
Stochastic Iterative Approximation
for Parallel Rollout and Policy Switching

Hyeong Soo Chang ∗

∗ Department of Computer Science and Engineering, Sogang
University, Seoul, Korea (Tel: 82-2-705-8925; e-mail:

hschang@sogang.ac.kr).

Abstract: This paper considers stochastic iterative computation methods for approximately
computing parallel rollout and policy switching policies, in the context of improving all available
heuristic policies, for solving Markov decision processes and analyzes the convergence of the
computation methods.

1. INTRODUCTION

Markov decision process (MDP) models (see, e.g., [4] [1]
for substantial discussions) are widely used for modeling
sequential decision-making problems that arise in engi-
neering, economics, computer science, and the social sci-
ences, etc. Consider an MDP M = (X, A, P, R) with a
finite state set X , a finite action set A, a bounded cost
function C : X × A → R, and a transition function P
that maps {(x, a)|x ∈ X, a ∈ A} to the set of probability
distributions over X . We denote the probability of making
a transition to state y ∈ X when taking action a ∈ A in
state x ∈ X by P a

xy. For simplicity, we assume that every
action is admissible in every state.

Let Π be the set of all stationary policies π : X → A.
Define the value of a policy π ∈ Π with an initial state
x ∈ X :

V π(x) = E

[∞∑
t=0

γtC(xt, π(xt))
∣∣∣∣x0 = x

]
, x ∈ X,

where xt is a random variable denoting state at time t and
γ ∈ (0, 1) is a discount factor.

Suppose that we have a nonempty set Δ ⊆ Π of heuristic
policies for the control of the MDP M . The following
two multi-policy improvement methods (called parallel
rollout and policy switching [2]) provide a policy whose
performance is no worse than any policy in Δ, respectively.
We formally define a parallel rollout policy πpr as

πpr(x) ∈ argmin
a∈A

{
C(x, a) + γ

∑
y∈X

P a
xy min

π∈Δ
V π(y)

}
(1)

for x ∈ X and define a policy switching policy πps as
πps(x) ∈ argmin

π∈Δ
(V π(x))(x), x ∈ X. (2)

In words, at each state x ∈ X , the policy switching policy
prescribes the action πps(x) prescribed by the policy that
achieves minπ∈Δ(V π(x)). It has been shown [2] that

V πpr(x) ≤ min
π∈Δ

V π(x), x ∈ X

and similarly,
V πps(x) ≤ min

π∈Δ
V π(x), x ∈ X.

A stochastic iterative variant of the well-known policy
iteration (PI) algorithm [4] for solving MDPs and its
convergence have been studied by Tsitsiklis based on a
single policy improvement in an “optimistic” way [6]. The
problem context is different here from that of Tsitsiklis.
Tsitsiklis’ method is for computing an optimal policy
in the entire set Π. It is often true that for a given
problem, we already have a set of some heuristic policies
available (for on-line control in some cases). For example,
for the multiclass-scheduling problem with stochastically
arriving prioritized tasks with deadlines, the “earliest-
deadline-first” and “static-priority” heuristics are available
candidate policies in hand for the scheduling decision. It
may even be the case that our heuristic policies are such
that each policy is near-optimal over some part of the state
space. In this case, the decision maker may well wish to
combine those policies to develop a policy that somehow
improves all of the heuristic policies. Parallel rollout and
policy switching have been studied in this context [2] [3]
and this paper considers stochastic iterative computation
methods, based on the idea of Tsitsiklis, for approximately
computing parallel rollout and policy switching policies
and analyzes the convergence of the computation methods.

