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Abstract: In this paper we address the problem of decentralized and robust linear filtering
for target tracking using networks of (radar) sensors taking nonlinear range and bearing
measurements. The algorithm introduced in this paper permits efficient data fusion from
multiple sensors through a summation style fusion architecture. Moreover, we prove that the
state estimation error for the linear filtering algorithm is bounded.

1. INTRODUCTION

The problem of decentralized target tracking using a
(radar) sensor network and robust linear filtering is ex-
amined in this paper. Radar based tracking with range
and bearing measurements typically involves linear dy-
namic models in the Cartesian coordinates and nonlinear
measurement models; see Li and Jilkov, 2001). Thus, non-
linear filters such as the extended Kalman filter (EKF)
are often used; see Li and Jilkov (2001). Alternatively,
measurement conversion methods have been explored for
tracking problems; see Lerro and Bar-Shalom (1993); Li
and Jilkov (2001); Schlosser (2004); Zhao et al. (2004).

The idea of the measurement conversion methods is to
transform nonlinear measurements into a linear combina-
tion of the Cartesian coordinates, estimate the bias and
covariance of the converted measurement noise, and then
use the standard Kalman filter; see Zhao et al. (2004).
This technique has been shown to outperform the EKF in
general; e.g. see Lerro and Bar-Shalom (1993); Schlosser
(2004); Li and Jilkov (2001); Zhao et al. (2004). One
shortcoming of the EKF and the measurement conversion
methods is the lack of a rigorous proof on the boundedness
of the estimation errors. It is also well-known that the
estimate produced by the EKF may diverge from the true
state in practice; see e.g. Petersen and Savkin (1999).

The contributions of this paper include the development
of a decentralized and robust linear estimator for target
tracking using nonlinear radar measurements. This filter
is designed using ideas and methods from modern ro-
bust state estimation theory; see e.g. Petersen and Savkin
(1999); Savkin and Petersen (1998, 1996); Savkin and
Evans (2002); Matveev and Savkin (2008); Bishop et al.
(2007b). The robust algorithm designed here permits ef-
ficient data fusion through a simple summation fusion
structure; see Rao and Durrant-Whyte (1993b,a); Spanos
et al. (2005). The algorithm complexity is scalable with
the number of sensors.

⋆ This work was supported in part by the Australian Research
Council (ARC).

In Section 2 we discuss the typical linear target dynamic
model and in Section 3 we introduce the notation related
to the radar sensor network. In Section 4 we derive a
decentralized robust linear filter for target tracking with
converted radar sensor measurements. Furthermore, in
Section 4 we discuss the robust filter architecture and the
data fusion protocol. In Section 5 we give some illustrative
examples and in Section 6 we give our concluding remarks.

2. TARGET DYNAMIC MODELS

The target state is represented by the vector x ∈ R
n.

Traditionally, the dynamics of a moving target are usually
modeled in Cartesian coordinates. Typically, point targets
are considered and the models are linear; see Li and
Jilkov. For a maneuverable target, the state of a target
in 2D is given by x = [x1 x2 x3 x4]

′ ∈ R
4 (or x =

[x1 x2 x3 x4 x5 x6]
′ ∈ R

6 depending on the particular
dynamic model), where x1 and x2 denote the x and y
directions respectively. That is, in the external global
coordinate system, x1 is the x-component of the target’s
position and x2 is the y-component of the target’s position.
In addition, x3 = ẋ1, x4 = ẋ2, x5 = ẍ1 and x6 = ẍ2.
In 3D, the target’s state vector takes a similar form,
x = [x1 x2 x3 x4 x5 x6 x7 x8 x9]

