by the surge 
force uτ . 

3. VEHICLES SCHOOLING RULES 

3.1 Geometry of Schooling 
In this paper, we consider a group of n vehicles, where each 
vehicle’s dynamics can be expressed as (1). For these 
multiple vehicles, in this paper, we model its geometry of the 
schooling using Latticeα − (Saber, 2006), which satisfies the 
following sets of constraints 

niqNjdqq iαij ,,1),(,|||| L=∈∀=− ,                          (6) 

where 2),( ℜ∈= iii yxq , |||| ⋅  denotes Euclidean norm, αd  is 
the desired distance between vehicles in the schooling, and 

)( iqN  is the neighbor of ith vehicle defined as following 

},,1,||:||{)( njrqqqqN αijji L=<−= ,                             (7) 

where 0>αr  is a design parameter. 

Remark 2. For the convenience of discussion, in this paper, 
we assume all vehicles in the group have the same dynamics 
as (1) with the same neighboring radius αr . Further, the 
desired distances between the vehicles in the same neighbors 
are all equal to αd . 

In this paper, the potential function for the configuration of 
the schooling is defined as following similar to Saber (2006) 

∑ ∑
∈
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2
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where σ|||| ⋅  denotes σ -norm defined as 

εεσ /)1||||1(|||| 2 −⋅+=⋅ ,                                                   (9) 

with 0>ε  design parameter. In (8), the attractive/repulsive 
potential )(ξθα  is defined as following 
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dssφξθ 2 )()( ,                                                             (10) 
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where 0>≥ αα ab , and ααααα babac 4/|| −=  are design 
parameters, σαασσαασ ddrr ||||,|||| == , and the bump function 
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where )1,0(∈h  is a design parameter. 

3.2 Group Movement 
In so far the literature, the group movements usually have 
been led by certain leaders. Here the leaders can be the 
specific actual agents (Guo et al., 2004; Edwards et al., 2004), 
or are the certain virtual ones (Fiorelli et al., 2006; Leonard 
and Fiorelli, 2001; Saber, 2006). By adding certain restricting 
conditions between these leaders and the corresponding 
followers, the group movements can be designed through 
designing the reference paths for these leaders. In this paper, 
we apply the virtual leader-follower concept, and the 
corresponding potential function is given as following 

mkqqθV
k j

σkvjββ
k

,,1,)||(||
2
1

Ω
, L=−= ∑ ∑

∈
,                     (13) 

where nm ≤  is the number of the virtual leaders needed to 
design the group movement, kΩ  denotes a subgroup of the 
vehicles following the kth virtual leader kvq , , and have 1Ω  

},,1{Ω nm LL =∪∪  and },,1{,0ΩΩ mjiji L∈≠∀=∩ . 
Moreover, in (13), the attractive/ repulsive potential )(ξθβ  
has the same structure as )(ξθα  defined in (10) and (11) with 
the subscript letter α  replaced by β . 

Remark 3. Also, for the convenience of discussion, we 
assume that the desired distances between the virtual leaders 
and the corresponding vehicles (in the same subgroup) are all 
equal to βd , and the neighboring radiuses of kΩ  with 

mk ,,1L=  are all equal to βr  . Moreover, all of m virtual 
leaders are assumed to have the same velocity of lvu  and 
heading lvψ . 

3.3 Obstacles Avoidance 
In this paper, the obstacles are modeled as in Fig. 1. Inside of 
the circle centered at ith vehicle iq  with γr  as radius, each 
obstacle block is modeled as the point, which is the closest 
one from the center point iq . In Fig. 1, B1 and B2, which are 
two parts of the same obstacle block B, are considered to be 
independent from each other and modeled as different points 

2,iq  and 3,iq . 

The potential function for the obstacles avoidance is chosen 

as following 

 niqqθV
i p

σipiγγ
oi

,,1,)||(||
2
1

Ω
, L=−= ∑ ∑

∈
,                       (14) 

where oiΩ  is the subgroup of obstacle points piq ,  included in 
the circle centered at the ith vehicle iq  with γr  as radius as. 
And similar to the previous subsection, the attractive/ 
repulsive potential )(ξθγ  is chosen to has the same structure 
as )(ξθα  defined in (10) and (11) with the subscript letter α  
replaced by γ . 

Assumption 1. 0, =piq& . This means that all of the obstacles 
considered in this paper are position fixed. 