Even though the optimistic PI considered in [6] converges
to an optimal policy π∗, due to the very optimistic com-
putation, a policy φt ∈ Π generated at iteration t in the
optimistic PI does not necessarily improve φt−1 unlike
the monotonicity of the policies in the original PI. In
other words, it is not necessarily true that V φt(x) ≤
V φt−1(x), ∀x ∈ X , which means that after t-iterations, it
cannot be guaranteed for φt to improve the policies gener-
ated at the previous iterations. Furthermore, it appears
nontrivial to analyze the relative error bound between
V φt(x) and V π∗

(x) for x ∈ X and no analysis has been
provided for such a finite-time bound of the optimistic
PI. This paper provides a finite-time error bound between
the value of the approximate parallel rollout policy (policy
switching policy) and minπ∈Δ V π(x), x ∈ X .

2. STOCHASTIC ITERATIVE COMPUTATION

Let B(X) be the space of real-valued bounded functions
on X . We define an operator T : B(X) → B(X) as

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15475 10.3182/20080706-5-KR-1001.2014

T (Φ)(x) = min
a∈A

{
C(x, a) + γ

∑
y∈X

P a
xyΦ(y)

}

for Φ ∈ B(X), x ∈ X and similarly, an operator Tπ :
B(X) → B(X) for π ∈ Π as

Tπ(Φ)(x) = C(x, π(x)) + γ
∑
y∈X

P π(x)
xy Φ(y), x ∈ X

for Φ ∈ B(X). It is well known (see, e.g., [4]) that for
each policy π ∈ Π, there exists a corresponding unique
Φ ∈ B(X) such that for x ∈ X ,

Tπ(Φ)(x) = Φ(x) and Φ(x) = V π(x).

2.1 Parallel Rollout

Monte Carlo policy evaluation Based on the parallel-
rollout multi-policy improvement method in (1), we con-
sider the following optimistic variant of it: at each iteration
t ≥ 0, we have available value functions V π

t , π ∈ Δ, defined
over X and a value function Jt defined by

Jt(x) = min
π∈Δ

V π
t (x), x ∈ X.

Let μpr
t ∈ Π be a corresponding greedy policy such that

Tμpr
t

(Jt)(x) = T (Jt)(x), x ∈ X. (3)

For each policy π ∈ Δ starting with each state x ∈ X , we
generate a corresponding sample path over infinite horizon
starting with state x and observe its cumulative discounted
cost equal to V π(x) + wπ

t (x), where wπ
t (x) is a zero-mean

noise. We then update V π
t , π ∈ Δ, (synchronously at each

state) by

V π
t+1(x) = (1 − αt)V π

t (x) + αt (V π(x) + wπ
t (x)) , x ∈ X,(4)

where αt is a deterministic scalar stepsize parameter.
Note that E[wπ

t (x)|Ft] = 0 for any x ∈ X , where Ft

denotes the history of the algorithm up to and including
the point where V π

t , π ∈ Δ, has become available, but
before simulating the sample paths that will determine the
next update. wπ

t (x) is a function of the random variables
contained in Ft+1. The variance of wπ

t (x) conditioned on
Ft is bounded by some constant because there are finitely
many policies and states. Furthermore, for each π ∈
Δ, wπ

t (x) over t are independent identically distributed
random variables.

The function V π
0 can be set to be an arbitrary function

in B(X). Because the cumulative discounted cost for
any sample path is bounded such that maxx∈X |V π(x) +
wπ

t (x)| ≤ maxx∈X,a∈A |C(x, a)|/(1 − γ), we better choose
V π

0 such that |V π
0 (x)| ≤ maxx∈X,a∈A |C(x, a)|/(1 − γ). In

the special case where V π
0 (x) = 0, x ∈ X for all π ∈ Δ and

αt = 1/(t+1), each V π
t (x), π ∈ Δ, is equal to the average of

the observed cumulative costs of t independently generated
sample paths that start at x, and converges to V π(x) for
all x ∈ X as t → ∞ and if we apply the multi-policy
improvement (1) after the convergence, we would have the
original parallel rollout method.

This stochastic iterative algorithm is “conceptual” because
we cannot simulate over infinite horizon in practice. As in
the remark given in Section 6 in [6], we can simulate each

policy over a finite but “long” horizon to obtain the infinite
horizon trajectory cost. As the horizon size increases, due
to the effect of the discount factor, the finite horizon
approximation becomes a very close approximation to the
infinite horizon trajectory cost. Indeed, the effectiveness of
the parallel rollout policy implemented with the average
of the observed cumulative costs of a fixed number of
independently generated sample paths over a finite horizon
has been shown in the context of on-line control for MDPs
in [2].