′ ∈ R
9, where x1, x2

and x3 denote the x, y and z directions respectively. Also,
x4 = ẋ1, x5 = ẋ2, x6 = ẋ3, x7 = ẍ1, x8 = ẍ2 and x9 = ẍ3.
The state-space model in discrete time is given by

x(k) = Ax(k − 1) + Bw(k) (1)

where the matrices A and B depend on the specific dy-
namic model employed. The noise input w(k) can repre-
sent the uncertain acceleration input of the target. The
structure of w(k) and consequently B, should be defined
specifically for a given problem, depending on the likely
nature of the target maneuvers and system model uncer-
tainties. The input w(k) is usually assumed to be a white
Gaussian distributed random process. However, in this
paper and for the filter developed in this paper, the noise
input w(k) can be represented by any bounded function of
time. In fact, w(k) can be probabilistically bounded and
Gaussian processes can be considered special cases.
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3. RADAR NETWORK CONVENTIONS

Consider a network of N stationary sensors (e.g. radar
sensors) positioned in 2D or 3D and communicating over
a complete graph. That is, a network of sensors with an
undirected communication topology G = {V, E} where
V = {1, . . . , N} represents the graph vertices, i.e. the
sensors, and E ⊆ V × V is the set of inter-sensor com-
munication links. Each sensor i communicates with a set
of neighbors Ni ⊆ V and j ∈ Ni ⇔ i ∈ Nj , ∀i, j ∈ V. For
notational simplicity it is always assumed that i ∈ Ni. If
Ni = V then the communication graph is complete.

Now consider the tracking problem in 2D, then the posi-
tion of the ith sensor is given by si = [si1 si2]

′ where si1

and si2 denote the traditionally denoted x and y positions
of sensor i. This means, in the external global coordinate
system, si1 is the x-component of the ith sensor’s position
and si2 is the y-component of the ith sensor’s position.
Consider the tracking problem in 3D, then the position
of the ith sensor is given by si = [si1 si2 si3]

′ where si1,
si2 and si3 denote the traditionally denoted x, y and z
positions of ith sensor. Each sensor i knows its own position
si in the global coordinate system.

4. ROBUST AND DECENTRALIZED TRACKING

4.1 Tracking in 2D

A typical radar sensor can measure the range r and
azimuth angle φ to a target in 2D. At the ith sensor, these
parameters are related to the target’s Cartesian position
coordinates via the following nonlinear equations,

r̂i = ri + vi1 =

√
(x1 − si1)

2
+ (x2 − si2)

2
+ vi1 (2)

φ̂i = φi + vi2 = arctan

(
x2 − si2

x1 − si1

)
+ vi2 (3)

where vij is an additive error term to be described subse-
quently. Assume that the target motion is described by (1)
where the matrix A is non-singular. Define the following
analytical transformations

x̂i1(k) = r̂i(k) cos(φ̂i(k)) (4)

x̂i2(k) = r̂i(k) sin(φ̂i(k)) (5)

where x̂i1 and x̂i2 are the so-called converted measure-
ments for x1 and x2 respectively and measured by the ith

sensor. Note that x̂i1 and x̂i2 are relative measurements
and essentially place sensor i at the origin of the global
coordinate system. Therefore, it is possible to define the
following stacked and relative measurement vector

yi(k) = [x̂i1(k) x̂i2(k)]′ (6)

along with the following absolute measurement vector

mi(k) = yi(k) + si (7)

where again si is the position of the ith sensor which is
known only at the ith sensor. Let 0 < p0 ≤ 1 be a given
constant. It is presumed that the system initial condition
x(0), noise w(k) and the measurement noises vi1(k) and
vi2(k) satisfy the following assumption.

Assumption 1. The following inequalities with probability
p0 simultaneously hold:

|vi1(k)| ≤ αi1ri(k) and |vi2(k)| ≤ αi2 (8)

(x(0) − x0)
′N(x(0) − x0) +

T−1∑

k=0

w(k)′Q(k)w(k) ≤ d (9)

Here 0 ≤ αi1 < 1 and 0 ≤ αi2 < π
2

are given constants, x0

is an initial state estimate, N = N′ > 0 and Q = Q′ > 0
are given weighting matrices, d > 0 is a given constant
associated with the system and T > 0 is a given time. The
matrices A and B and the initial estimate x0, N and Q are
known at every sensor i ∈ {1, . . . , N} and are consistent.

