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Abstract: We consider the problem of state and parameter reconstruction for uncertain
dynamical systems that cannot be transformed into the canonical adaptive observer form. The
uncertainties are allowed to be both linearly and nonlinearly parameterized functions of state
and time. We provide a technique that allows successful reconstruction of uncertain state and
parameters for a broad range of dynamical systems that belong to this class. In contrast to
conventional approaches our technique is based on the concepts of weakly attracting sets, and
non-uniform convergence and Poisson stability rather than the notion of Lyapunov stability.
Relevance of the proposed approach to the domains of control and system identification is
illustrated with examples.
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1. INTRODUCTION

Reconstructing internal variables of a system from avail-
able input-output data is a frequent requirement in wide
areas of science and engineering. Various mathematical
formulations of this problem received substantial attention
in the past giving rise to the development of powerful
techniques for system identification (Eykhoff 1975), (Ljung
1987), (Soderstrom & Stoica 1988), (Deistler 1989), (Sas-
try & Bodson 1989) and observer design in both adaptive
(Kreisselmeier 1977), (Bastin & Gevers 1988), (Marino
1990) and non-adaptive statements (Isidori 1989), (Nijmei-
jer & van der Schaft 1990), (O’Reilly 1983).

In the domain of system identification purposeful varia-
tions of input signals enabling efficient solution to the
problem of identification are often allowed (Gevers &
Ljung 1986), (Hildebrand & Gevers 2003). While this
strategy is successful in broad areas of engineering ap-
plications, its application in control and mathematical
modeling of biological and fragile physical systems is re-
stricted. In these areas inputs to the system are given

and their shape and amplitude must not be altered by an
identification procedure. Hence passive, adaptive observer-
based solutions are needed for this class of systems.

Presently available observer-based solutions to the prob-
lem of simultaneous state and parameter estimation as-
sume that equations which govern dynamics of the original
system can be non-singularly transformed into the canon-
ical adaptive observer form (Bastin & Gevers 1988):

ẋ = Rx + ϕ(y(t), t)θ + g(t)

R =
(

0 kT

0 F

)
, x = (x1, . . . , xn)

y(t) = x1(t)

(1)

In (1) functions g : R≥0 → R
n, ϕ : R × R≥0 → R

n × R
d

are assumed to be known, k = (k1, . . . , kn−1) is a vector
of known constants, F is a known (n− 1)× (n− 1) matrix
(usually diagonal) with eigenvalues in the left half-plane
of the complex domain, and θ ∈ R

d is a vector of unknown
parameters. Algorithms for asymptotic recovery of state
variable and parameter vector θ can be found in (Bastin &
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Gevers 1988), (Marino & Tomei 1993a), (Marino & Tomei
1995) 1 .

There are systems, however, that cannot be transformed
into the canonical adaptive observer form specified by
equation (1). This is the case, for instance, in the domains
of physical and chemical kinetics (Gorban & Karlin 2005),
(Bastin & Dochain 1990). Here the equations are of the
following class

ẋi = −λixi +
n∑

j=1

φi(x, θ), φi : R
n × R

d → R,

y(t) = h(x(t)), h : R
n → R

(2)

and parameters λi ∈ R>0 are the reaction rates or
relaxations times that can change with time. An example
is the following system of equations (Bykov, Volokitin &
Treskov 1997)

ẋ1 = −λ1x1 + θ1(1 − x2) exp
(

x1

x1 + θ2x1

)

ẋ2 = −λ2x2 + (1 − x2) exp
(

x1

x1 + θ2x1

)
y(t) = x1(t)

(3)

describing an exothermic reaction in a well-stirred reactor.
The measured variable, x1, corresponds to the tempera-
ture, and the hidden variable is the degree of conversion.

Another example of a class of dynamical systems for which
representation (1) might not hold are the models of evoked
electrical activity in the membranes of neural cells (Koch
2002). Even the simplest of these, e.g. the FitzHugh-
Nagumo or Hindmarsh-Rose oscillators (Hindmarsh &
Rose 1984):

ẋ1 = −x3
1 + 3x2

1 + x2 + u, u ∈ R,

ẋ2 = 1 − 5x2
1 − λ2x2, λ2 ∈ R>0,

y(t) = x1(t)
(4)

cannot be reduced to (1) because the value of λ2, the
time constant of slow ionic currents, is hardly available
for direct observations.