Alternatively, we can consider only problems with a zero-
cost absorbing state or letting the simulation process ter-
minate with probability γ at each stage, and to accumulate
undiscounted costs [6].
Theorem 1. Assume that

∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞.

Then, for any x ∈ X ,

lim
t→∞V μpr

t (x) ≤ min
π∈Δ

V π(x).

We will use the following lemma at several places for the
proofs throughout the present paper:
Lemma 2.1. Given π ∈ Π and τ ∈ R, suppose that there
exists Φ ∈ B(X) for which

Tπ(Φ)(x) ≤ Φ(x) + τ, x ∈ X. (5)

Then, V π(x) ≤ Φ(x) + τ
1−γ for all x ∈ X .

Proof: By successive applications of the Tπ-operator to
both sides of (5) and the monotonicity property of the
operator, we have that for all x ∈ X ,
lim

n→∞T n
π (Φ)(x) ≤ Φ(x) + lim

n→∞ τ(1 + γ + γ2 + · · · + γn−1).

It is well-known that Tπ is a contraction mapping in
B(X) and that iterative application of Tπ on any initial
value function converges monotonically to the fixed point
V π. Therefore, limn→∞ T n

π (Φ)(x) = V π(x), x ∈ X , which
proves the lemma.

Proof of Theorem 1: The parts of the proof follows the
proof idea of Proposition 1 in [6].

For any x ∈ X and any π ∈ Δ,

Tπ(V π
t+1)(x)

= C(x, π(x)) + γ
∑
y∈X

P π(x)
xy [(1 − αt)V π

t (y)

+αt(V π(y) + wπ
t (y))]

= C(x, π(x)) + (1 − αt)γ
∑
y∈X

P π(x)
xy V π

t (y)

+αtγ
∑
y∈X

P π(x)
xy (V π(y) + wπ

t (y))

= Tπ(V π
t)(x) − αtγ

∑
y∈X

P π(x)
xy V π

t (y) − αtC(x, π(x))

+αtC(x, π(x)) + αtγ
∑
y∈X

P π(x)
xy (V π(y) + wπ

t (y))

= Tπ(V π
t)(x) − αtTπ(V π

t) + αtTπ(V π)(x)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15476

+αtγ
∑
y∈X

P π(x)
xy wπ

t (y)

= (1 − αt)Tπ(V π
t)(x) + αtV

π(x) + αtγ
∑
y∈X

P π(x)
xy wπ

t (y)

= (1 − αt) (Tπ(V π
t)(x) − V π

t (x)) + (1 − αt)V π
t (x)

+αt(V π(x) + wπ
t (x)) + αtγ

∑
y∈X

P π(x)
xy wπ

t (y) − αtw
π
t (x)

= V π
t+1(x) + (1 − αt) (Tπ(V π

t)(x) − V π
t (x))

+αt

(
γ
∑
y∈X

P π(x)
xy wπ

t (y) − wπ
t (x)

)
.

We have established that for any x ∈ X and any π ∈ Δ,
Tπ(V π

t+1)(x) − V π
t+1(x) = (1 − αt)(Tπ(V π

t)(x) − V π
t (x)) +

αtη
π
t (x), where ηπ

t (x) = γ
∑

y∈X P
π(x)
xy wπ

t (y)−wπ
t (x). Let

Xπ
t (x) = Tπ(V π

t)(x) − V π
t (x), x ∈ X . Then from the

standard results on convergence of stochastic approxima-
tions [1, Chapter 4], Xπ

t (x) updated with
Xπ

t+1(x) = (1 − αt)Xπ
t (x) + αtη

π
t (x)

converges to zero with probability one. Therefore, we have
that w.p. 1 (with probability 1) for any x ∈ X and any
π ∈ Δ,

lim
t→∞ Tπ(V π

t)(x) − V π
t (x) = 0,

which implies that for every ε > 0, there exists a time t(ε)
such that for all x ∈ X and π ∈ Δ,

|Tπ(V π
t)(x) − V π

t (x)| ≤ ε, ∀ t ≥ t(ε). (6)