Assumption 2. All of the virtual leaders are designed to 
move away from the obstacles such that |||| , pkv qq − ∞→  as 

∞→t for all },,1{ mk L∈  and op Ω∈  with L∪= 1ΩΩ oo  
onΩ∪ . Moreover, the virtual leaders are also designed to 

satisfy following inequalities 

( ) mkψyψx
kj

vkjvkj ,,1,0sincos
Ω

L=∀≤+∑
∈

.                  (15) 

Remark 4. If we locate the virtual leader kvq ,  at the central 
point of the geometry of the subgroup kΩ , then we have 
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where km  is the number of the vehicles in the neighbour kΩ . 
From (16), it is easy to see that 0ΩΩ ==∑∑ ∈∈ kk j kjj kj yx , and 
therefore (15) satisfies. 

4. STABLE FORMATION CONTROL DESIGN 

The purpose of this paper is to propose a stable schooling 
scheme for multiple underactuated AUVs and to guarantee 
the velocity and heading matching of the schooling while 
keeping obstacles avoidance. This kind of control objective 
coincides with the Reynolds three heuristic rules (Reynolds, 
1987). 

For the two inputs second-order nonlinear system (5), we 
solve the schooling problem using general backstepping 
method (Krstic et al., 1995). 

Step 1. In this step, we consider the following Lyapunov 
function candidate 
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where 0,,, >uγβα γγγγ  are certain weighting factors. 

Differentiating (17) and substituting (8)~(14) into it, we have 
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Fig. 1. Obstacle modeling. 
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where vlilivvliliv ψψψuuu −=−= ,  and 

( )∑ ∑
∈

+−=
i p

vipvippiiγvγo
oi

ψyψxqqφuγ
Ω

2
, sincos)||(||Λ . 

In the above expansion, we use the relation of ∑ ∑ ∈ ⋅k j kΩ )(  
∑ ⋅= i )( . This is induced from, as aforementioned, ∪∪L1Ω  

=mΩ },,1{ nL  and },,1{,,0ΩΩ mjiji L∈∀=∩ .  

Remark 5. In this paper, we choose the parameters γd  and 
γr  as γγ rd = . Therefore, according to (10)~(12), we get that 

0)||(|| 2
, <− piiγ qqφ  if γpii rqq <− |||| , , and )||(|| 2

, piiγ qqφ −  
0=  if γpii rqq ≥− |||| , . 

Further, substituting (5) into (18), we have 

o
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vaiririliv ψψeαψ )( && ,                                     (19) 

where iriri rαe −= , and riα  is the stabilizing function (Krstic 
et al., 1995) for the virtual input ir . 

According to (19), in the Step 1, we choose the control laws 
as following 

( )[ ]uilivuiuaiviaiuivaiuiui ukγψfψfuψbτ Λsincossec 11 +−−−= −− & , 
                                                                                           (20) 

liv

liv
iψvailiviψri ψ

ψψψψkα )2/sin(Λ−+−−= && ,                        (21) 

where 0, >iψui kk  are design parameters. Substituting (20) 
and (21) into (18), we get 

( ) o
i

livriliviψlivui ψeψkukV Λ22
1 +−−−= ∑& .                             (22) 

Step 2. In this step, we will derive the control law for riτ . 
Rewrite the final equation of (5) as following 

ririririri τbfαe −−= && .                                                          (23) 

According to (19) and (23), we choose the control law for riτ  
as following 

( )livriririririri ψfαekbτ −−+= − &1 .                                         (24) 

Theorem 1. Consider the schooling of multiple underactuat-
ed underwater vehicles whose dynamics can be expressed as 
(1). If we choose the formation control laws as (20) and (24), 
then all of the vehicles in the group are guaranteed to 
asymptotically move with the same velocity and heading 
while keeping obstacles avoidance. 

Proof. Consider the following Lyapunov function candidate 

∑+=
i

rieVV 2
12 2

1 .                                                              (25) 

Differentiating (25) and substituting (23), (24) into it, we get 

( ) o
i

ririliviψlivui ekψkukV Λ222
2 +−−−= ∑& .                              (26) 

On the other hand, since ∞→− ∞→tpkv qq |||| ,  for all ,1{∈k  
}, mL  and op Ω∈  (Assumption 2), after a certain period of 

( 00 >≥ tt ), the following inequality can always be satisfied 

( ) 0sincos >+= vkpvkpvkpkp ψyψxuqq & .                             (27) 

Since 0>vu , (27) can be rewritten as following form 

0)sincos(
Ω Ω
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∈ ∈k j p

vkpvkp
k oi

ψyψx .                               (28) 

Further rewriting (15) as following 

( ) 0sincos)(
Ω

≤+∑ ∑
∈k j

vkjvkj
k

ψyψxpN ,                               (29) 

where )( pN  is the number of p  in oiΩ . Subtracting (29) 
from (28), we have 

( ) 0sincos
Ω

>+∑ ∑
∈i p

vipvip
oi

ψyψx .                                       (30) 

Moreover, since 0)( ≤⋅γφ  with 0, >vγ uγ , we can get that 
oΛ  is always non-positive. Consequently, according to (26), 

we have 02 ≤V& , and 002 ==== rilivliv eψuiffV& .           

