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Abstract: Accurate descending control is crucial to ensure safe operation of space exploration vehicles. 

This work investigates automatic trajectory tracking control of space vehicles during landing phase. A set 

of algorithms for adjusting vehicle heading angle, heading speed and altitude are derived using adaptive 

robust and neural network control techniques. It is shown that with the proposed control algorithms, 

external disturbances and coupled dynamics inherent in the system are effectively compensated. 

Simulations on various flight conditions also confirm the effectiveness of the proposed methods. 

 

1. INTRODUCTION 

Trajectory tracking control represents one of the most 

important enabling technologies for future space exploration. 

Autonomous rendezvous and docking are essential to ensure 

safe operation of autonomous space missions (Fig. 1). The 

challenging issue related to the design of space vehicle flight 

control system is that the vehicle operates in the wide range 

of environments, from the sea-level atmosphere to the near 

vacuum of space. The resultant system dynamics of the 

vehicle are highly nonlinear and strongly coupled with 

uncertainties and disturbances, which calls for high 

performance control schemes. There have been several 

applications involving landing spacecraft or rendezvous with 

celestial objects. Many of the applications have undergone 

challenging breakthroughs in addressing tracking from one 

location to another. Some of these applications involved 

autonomous guidance, navigation, and control operations 

during the landing phase, where the landing accuracy and 

relative landing velocity were addressed. Examples of these 

occurrences are Guelman and Harel, power-limited soft 

landing on an asteroid under the gravitational effect while 

neglecting drag, Jensen, who dealt with the kinematics of 

rendezvous maneuver based on proportional navigation 

techniques, and Yuan and Hsu, who investigated a spacecraft 

rendezvous flight via a modified proportional navigation 

scheme. Based on certain assumptions, various control 

approaches, such as model-based control, nonlinear inverse 

control, VSC control and fuzzy based control (and others) 

have been proposed. 

This work is concerned with trajectory tracking control of 

flight vehicles during the reentry (descending) phase. Since 

flight condition changes rapidly during this process, it is 

important to maintain the vehicle’s lateral, longitudinal and 

vertical motions along the desired command. A 3D nonlinear 

model is considered in which modelling uncertainties and 

nonlinearities are explicitly addressed. Based on most typical 

situations related to system uncertainties, a set of control 

algorithms are derived. It is shown that under the assumed 

conditions, the proposed control schemes are able to achieve 

good tracking performance. The remainder of the paper is 

organized as follows. Section 2 details the system model and 

formulates the problem under consideration, and section 3 

develops the trajectory control algorithms and conduct 

stability analysis. Section 4 presents some simulation results 

and finally section 5 offers the conclusion of the study. 

 

Fig. 1. A crew exploration vehicle lunar operation 

2. PROBLEM FORMULATION 

A fundamental requirement for safe and reliable space 

vehicle operation (such as docking with a celestial object or 

space station) is that the approaching speed of the vehicle 

must be well controlled so that it is driven to zero at the time 

of touchdown. This means that the commanded acceleration 

of the active vehicle in both the direction normal to the line 

of sight (LOS) and the direction along the LOS must reduce 
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to zero as the space vehicle lands on a celestial object. For 

this reason, this work is focused on the following three-

dimensional system equations  

( , , , , , ) ( , , , , , , )r r r rr f r r g u f r r tθ φ θ φ θ θ φ φ= + + ∆ɺ ɺ ɺ ɺɺɺ ɺ ɺ                  

( , , , , , ) ( , , , , , , )f r r g u f r r tθ θ θ θθ θ φ θ φ θ θ φ φ= + + ∆ɺɺ ɺ ɺ ɺ ɺɺ ɺ    (1)                                                                    