Because of the monotonicity of Tπ-operator and Jt(x) =
minπ∈Δ V π

t (x), x ∈ X ,
Tπ(Jt)(x) ≤ Tπ(V π

t)(x), x ∈ X, π ∈ Δ

and
T (Jt)(x) ≤ Tπ(Jt)(x), x ∈ X, π ∈ Δ.

Therefore, for any x ∈ X ,
T (Jt)(x) − min

π∈Δ
V π

t (x) ≤ ε, ∀ t ≥ t(ε).

We have that for every ε > 0, there exists a time t(ε) such
that

max
x∈X

(T (Jt)(x) − Jt(x)) ≤ ε, ∀ t ≥ t(ε). (7)

From the definition of μpr
t , Tμpr

t
(Jt)(x) = T (Jt)(x), x ∈ X ,

we have that
Tμpr

t
(Jt)(x) ≤ Jt(x) + max

x∈X
(T (Jt)(x) − Jt(x)) , x ∈ X,

which implies that by Lemma 2.1 and (7), for any x ∈ X ,

V μpr
t (x) ≤ Jt(x) +

maxx∈X (T (Jt)(x) − Jt(x))
1 − γ

≤ Jt(x) +
ε

1 − γ
, ∀ t ≥ t(ε). (8)

From (6), for any π ∈ Δ, V π
t (x) − Tπ(V π

t)(x) ≤ ε for all
t ≥ t(ε) so that by Lemma 2.1

V π
t (x) ≤ V π(x) +

ε

1 − γ
, x ∈ X, ∀ t ≥ t(ε).

Therefore,

min
π∈Δ

V π
t (x) ≤ min

π∈Δ
V π(x) +

ε

1 − γ
, x ∈ X, ∀ t ≥ t(ε). (9)

Combining (8) and (9),

V μpr
t (x) ≤ min

π∈Δ
V π(x) +

2ε

1 − γ
, x ∈ X, ∀ t ≥ t(ε). (10)

Because we can choose t(ε) for any ε > 0 arbitrarily close
to zero, we have the desired convergence. �

The algorithm we studied generates a sample path from
every initial state at each iteration. We can choose a
single state x, randomly, uniformly, and independently
from everything else, and generate a single path starting
from x. We then update V π

t (x), π ∈ Δ, only and make no
change on V π

t (x′), x′ 	= x. This variant of the previously
presented algorithm also converges uniformly over X in the
sense that limt→∞ V μpr

t (x) ≤ minπ∈Δ V π(x), x ∈ X . See
the related discussion in Section 3 in [6]. We also remark
that the iterative computation given as

Ṽt+1(x) := (1 − αt)Ṽt(x) + αt(V μpr
t (x) + wμpr

t (x)), x ∈ X,

converges such that
lim sup

t→∞
Ṽt(x) ≤ min

π∈Δ
V π(x), x ∈ X.

We skip the details as the arguments are straightforward
applications of the parts in the proof of Theorem 1. The
following corollary on the finite-time bound can also be
stated with the slight change of the proof of Theorem 1:
Corollary 2.1. For any t ≥ 0 and x ∈ X , V μpr

t (x) ≤
minπ∈Δ V π(x) + 2 maxπ∈Δ,x∈X |Tπ(V π

t)(x)− V π
t (x)|/(1 −

γ).

TD(λ)-based policy evaluation The previous section dis-
cussed a stochastic iterative parallel-rollout computation
method where the cumulative cost of a sample path is
obtained by Monte Carlo simulation. We extend the re-
sult of the previous section into the case where the well-
known TD(λ) algorithm [5] is used for policy evaluation,
instead of Monte Carlo simulation as Tsitsiklis has done
for optimistic PI [6].