Notice that the inequality (9) is a sum-quadratic con-
straint that is common in modern robust filtering theory;
see e.g. Petersen and Savkin (1999).

Introduce the following Riccati difference equations

Fi(k + 1) = B̂
[
B̂′Si(k)B̂ + Q(k)

]−1

B̂′Si(k)Â (10)

Si(k + 1) = Â′Si(k)
[
Â − Fi(k + 1)

]
+

∑

i∈Ni

C′
iCi −

∑

i∈Ni

K′
iKi (11)

Si(0) = N

where Â , A−1 and B̂(k) , A−1B and

Ci ,

[
βi1 0 0 0 0 0
0 βi1 0 0 0 0

]
, Ki ,

[
ᾱi1 ᾱi2 0 0 0 0
ᾱi2 ᾱi1 0 0 0 0

]
(12)

Then define the following parameters

βi1 ,
1

2
(1 + αi1 + (1 − αi1) cos(αi2)) (13)

ᾱi1 ,
1

2
((1 − αi1) cos(αi2) − (1 + αi1)) (14)

ᾱi2 ,−(1 + αi1) sin(αi2) (15)

Now introduce the following set of state equations

ηi(k + 1) =
[
Â − Fi(k + 1)

]′
ηi(k) +

∑

i∈Ni

Ciyi(k + 1)

+
∑

i∈Ni

[s′i 0 . . . 0]
′

(16)

η(0) = Nx0

where mi(k) is the absolute measurement vector compiled
at (and by) the ith sensor and

gi(k + 1) = gi(k) +
∑

i∈Ni

mi(k + 1)′mi(k + 1) −

ηi(k)′B̂
[
B̂′Si(k)B̂ + Q

]−1

B̂′
ηi(k) (17)

gi(0) = x′
0
Nx0

The introduced state equations (16) and Riccati equations
(10) lead to a robust implementation of a Kalman filter-like
state estimator which is designed for uncertainties obeying
Assumption 1; e.g. see Petersen and Savkin (1999).
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Theorem 1. Let 0 < p0 ≤ 1 be given, and suppose that
Assumption 1 holds. Then the state x(T ) of the system
(1) with probability p0 belongs to the ellipsoid

X i
T ,

{
xT ∈ R

n : ‖(Si(T )
1

2 xT − Si(T )−
1

2 ηi(T ))‖2

≤ ρ + d

}

(18)

where ρi , ηi(T )′Si(T )−1
ηi(T ) − gi(T ) and ηi(T ) and

gi(T ) are defined by (16) and (17).

Proof. It follows from (6) and (8) that

x̂i1(k) = βi1x1(k) + ni1(k) (19)

x̂i2(k) = βi2x2(k) + ni2(k) (20)

where xi(k) is the ith component of the state vector x(k)
of the system (1) and the inequalities

|ni1(k)| ≤ ᾱi1|x1(k)| + ᾱi2|x2(k)| (21)

|ni2(k)| ≤ ᾱi1|x2(k)| + ᾱi2|x1(k)| (22)

hold together with (9) with probability p0. Therefore, this
immediately implies that

mi(k) = Cix(k) + si + ni(k) = yi(k) + si (23)

where yi(k) = Cix(k) + ni and ni(k) = [ni1(k) ni2(k)]′

and the condition

‖ni(k)‖2 ≤ ‖Kix(k)‖2 (24)

holds together with (9) with probability p0. Note that
zi(k) = Kix(k) is the so-called uncertainty output con-
sidering only sensor i while z(k) = Kx(k) is the entire de-
centralized system’s uncertainty output. The measurement
noise ni(k) depends dynamically on the system uncer-
tainty output zi(k). Thus, the measurement noise exhibits
parametric-like uncertainties which are not accounted for
by the traditional measurement conversion based tracking
algorithms. From (9) and (24) it follows that the subse-
quent sum quadratic constraint is satisfied