( , , , , , ) ( , , , , , , )f r r g u f r r tφ φ φ φφ θ φ θ φ θ θ φ φ= + + ∆ɺɺ ɺ ɺ ɺ ɺɺ ɺ  

where  r  is the distance from the spacecraft to the celestial 

object, θ  and φ  are the azimuth and pitch angles with 

respect to the celestial body, as illustrated in Fig. 2. The 

nonlinear functions in the equations are defined as follows, 
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Fig. 2 The geometry for landing phase 
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      (2) 

where µ  is the gravitational constant times the mass of the 

asteroid, 
iw ( 1, 2)i =  are constants, 0>β  denotes the drag 

coefficient. And also rg , gθ  and gφ  are the control gains, 

,ru uθ  and uφ  are the control inputs, and rf∆ , fθ∆ and fφ∆  

represent the coupling effects and external disturbances. For 

later development, we denote 

 [ ]
T

rF f f fθ φ=                                  (3) 

1 0 0

0 1/ cos 0

0 0 1/

G r

r

φ

 
 =  
  

                      (4) 

[ ]
T

rU u u uθ φ=                            (5) 

[ ]
T

rF f f fθ φ∆ = ∆ ∆ ∆                          (6) 

[ ]TZ r θ φ=                                 (7) 

Accordingly, (1) can be expressed in the following compact 

form 

Z F GU F= + ∆+ɺɺ                             (8) 

The landing control problem can be stated as follows: Design 

control algorithms to decrease the relative velocity to zero as 

the space vehicle approaches to the celestial object and at the 

same time to maintain the vehicle’s relative position ( , ,r θ φ ) 

and velocity ( , ,r θ φɺ ɺɺ ) at the desired value. 

3. CONTROL DESIGN  

As the first step, we define the vehicle trajectory tracking 

error  

de Z Z= −                                      (9) 

and the filtered error variable  

           1s e k e= +ɺ   
1

( 0)k >                     (10) 

Because of (10), it is seen that the control objective is 

realized as long as s is driven to zero as time goes by. 

Therefore, we focus on designing U to stabilize s. From (8) 

and (10) we have 

1d
s F GU F Z k e= + + ∆ − +ɺɺɺ ɺ               (11) 

Due to the existence of the uncertainties, as lumped by 

(.)F∆ , traditional model-based control is not applicable. In 

this work, we design the control scheme based on various 

available information on (.)F∆ , as assumed in the following 

cases: 

Case 1: ( )F∆ i  are negligible. 

Case 2: ( )F∆ i  are available precisely. 

Case 3: 
0

( )F c∆ ≤ < ∞i Èwhere 
0

c  is unknown. 

Case 4: ( ) ( )F xρ∆ ≤i  

                            
2

0 1 2

n

n
x x xγ γ γ γ= + + + +⋯  

0

n
k

k

k

xγ
=

=∑  

Case 5: ( ) ( )
T

F w ϕ ε∆ = ⋅ +i , where
3 lT

Rw
×

∈ , 
1

( )
l

Rϕ
×

∈i , 

and ε  is approximation error which is assumed to be 

bounded by 0
Eε ≤ < ∞  . 

Case 1 and Case 2 can be dealt with by model based control. 

Cases 3-5 represent more general situations and will be 
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addressed in what follows by adaptive robust and neuro-

adaptive control schemes. 

3.1  Adaptive Robust Control Strategy for Case 3 

For this case, the following adaptive robust control is  

proposed, 

1

1 2( )d cU G k e k s F Z u
−= − − − + +ɺɺɺ           (12) 

with 

)(ˆ
0 ssigncuc −= , 

0ĉ sλ=ɺ , where   2 0, 0k λ> >  are 

control parameters chosen by designer. With the control 

scheme (12), it is seen that the closed-loop dynamics become 

2 c
s k s F u= − + ∆ +ɺ                               (13) 

To show the stability of the scheme, we construct the 

Lyapunov function candidate  

( )
2

0 0

1 1
ˆ

2 2

T
V s s c c

λ
= + −                     (14) 