The stochastic iterative computation of parallel rollout
with TD(λ) is the same to the previous description except
that (4) is replaced by the following: for π ∈ Δ,

V π
t+1(x) =

(1 − αt)V π
t (x) + αt(1 − λ)Θ(x) + αtw

π
t (x), x ∈ X,(11)

where the value function Θ defined over X is obtained by

Θ(x) =

(∞∑
k=0

λkT k+1
π (V π

t)

)
(x), x ∈ X

and λ ∈ [0, 1) (the λ = 1 case corresponds to the update
rule of the previous section). Note that we are abusing
the notation for the noise; here wπ

t (x) is a zero-mean noise
that reflects the difference between the observed “temporal
differences” and their expected values.
Theorem 2. Assume that

∞∑
t=0

αt = ∞,
∞∑

t=0

α2
t < ∞.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15477

Then, for any x ∈ X ,

lim
t→∞ V μpr

t (x) ≤ min
π∈Δ

V π(x).

Proof: Let βπ
t = maxx∈X |Tπ(V π

t)(x) − V π
t (x)| , π ∈ Δ,

and e ∈ R
|X| be the vector with all components equal to

1. For any x ∈ X and any π ∈ Δ,

Tπ(V π
t+1)(x)

= (1 − αt)Tπ(V π
t)(x) + αt(1 − λ)Tπ(

∞∑
k=0

λkT k+1
π (V π

t))(x)

+αtγ
∑
y∈X

P π(x)
xy wπ

t (y)

= (1 − αt)V π
t (x) + (1 − αt)(Tπ(V π

t)(x) − V π
t (x))

+αt(1 − λ)

(∞∑
k=0

λkT k+1
π (Tπ(V π

t))

)
(x)

+αtγ
∑
y∈X

P π(x)
xy wπ

t (y)

≤ (1 − αt)V π
t (x) + (1 − αt)(Tπ(V π

t)(x) − V π
t (x))

+αt(1 − λ)

(∞∑
k=0

λkT k+1
π (V π

t + βπ
t e)

)
(x)

+αtγ
∑
y∈X

P π(x)
xy wπ

t (y)

= V π
t+1(x) + (1 − αt)(Tπ(V π

t)(x) − V π
t (x))

+αt(1 − λ)
∞∑

k=0

λkγk+1βπ
t + αtη

π
t (x)

≤ V π
t+1(x) + (1 − αt)(Tπ(V π

t)(x) − V π
t (x))

+αtγβπ
t + αtη

π
t (x), (12)

where ηπ
t (x) = γ

∑
y∈X P

π(x)
xy wπ

t (y)−wπ
t (x). Let Xπ

t (x) =
Tπ(V π

t)(x) − V π
t (x), x ∈ X . Then we have that

Xπ
t+1(x) ≤ (1 − αt)Xπ

t (x) + αtγ max
x∈X

|Xπ
t (x)| + αtη

π
t (x).

Then comparing Xπ
t (x) with the sequence Yt(x) defined

by Y0(x) = Xπ
0 (x) and

Yt+1(x) = (1 − αt)Yt(x) + αtγ max
x∈X

|Yt(x)| + αtη
π
t (x),

and noting that Xπ
t (x) ≤ Yt(x) for all t and the mapping

V → γe maxx∈X |V (x)| for V ∈ B(X) is a maximum norm
contraction (see, [6, p.70]), w.p. 1

lim sup
t→∞

Xπ
t (x) ≤ 0, x ∈ X.