(x(0) − x0)
′N(x(0) − x0) +

T−1∑

0

(
w(k)′Q(k)w(k) +

∑

i∈Ni

‖ni(k + 1)‖2

)

≤ d +

T−1∑

0

∑

i∈Ni

‖Kix(k + 1)‖2 (25)

with probability p0. Now it follows from Theorem 5.3.1 of
Petersen and Savkin (1999), see also Savkin and Petersen
(1998), that the state x(T ) of the system (1), (23) belongs
to the ellipsoid (18) with probability p0. 2

The noise input w(k) might also depend dynamically on
z(k) if the system is assumed to exhibit parametric-like
uncertainties.

Corollary 1. A so-called point value state estimate can be
obtained from the bounded ellipsoidal set’s center and is
given by q̂i(k) = Si(k)−1

ηi(k).

The set-valued estimate X i
T for any T and ∀i, illustrates

the boundedness of the estimation error. It leads to a
measure of state estimate uncertainty. For online tracking
applications, the point-valued estimate given by q̂i(T ) =
Si(T )−1

ηi(T ), ∀i ∈ V is useful in decision-making.

4.2 Tracking in 3D

A typical radar sensor can measure the range r, azimuth
bearing φ and target elevation θ in 3D. At the ith sensor,
these parameters are related to the target’s Cartesian
position coordinates via the following transformations,

r̂i = ri + vi1 = ‖[x1 x2 x3]
′ − si‖ + vi1 (26)

φ̂i = φi + vi2 = arctan

(
x2 − si2

x1 − si1

)
+ vi2 (27)

θ̂i = θi + vi3 = asin

(
x3 − si3

‖[x1 x2 x3]′ − si‖

)
+ vi3 (28)

where vij is an additive error term to be described. Assume
that the target motion is described by (1) where the matrix
A is non-singular. Now define the following analytical
transformations

x̂i1(k) = r̂i(k) cos(φ̂i(k)) cos(θ̂i(k)) (29)

x̂i2(k) = r̂i(k) sin(φ̂i(k)) cos(θ̂i(k)) (30)

x̂i3(k) = r̂i(k) sin(θ̂i(k)) (31)

where x̂i1, x̂i2 and x̂i3(k) are the converted measurements
for x1, x2 and x3 respectively and measured by the ith

sensor. Again, it is important to note that x̂i1, x̂i2 and
x̂i3(k) are relative measurements. Define the following
stacked and relative measurement vector

yi(k) = [x̂i1(k) x̂i2(k) x̂i3(k)]′ (32)

along with the following absolute measurement vector

mi(k) = yi(k) + si (33)

where here si is the position of the ith sensor in 3D and si

is known only at the ith sensor. Let 0 < p0 ≤ 1 be a given
constant and suppose the following assumption holds.

Assumption 2. The following inequalities with probability
p0 simultaneously hold:

|vi1(k)| ≤ αi1ri(k) |vi2(k)| ≤ αi2 |vi3(k)| ≤ αi3 (34)

(x(0)−x0)
′N(x(0)−x0) +

T−1∑

k=0

w(k)′Q(k)w(k) ≤ d (35)

Here 0 ≤ αi1 < 1 and 0 ≤ αi2, αi3 < π
2

are given
constants, x0 is an initial state estimate, N = N′ > 0
and Q = Q′ > 0 are given weighting matrices, d > 0 is a
given constant associated with the system and T > 0 is a
given time. The matrices A and B and the estimate x0, N
and Q are known at every sensor i ∈ V and are consistent.