Remark 6. In practice, Assumption 2, particularly (15) may 
impose certain restricting conditions on the selection of the 
reference paths for virtual leaders, and the strictness of the 
restrictions might depend on the obstacles’ geometry and 
their arrangements. How to choose the reference paths for the 
virtual leaders is out of this paper and will be considered in 
our future works.  
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5.  NUMERICAL SIMULATIONS 

In this section, we carry out certain numerical simulations to 
demonstrate the effectiveness of proposed schooling scheme. 
In the simulations, the group consists of three vehicles, each 
of which is modelled as 6DOF nonlinear dynamics of ISiMI 
AUV (Lee et al., 2003), which has the same mechanical 
structure as REMUS AUV (Prestero, 2001). For this kind of 
AUV, we use the saturation conditions as Nτui 50|| ≤  and 

deg30|| ≤riτ  in the simulation. And the initial conditions 
are: myx 1)0()0( 11 == , )0()0()0(,1.0)0( 1111 rvuradψ ===  

====== )0()0(,3.0)0(,1)0(,5)0(,0 22222 vuradψmymx  
)0()0(,2)0(,5)0(,1)0(,0)0( 333332 vuradψmymxr =====

 0)0(3 == r . The control gain parameters are taken as =uik  
3,2,1,5.0,0.1 === ikk riiψ . In the simulation, we design one 

virtual leader whose reference path is taken as: for the first 
30s, deg90,/5.1 == vv ψsmu , then deg0,/5.1 == vv ψsmu . 

5.1  Selection of Potential Functions 
For potential function αV , the parameters are taken as =αa  

2.0,9.0,312,25,50 ===== εhmdmrb ααα . For βV , 
2.0,9.0,12,50,50 ====== εhmdmrba ββββ , finally 

for γV , we take 6.0,6,950,200 ===== hmdrba γγγγ , 
15.0=ε . From these parameters, it is easy to verify the 

geometry of the desired schooling of three vehicles is an 
equilateral triangle with the virtual leader at its center. 
Selected potential functions are depicted in Fig. 2. 

5.2  Selection of Weighting Factors 
In (17), the weighting factors βα γγ ,  and γγ  are taking two 
different roles in the schooling. One is scaling function and 
the other one is that these parameters reflect certain priorities 
between the potential functions βα VV ,  and γV  in different 
situations. For example, in the case where vehicles approach 
to certain obstacles, the priority of γV  will be higher than that 
of other two potentials. In the simulation, these parameters 
are chosen as: if γip rq ≤ , ==== uγβα γγγγ ,002.0,0001.0  

25.0 , else 003.0== βα γγ , 3.0,002.0 == uγ γγ . 

5.3  Simulation Results 
Simulation results are presented in Fig. 3~6. Fig. 3 shows the 
vehicles’ schooling motions with obstacles avoidance. In the 
simulation, we take mrβ 50=  which is much more larger 
than )25( mrα . This is for the purpose of strengthening the 

attractive characteristic of βV . From Fig. 4, we can see that 
the schooling of the vehicles converge to an equilateral 
triangle with the virtual leader at the centre as being desired. 
Fig. 5 shows the velocity and heading matching, from which 
we can see that the velocity and heading tracking in the polar 
frame are all asymptotically stable. Finally, the histories of 
proposed control inputs are plotted in Fig. 6. 

6. CONCLUSIONS 

This paper presents a stable schooling scheme for multiple 
underactuated AUVs, where only the surge force and yaw 
moment are available for the vehicle’s 3D horizontal motion. 
Firstly, using certain polar coordinates transformation, we 
transform the vehicle’s dynamics to a form where the sway 
dynamics can be handled by surge force. Upon this converted 
nonlinear model, a stable schooling scheme is proposed. 
Constructed potential function consists of three parts: one for 
the interactions between vehicles, the second one is for the 
group movement, and the final part is for the obstacle 
avoidances. The proposed scheme guarantees the stability of 
the schooling and further guarantees the velocity and heading 
matching of the group. However, the schooling scheme only 
guarantees a certain local minimum that 0→ijq&  instead of 

αij dq → . It is of interest in our future works to upgrade the 
result of this paper to that can guarantee the global minimum 
of the schooling. 

 
Fig. 2. Potential functions. 

Fig. 3. Trajectories of the vehicles in the schooling with obstacle avoidances. 
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Fig. 4. Geometry of the schooling. 

 
Fig. 5. Velocity and heading matching. 

 
Fig. 6. Corresponding control inputs. 
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