Therefore, for every ε > 0, there exists a time t(ε) such
that for all x ∈ X and π ∈ Δ,

Tπ(V π
t)(x) − V π

t (x) ≤ ε, ∀ t ≥ t(ε). (13)

With the same reasoning in the proof of Theorem 1,
from (13) we have that for every ε > 0, there exists a
time t(ε) such that

max
x∈X

(T (Jt)(x) − Jt(x)) ≤ ε, ∀ t ≥ t(ε). (14)

Therefore,

V μpr
t (x) ≤ Jt(x) +

ε

1 − γ
, x ∈ X, ∀ t ≥ t(ε). (15)

Using the relationship of Tπ(V π
t)(x) − V π

t (x) ≥ −βπ
t , x ∈

X, we can establish Tπ(V π
t+1)(x) ≥ V π

t+1(x) + (1 −
αt)(Tπ(V π

t)(x)−V π
t (x))−αtγβπ

t +αtη
π
t (x), making w.p. 1,

lim inf
t→∞ Xπ

t (x) ≥ 0, x ∈ X.

Therefore, for every δ > 0, there exists a time t(δ) such
that V π

t (x)−Tπ(V π
t)(x) ≤ δ for all t ≥ t(δ). We have that

for any π ∈ Δ,

V π
t (x) − V π(x) ≤ δ

1 − γ
, x ∈ X, ∀ t ≥ t(δ).

This together with (15) implies that ∀ t ≥ max{t(ε), t(δ)},
V μpr

t (x) ≤ min
π∈Δ

V π(x) +
2 max{ε, δ}

1 − γ
, x ∈ X. (16)

Because we can choose max{t(ε), t(δ)} for any ε, δ > 0
arbitrarily close to zero, we have the desired convergence.

2.2 Policy Switching

The stochastic iterative computation for the parallel roll-
out policy requires knowing the model of the given MDP
M . To compute μpr

t with respect to Jt in (3), we need to
know C(x, a), x ∈ X, a ∈ A and P a

xy, x, y ∈ X, a ∈ A. On
the other hand, the computation of the policy switching
policy below can be done in model-free environment as long
as Monte Carlo policy evaluation is done in a model-free
manner. We only discuss the case of Monte Carlo policy
evaluation here as the case of TD(λ)-based policy iteration
can be studied by a similar reasoning given below with the
proof idea of Theorem 2.

We use the same notations used in the parallel rollout case.
At each iteration t ≥ 0, we have available value functions
V π

t , π ∈ Δ, defined over X and let μps
t ∈ Π be a policy

such that
μps

t (x) ∈ argmin
π∈Δ

(V π
t (x))(x), x ∈ X. (17)

Computation of V π
t is the same as before: for each policy

π ∈ Δ starting with each state x ∈ X , we generate a
corresponding sample path over infinite horizon starting
with state x then update V π

t , π ∈ Δ, (synchronously at
each state) by

V π
t+1(x) = (1 − αt)V π

t (x) + αt (V π(x) + wπ
t (x)) , (18)

x ∈ X , where αt is again a deterministic scalar stepsize
parameter.

For the convergence analysis, we define a value function Jt

as Jt(x) = minπ∈Δ V π
t (x), x ∈ X.

Theorem 3. Assume that
∞∑

t=0

αt = ∞,

∞∑
t=0

α2
t < ∞.

Then, for any x ∈ X ,

lim
t→∞V μps

t (x) ≤ min
π∈Δ

V π(x).

Proof: From the proof of Theorem 1, for every ε > 0,
there exists a time t(ε) such that for all x ∈ X and π ∈ Δ,

|Tπ(V π
t)(x) − V π

t (x)| ≤ ε, x ∈ X, ∀ t ≥ t(ε). (19)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15478

Therefore, by Lemma 2.1, for any π ∈ Δ,

|V π(x) − V π
t (x)| ≤ ε

1 − γ
, x ∈ X, ∀ t ≥ t(ε). (20)

From the definition of μps
t , for a given x ∈ X , μps

t (x) =
π′(x) for some π′ ∈ Δ such that V π′

t (x) ≤ V π
t (x). Now,

Tμps
t

(Jt)(x)

= C(x, μps
t (x)) + γ

∑
y∈X

P
μps

t (x)
xy Jt(y)

= C(x, π′(x)) + γ
∑
y∈X

P π′(x)
xy Jt(y)