Once again, introduce the the following Riccati difference
equations

Fi(k + 1) = B̂
[
B̂′Si(k)B̂ + Q(k)

]−1

B̂′Si(k)Â (36)

Si(k + 1) = Â′Si(k)
[
Â − Fi(k + 1)

]
+

∑

i∈Ni

C′
iCi −

∑

i∈Ni

K′
iKi (37)

Si(0) = N

where Â , A−1 and B̂(k) , A−1B and,
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Ci ,

[
βi1 0 0 0 0 0 0 0 0
0 βi1 0 0 0 0 0 0 0
0 0 βi2 0 0 0 0 0 0

]
(38)

Ki ,

[
ᾱi1 ᾱi2 ᾱi3 0 0 0 0 0 0
ᾱi2 ᾱi1 ᾱi3 0 0 0 0 0 0
ᾱi2 ᾱi2 ᾱi4 0 0 0 0 0 0

]
(39)

Then define the following parameters

βi1 ,
1

2
(1 + αi1 + (1 − αi1) cos(αi2) cos(αi3)) (40)

βi2 ,
1

2
(1 + αi1 + (1 − αi1) cos(αi3)) (41)

and

ᾱi1 ,
1

2
((1 − αi1) cos(αi2) cos(αi3) − (1 + αi1)) (42)

ᾱi2 ,−(1 + αi1) sin(αi2) (43)

ᾱi3 ,−(1 + αi1) sin(αi3) (44)

ᾱi4 ,
1

2
((1 − αi1) cos(αi3) − (1 + αi1)) (45)

Again, introduce the following set of state equations

ηi(k + 1) =
[
Â − Fi(k + 1)

]′
ηi(k) +

∑

i∈Ni

Ciyi(k + 1)

+
∑

i∈Ni

[s′i 0 . . . 0]
′

(46)

η(0) = Nx0

gi(k + 1) = gi(k) +
∑

i∈Ni

mi(k + 1)′mi(k + 1) −

ηi(k)′B̂
[
B̂′Si(k)B̂ + Q

]−1

B̂′
ηi(k) (47)

gi(0) = x′
0
Nx0

The following is the main result of this section.

Theorem 2. Let 0 < p0 ≤ 1 be given, and suppose that
Assumption 2 holds. Then the state x(T ) of the system
(1) with probability p0 belongs to the ellipsoid

X i
T ,

{
xT ∈ R

n : ‖(Si(T )
1

2 xT − Si(T )−
1

2 ηi(T ))‖2

≤ ρ + d

}

(48)

where ρi , ηi(T )′Si(T )−1
ηi(T ) − gi(T ) and ηi(T ) and

gi(T ) are defined (46) and (47).

Proof. It follows from (32) and (34) that

x̂i1(k) = βi1x1(k) + ni1(k) (49)

x̂i2(k) = βi1x2(k) + ni2(k) (50)

x̂i3(k) = βi2x3(k) + ni3(k) (51)

where xi(k) is the ith component of the state vector x(k)
of the system (1) and the inequalities

|ni1(k)| ≤ ᾱi1|x1(k)| + ᾱi2|x2(k)| + ᾱi3|x3(k)| (52)

|ni2(k)| ≤ ᾱi2|x1(k)| + ᾱi1|x2(k)| + ᾱi3|x3(k)| (53)

|ni3(k)| ≤ ᾱi2|x1(k)| + ᾱi2|x2(k)| + ᾱi4|x3(k)| (54)

hold together with (35) with probability p0. Therefore, this
implies that

mi(k) = Cix(k) + si + ni(k) = yi(k) + si (55)

where n(k) , [ni1(k) ni2(k) ni3(k)]′ and yi(k) = Cix(k)+
ni(k) and the condition

‖ni(k)‖2 ≤ ‖Kix(k)‖2 (56)

holds together with (35) with probability p0. From (35)
and (56) it follows that the subsequent sum quadratic
constraint is satisfied

(x(0) − x0)
′N(x(0) − x0) +

T−1∑

k=0

(
w(k)′Q(k)w(k) +

∑

i∈Ni

‖ni(k + 1)‖2

)

≤ d +

T−1∑

k=0

∑

i∈Ni

‖Kix(k + 1)‖2 (57)

with probability p0. It now follows from Theorem 5.3.1 of
Petersen and Savkin (1999); see also Savkin and Petersen
(1998), that the state x(T ) of the system (1), (55) belongs
to the ellipsoid (48) with probability p0. 2