Which, up using (13), leads to 

( )( )0 0 0

1
ˆ ˆTV s s c c c

λ
= + − − ɺɺ ɺ              

( ) ( )( )

( )

2 0 0 0

2 0 0 0 0 0

2

1
ˆ ˆ

1
ˆ ˆ ˆ

0

T
c

T T

T

s k s f u c c c

s
k s s s c s c c c c

s

k s s

λ

λ

   
       

= − +∆ + + − −

≤− + + − + − −

=− <

ɺ

ɺ  (15) 

It then can be concluded that 0→s  (therefore ,0→e  and 

0)e →ɺ , as t → ∞ , i.e: , ,
d d d

r r θ θ ϕ φ→ → →  and 

, ,
d d d

r r θ θ ϕ φ→ → →ɺ ɺ ɺɺɺ ɺ  as t → ∞ .  

3.2 Adaptive Robust Control Strategy for Case 4 

In this case we have  

              

0

( ) ( )
n

k T

k

k

x xρ γ γ ζ
=

= =∑ i                        (16) 

where 1 2

2

0
[ , , , ] , [1, , , , ], T T

n

n
x x xγ γ γ γ γ ζ= =… … .  

The control scheme is constructed as follows, 

              1
1 2( )z c dU G k e k s u F Z

−= − − + − + ɺɺɺ                 (17) 

with ˆ ( )
T

c

s
u r

s
ζ= − i  , ( )ˆ sζγ = i

ɺ .  

Choose the Lyapunov function candidate as 

1 1
( )

2 2

T T
V s s γ γ= + ɶ ɶ                        (18) 

where ˆγ γ γ= −ɶ , it can be shown that 

  ˆ( )
T T

V s s γ γ= − ɺɺ ɶɺ   

2

2

ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ( ) ) ( ) ( )

T T T T

c

T T T TT

k s s s u

s
k s s s

s

s

s

γ ζ γ γ γ

γ ζ γ ζ γ γ γ

≤ − + + + − −

= − + − + − −

ɺ
i

ɺ
i i

2 2
ˆ( ( ) ) 0T T T

k s s ks s sγ ζ γ= − + − = − ≤ɺ
ɶ i             (19) 

It is readily concluded that 0→s , then ,0→e  and 0→eɺ  as 
t → ∞ . 

3.3  Neuro-Adaptive Control Strategy for Case 5 

This is the most complicated situation in which the uncertain 

term F∆ is to compensated by the following neural network 

unit, 

T
z NNF f wε ϕ ε∆ = + = +                      (20) 

where
T

w
3 l

R
×

∈ ,
1

( )
l

Rϕ
×

∈i  are the optimal weight 

matrix and basic function vector of the neural network, 

respectively, and 0Eε ≤ < ∞  is the reconstruction error 

with unknown upper bound. For this case, we construct the 

following controller  

1

1 2( )d cU G k e k s F Z u
−= − − − + +ɺɺɺ         (21) 

Where the NN based compensation is given as follows, 

ˆ[ ]T
c rbu w uϕ= − +                          (22) 

with  

0
ˆ ( ) ( ) ,

t
Tw s t dϕ τ= ∫ i

0
[ ]sgn( ( ))

t

rb
u s d s tτ= ∫  

                               

( )

( )

1
, ( , 1,2,... )

1

Xi

i Xi

e
X r r i l

e

α

α
ϕ θ θ φ φ

−

−

−
 = = = 

+

ɺ ɺɺ . 