≤C(x, π′(x)) + γ
∑
y∈X

P π′(x)
xy V π′

t (y)

= C(x, π′(x)) + γ
∑
y∈X

P π′(x)
xy

(
V π′

(y) + V π′
t (y) − V π′

(y)
)

≤ Tπ′(V π′
)(x) + γ max

x∈X
|V π′

t (x) − V π′
(x)|

≤ V π′
(x) +

γε

1 − γ
, ∀ t ≥ t(ε)

≤ V π′
(x) − V π′

t (x) + V π′
t (x) +

γε

1 − γ
, ∀ t ≥ t(ε)

≤ ε

1 − γ
+ Jt(x) +

γε

1 − γ
, ∀ t ≥ t(ε),

where the first term is from (20) and the second term is
from the definition of Jt, i.e., V π′

t (x) = Jt(x), x ∈ X .
Therefore,

Tμps
t

(Jt)(x) ≤ Jt(x) +
ε(1 + γ)
1 − γ

, x ∈ X, ∀ t ≥ t(ε).

Applying Lemma 2.1,

V μps
t (x) ≤ min

π∈Δ
V π(x) +

ε(1 + γ)
(1 − γ)2

, x ∈ X, ∀ t ≥ t(ε).

Because we can choose t(ε) for any ε > 0 arbitrarily close
to zero, we have the desired convergence.
Corollary 2.2. For any t ≥ 0 and x ∈ X ,

V μps
t (x) ≤ min

π∈Δ
V π(x)

+
(1 + γ)
(1 − γ)2

· max
π∈Δ,x∈X

|Tπ(V π
t)(x) − V π

t (x)|. (21)

3. CONCLUDING REMARKS

The algorithms presented in this paper is in the context
of “off-line” computation. In practice, we would apply
the stochastic iterative computation methods for a finite
number of iterations with a finite-horizon sample path
simulation. However, suppose that we want to apply the
methods in on-line manner. This can be done as follows:
at the current state xt ∈ X at time t, we asynchronously
update only the xt-component of the V π

t -function for each
π ∈ Δ in (4) and (18). We then compute the parallel
rollout policy μpr

t (or the policy switching policy μps
t) and

apply the action prescribed by the computed policy to the
system for on-line control. In particular, policy switching
is very attractive because it escapes from the requirement

of knowing the model and also from the curse of the
dimensionality problem in solving MDPs.

Under the assumption that the given MDP M is communi-
cating, i.e., any state can be reached from any other state
for any Markov chain induced from fixing any policy in Π,
each state x ∈ X is visited infinitely often with probability
1. If the assumption holds, even though the V π

t -function
for each π ∈ Δ is updated asynchronously only at the
currently visited state, after a “long” time, V π

t (x) closely
estimates V π(x) for all x ∈ X , i.e., there exists a time t(ε)
such that maxx∈X(T (Jt)(x) − Jt(x)) ≤ ε. Therefore, μpr

t
(similarly, μps

t) eventually converges uniformly over X in
the sense that limt→∞ V μpr

t (x) ≤ minπ∈Δ V π(x), x ∈ X .

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-
Dynamic Programming. Athena Scientific, Belmont,
Massachusetts, 1996.

[2] H. S. Chang, R. Givan, and E. K. P. Chong, “Parallel
rollout for on-line solution of partially observable
Markov decision processes,” Discrete Event Dynamic
Systems: Theory and Application, vol. 14, no. 3, 2004,
pp. 309–341.

[3] H. S. Chang and S. I. Marcus, “Approximate receding
Horizon approach for Markov decision processes: av-
erage reward case,” J. of Mathematical Analysis and
Applications, vol. 286, 2003, pp. 636–651.

[4] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York,
1994.

[5] R. Sutton and A. Barto, Reinforcement Learning.
MIT Press, 2000.

[6] J. N. Tsitsiklis, “On the convergence of optimistic
policy iteration,” J. of Machine Learning Research,
vol. 3, 2002, pp. 59–72.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15479