4.3 Comments on the Robust Tracking Algorithm

The uncertain system described by (1) with ((7) or (32))
and ((9) or (35)) is represented by the diagram in Fig. 1.

x(k+1) = A(k)x  +B(k)w(k)

 Uncertainty
Block

z(k)

n
1
(k)

K(k)

x(k)

B(k)

w(k)

C
1
(k) C

2
(k)

Sensor 1

y
1
(k)

n
2
(k)

Sensor 2

C
n
(k)

n
n
(k)

Sensor n

y
2
(k) y

n
(k)

 . . . . .

 . . . . .

Fig. 1. Block diagram representation of a multi-sensor
uncertain system.

The algorithm derived in this paper is general and
parametric-like system uncertainties satisfying Assump-
tion 1 can be accommodated. Thus, unmodeled target
dynamics are likely to cause less problems in the algorithm
derived in this section than with traditional approaches,
e.g. EKF based algorithms, which inherently require ac-
curate knowledge of the system dynamics. The target
dynamics are not required to be modeled using Gaussian
random inputs. However, the following remark is given.

Remark 1. Gaussian noise is bounded by the first standard
deviation with probability p0 ≈ 0.68 and within two stan-
dard deviations with p0 ≈ 0.95 etc. Thus, no generality
is lost by assuming uncertainties satisfying Assumption 1.
Further, there are systems in place in practical situations
to remove large Gaussian outliers (e.g. gating etc.).
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4.4 Comments on Decentralized Data Fusion

The goal of decentralized target tracking is to effi-
ciently exploit the measured radar data from multiple
sensors. Specifically, decentralized target tracking is con-
cerned with the problem of efficiently estimating the set
XT [x0,y(k), d] of all possible states x(T ) at time T and at
each of the sensors i ∈ {1, . . . , N}. Recall that x(k) ∈ R

n.

The structure of the given state equations and Riccati
equations permit efficient data fusion. Each sensor need
only have, and maintain, specific knowledge of it’s own
measurement model. At every time step, each sensor i
receives |Ni| copies of an n × n matrix C′

jCj , ∀j ∈ Ni

and |Ni| copies of a n × n matrix K′
jKj , ∀j ∈ Ni. Note

that if each sensor is identical, then C′
jCj , ∀j ∈ Ni and

K′
jKj , ∀j ∈ Ni are known at sensor i since sensor i has

knowledge of Ci and Ki. Thus the, the communication
required can be decreased significantly for networks of
identical sensors. Each sensor i receives |Ni| copies of a
n × 1 vector C′

jyj(k + 1) + [s′i 0 . . . 0]′, ∀j ∈ Ni and
|Ni| copies of a scalar mj(k + 1)′mj(k + 1), ∀j ∈ Ni.
Clearly, each sensor must only maintain knowledge of its
own measurement model and does not require knowledge
of any other sensor’s position.

The received data at sensor i is added to the appropriate
recursive equations. No overhead processing or mainte-
nance needs to be performed by the sensor. The summa-
tion based architecture for data fusion is scalable with the
number of sensors. The network topology can be time-
dependent. If, for example, sensor i has no neighbors for
a period, then the algorithm reduces to a single sensor
tracking filter. Neither the standard EKF or the measure-
ment conversion based algorithms permit such efficient
multi-sensor data fusion; see Lerro and Bar-Shalom (1993);
Schlosser (2004); Li and Jilkov (2001); Zhao et al. (2004).

The communication and data structure maintained by
each sensor i is illustrated in Fig. 2 for a sensor network
communicating over a complete network topology.

Note that X i
T = X j

T , for any T and ∀i, j ∈ {1, . . . , N}
when we assume a complete graph G topology.

5. NUMERICAL EXAMPLES

The simulation results presented in this section assume
the target maneuvers in 2D. More extensive simulations
are given in Bishop et al. (2007a) where the algorithm
is compared against the best linear unbiased estimator
(BLUE) given in Zhao et al. (2004).