The overall control block diagram is shown in Figure 3. To 

address the stability, we consider the following Lyapunov 

function candidate,    

2

0
0

1

2

1 1
( ) ( )

2 2

t
T T

V s s tr w w E s dτ= + + − ∫ɶ ɶ     (23) 

where ˆw w w= −ɶ , it can be shown that 

0
0

ˆ( ) ( )( )
t

T T

V s s tr w w E s d sτ= − + − −∫ɺɺ ɺ ɶ  

   

2

0
0

ˆ( ( ) ) ( ( ))

ˆ ˆ( ) ( ) ( )( )

T T T T T T

rb

t
T

k s s s w s w s u

tr w w w E s d s

ϕ ε ϕ

τ

≤ − + + − −

+ − − − − ∫

i i

ɺ  

  
2

0
0

ˆ ˆ[( ) ( ( ) )] ( )

( )( )

T T T T

rb

t

k s s tr w w s w s u

E s d s

ϕ ε

τ

= − + − − + −

− − ∫

ɺ
i

    (24) 
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Fig. 3 Block diagram of the proposed neuro-robust adaptive 

control  

Note that 
0

0
( ) ( )( )

t
T

rb
s u E s d sε τ− ≤ − ∫ , it follows that 

2
0

T
V k s s≤ − ≤ɺ  

Thus 

                                2 1s L L L∞∈ ∩ ∩ , ŵ L∞∈  

We can also show that s is uniformly continuous because 

s L∞∈ɺ .By Babalart lemma, we conclude that 

0s as t→ → ∞ ,then ,0→e  and 0e →ɺ , as t → ∞ , 

i.e: , ,
d d d

r r θ θ ϕ φ→ → →   and , ,d d dr r θ θ ϕ φ→ → →ɺ ɺ ɺɺɺ ɺ  

as t → ∞ . 

Remarks:  

The control scheme, consisting of (21) and (22), has simple 

structure, and does not involve analytical estimation of the 

upper bound on the reconstruction error, making the design 

process simple and easy for implementation easy. 

4. SIMULATION 

To test the effectiveness of the developed method, a series of 

simulations are conducted. Some simulations results are 

presented in this section. The desired trajectory is chosen as  

0
( ) ( )

( )

( )

t

a a

f

f

d

d

d

r r r r e km

rad

rad

δ

θ θ

φ φ

−
= + − −

=

=

 

where 
ar  denotes the celestial radius, δ is a positive 

parameter to ensure the vehicle lands on the celestial body in 

finite time, 
f

θ and 
f

φ  denotes the desired final angle θ and 

φ . The initial conditions for the numerical study are adopted 

from Guelman and Harel. The system parameters are chosen 

to satisfy the landing requirements. The parameters and 

initial states are then given as follows: 
a

r =10 km, 
0

r =200 km, 

0
θ =0.2 rad, 

0
rɺ =-5 km/h, 

0
θɺ =0.2 rad/h, 

0
φɺ =0.6 rad/h, 

f
θ =0.5 rad, 

f
φ =0.5 rad. The other system and control 

parameters are 0.02, 4000, 0.005(sec)Tβ µ= = ∆ = , 

1
1,ω =

2
1ω = , 

0 0
0.2 , 0.8rad radθ φ= = .  

Simulation results are given in Figure 4 – Figure 7, where 

Figure 4 is a plot of the tracking error for poison, azimuth 

angle and pitch angle. Figure 5 is the control signals. The 

tracking process in 2D is shown in Figure 6. Figure 7 is a 

three-dimensional plot showing the desired and actual motion 

trajectories of the vehicle during the given operation. Note 

that although precise descriptions of system dynamics and 

external disturbances are unavailable, good tracking precision 

via the proposed neuro-robust adaptive control still maintains 

with smooth control action and satisfactory orientation and 

position tracking. 
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Fig. 4.  Tracking errors 
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Fig. 5.  Control signals 
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Fig. 6  Tracking process 
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Fig. 7 Three dimensional tracking process 

 

5.  CONCLUSION  

This work investigated the problem of automatic descending 

control of space vehicles. A three-dimensional model 

reflecting system nonlinearities, uncertainties, and coupling 

effects was used for control design. A set of control 

algorithms are developed that do not require any detail 

information on the lumped uncertain term. A numerical 

example was simulated as a verification of the effectiveness 

of the proposed control algorithms.   
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