The radar network consists of N sensors, denoted by the
set V, with communication topology G = {V, E}. For
simplicity, the sensors are assumed to be identical and the
communication topology is assumed to be complete with
E = V × V and |E| = N2. As such, the performance of the

tracking filter is identical at each sensor. That is, X i
T = X j

T

and q̃i(T ) = q̃j(T ) for any T and ∀i, j ∈ V. Thus, the
performance of a single sensor (chosen randomly during
each simulation run) is examined.

For each example given, the results of 10000 individ-
ual simulation runs are analyzed. The root-mean-squared
(RMS) position and velocity error is calculated and shown.

C
j
’C

j
  ∈ ℜ

n× n

K
j
’K

j
  ∈ ℜ

n× n

C
j
’y

j
(k) + [s

j
’ 0 ... 0]’ ∈ℜ

n

m
j
(k)’m

j
(k)  ∈ ℜ

∀j∈{1,…,N}/{i}

 Sensor i

Rx from
Sensor j

∀j∈{1,…,N}/{i}

Sensor i at time k

C
i
’C

i
  ∈ ℜ

n× n

K
i
’K

i
  ∈ ℜ

n× n

C
i
’y

i
(k) + [s

i
’ 0 ... 0]’ ∈ ℜ

n

m
i
(k)’m

i
(k)  ∈ ℜ

Tx to
Sensor j

∀j∈{1,…,N}/{i}

Note the universal (fixed) data and communication
structure and the isotropic transmission protocol.

Fig. 2. Block diagram representation of the communication
and data structure of sensor i at time k. The filter
protocol is decentralized and permits efficient data
fusion with fixed communication requirements. This
figure assumes a complete graph and non-identical
sensors. If the communication graph is not complete
than each sensor i only transmits to, and receives
data from, the set of neighbor sensors Ni. In general,
X i

T 6= X j
T when the topology is not complete. If the

sensors are identical, both C′
jCj and K′

jKj are known
at sensor i and need not be transmitted.

The specific discussions and examples on 2D tracking in
this section, assume the state of the target obeys x =
[x1 x2 x3 x4]

′ ∈ R
4. The system model is given by (1)

with the following system matrices

A =




1 0 ks 0
0 1 0 ks

0 0 1 0
0 0 0 1


 , B =




k2

s

2
0

0
k2

s

2
ks 0
0 ks




(58)

where ks is the measurement and system sampling interval.
The noise input w(k) represents the uncertain acceleration
input of the target. The noise input w(k) is usually as-
sumed to be a white Gaussian distributed random process.
However, in this section and for the filter developed in
this paper, the noise input w(k) can be represented by
any bounded function of time. In fact, w(k) need only
be bounded in a probabilistic sense, such that Gaussian
processes can be considered as special cases.

The measurement noise in all cases is uniformly distributed
such that the error in the range measurement is charac-
terized by vi1(k) ∼ U(−0.1ri(k), 0.1ri(k)) and the error in
the bearing measurement is given by vi2(k) ∼ U(−5o, 5o)
where ri(k) is the true range to the target at time k.
Knowledge of the sensor’s accuracy is assumed such that
the noise parameters in the robust linear filter are given
accurately by α1 = 0.1 and α2 = 5o.

Remark 2. It is reasonable to assume (at least partial)
knowledge of the sensor’s error statistics due to the routine
sensor testing and calibration operations performed. How-
ever, it is dangerous to assume knowledge of the target’s
uncertainty statistics characterizing it’s maneuvers.
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The measurement sampling time is ks = 1 and the entire
tracking interval is 600 units. The true initial state of the
target is given by x(0) = [500 5000 13 11]

′
in all simulation

examples involving multiple sensors. The matrix N is
set by N = I where I is the identity matrix. This is a
robust (and practical) choice for N in the absence of any
knowledge of the error in x0. The robust algorithm can
withstand a large initial estimate error since no Tayor-
series approximation is used and the problem is solved in
the linear domain.

5.1 Simulation Example 1 - Five Sensors

In this example case, 5 sensors randomly distributed
in a 10000 × 10000unit region of interest during each
simulation run. The process noise w(k) is used to represent
the unknown acceleration of the target. In this example,
the process noise is a bounded (partially deterministic)
random function of time given in by

w(k) =

[
2 sin(0.5k) + κ1(k)

cos(2k) − 5 sin(0.0001k) + κ2(k)

]
(59)

where κ1(k) ∼ U(−0.5, 0.5) and κ2(k) ∼ U(−1, 1) are
uniformly distributed random variables. In all cases the
process noise weighting matrix for the robust filter Q(k)
was chosen such that Q(k) = 105I for all k. The scenario
is depicted in Figure 3 during a specific simulation run.
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Fig. 3. The tracking scenario with 5 sensors for simulation
example 1 during a particular simulation run.

Figure 3 shows the true target path during the particular
simulation run along with the robust (decentralized) linear
filtering estimate at a particular, randomly chosen, sensor
i (recall that each sensor’s estimate is identical for a com-
plete network topology). Figure 3 also shows the original
converted measurement points for the same specific sensor.
The converted measurement points are generated from
that the converted measurement vector

mi(k) = [x̂i1(k) x̂i2(k)]′ + si

The RMS position and velocity error over 10000 simulation
runs is given in Figure 4.
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Fig. 4. The RMS position (a) and velocity (b) error
graphs generated using 10000 simulation runs for the
simulation example case 1.

Note from Figure 4(a) that the position estimate accuracy
begins slowly to degrade as the target moves away from the
region within which the sensor’s are generally distributed.
In this example, only a relatively small number of sensors
were considered and it is expected that the performance
of the tracking estimate will improve as N increases.

In Bishop et al. (2007a), the BLUE filter and the robust
linear filter derived in this paper are compared extensively
for simulations involving the standard Gaussian measure-
ment and process noise assumptions.

5.2 Simulation Example 2 - 25 Sensors

In this example case, 25 sensors randomly distributed in
the 10000 × 10000unit region of interest during each sim-
ulation run. The simulation parameters here are identical
to simulation example case 2. The scenario is depicted in
Figure 5 during a specific simulation run.

Figure 5 shows the true target path during a particular
simulation run, along with the robust (decentralized) lin-
ear filtering estimate at a particular, randomly chosen, sen-
sor i (remember that each sensor’s estimate is identical).
Figure 5 also shows the original converted measurement
points for the same randomly chosen sensor i during the
specific simulation run (i.e. similarly to simulation case
2). The RMS position error over 1000 simulation runs for
simulation case 3 is given in Figure 6.

Note from Figure 6 that the position estimate accuracy is
improved with the additional sensors. Also, the summation
fusion structure means that the algorithm is scalable.
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Fig. 5. The tracking scenario during a particular simula-
tion run for simulation example 2 with 25 sensors.
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Fig. 6. The RMS position (a) and velocity (b) error
graphs generated using 10000 simulation runs for the
simulation example case 2.

6. CONCLUSION

In this paper, a novel and robust linear filter was derived
for target tracking using converted radar sensor measure-
ments. The converted radar measurements can be modeled
using parametric-type uncertainty models; e.g. see Zhao
et al. (2004); Bishop et al. (2007a). Therefore, methods and
concepts from robust estimation are well-suited to solving
the newly-converted filtering problem. The problem of
decentralized filtering was also examined, and the derived
filter provided a novel and efficient/scalable solution to the
sensor network based tracking problem.

A mathematically rigorous proof of the boundedness of
the estimation error was given. In fact, the given filter
belongs to a class of set-valued state estimators and the
true target state was shown to belong to a given ellipsoidal
set estimate with an arbitrarily high probability. The
derived technique does not require Taylor-series based
approximations, and builds upon a solid foundation of
robust estimation ideas.
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