Last but not least is a class of mechanical oscillators with
unknown damping coefficients and friction:

ẋ1 = x2

ẋ2 = −λ2x2 − x1 + f(x1, x2, θ) + u(t),
y(t) = x1(t),

(5)

where λ2 ∈ R>0 is an unknown damping parameter,
function f : R × R × R

d → R models the influence of
friction, and u(t) : R≥0 → R is an external forcing.

For all these classes of systems conventional adaptive
observer-based techniques cannot be directly applied.
Hence developing an alternative is needed. In our present
work we concentrate on developing a method for parameter
and state reconstruction that applies to a broad subclass
of systems (2)–(5). We shall allow uncertainties in matrix
F in (1) and nonlinear parametrization of the regressor
ϕ(y, t)θ. The method which we propose is based around
the concepts of weakly attracting sets and relaxation
times (Milnor 1985), (Gorban 1980), (Gorban 2004) rather
1 See also (Marino & Tomei 1993b) for the treatment of this problem
when regressor ϕ(y(t), t)θ in (1) is replaced with a nonlinearly
parameterized function of output y and parameter vector θ.

than global Lyapunov stability of the observer dynamics.
This is because, when general nonlinear parametrization is
present multiple values of θ may result in the same input-
output properties of the observer. Hence ensuring global
Lyapunov stability of the observer dynamics (including the
estimates of parameter θ) is generally unlikely.

Mathematical machinery of our method is based on the
results of (Tyukin, Steur, Nijmeijer & van Leeuwen 2008b)
that allow studying asymptotic convergence in nonlinear
systems beyond the framework of Lyapunov design and
conventional small-gain theorems. With this result we
show that, subject to the condition of uniform persistency
of excitation (Loria & Panteley 2003) of a linearly param-
eterized regressor in the observer dynamics, it is possible
to reconstruct both linear and nonlinear parameters of
the uncertainty model with sufficient accuracy (Theorem
2). The latter automatically implies the possibility for
asymptotic recovery of the state variables using the closed
form solution of a linear ODE.

The paper is organized as follows. In Section 2 we define
notation used throughout the paper. Section 3 describes
formal statement of the problem, Section 4 contains main
results. In Section 5 we provide a brief discussion, and
Section 6 concludes the paper.

2. NOTATION

The following notational conventions are used throughout
the paper.

• The symbol R denotes the real numbers, R>0 = {x ∈
R | x > 0}.

• The symbol Z denotes the set of integers.
• Consider the vector x ∈ R

n that can be partitioned
into two vectors x1 ∈ R

p and x2 ∈ R
q, p + q = n,

then ⊕ denotes their concatenation, i.e. x1 ⊕ x2 = x.
• For the sake of compactness we will use symbol es

instead of exp(s) to denote the exponent of s.
• The Euclidian norm of x ∈ R

n is denoted by ‖x‖.
• By Ln

∞[t0, T ], t0 ≥ 0, T ≥ t0 we denote the space of
all functions f : R≥0 → R

n such that ‖f‖∞,[t0,T ] =
ess sup{‖f(t)‖, t ∈ [t0, T ]} < ∞; ‖f‖∞,[t0,T ] stands for
the Ln

∞[t0, T ] norm of f(t).
• Finally, let ε ∈ R>0, then ‖x‖ε stands for the follow-

ing:

‖x‖ε =
{ ‖x‖ − ε, ‖x‖ > ε,

0, ‖x‖ ≤ ε.

3. PROBLEM FORMULATION

We consider the following class of nonlinear systems:

ẋ0 = θT
0 φ0(x0, t) +

n∑
i=1

xi

ẋi = −λ2i−1xi + θT
i φi(x0, λ2i, t),

y = x0, xi(t0) = x0,i

(6)

where
φi : R × R≥0 → R

di , di ∈ N/{0}, i = {0, . . . , n}
are continuous functions. Variable x0 in system (6) is
considered to be an output, and variables xi, i ≥ 1 model
internal states of the system. Parameters θi ∈ R

di are the
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linear components of the uncertainties in the right-hand
side of (6). Parameters λ2i−1 ∈ R>0, i = {1, . . . , n} are the
time constants of the internal states, and parameters λ2i ∈
R constitute the nonlinearly parameterized uncertainties.

We consider the case when the system’s state x = x0 ⊕
x1 ⊕ · · · ⊕ xn cannot measured explicitly, and only the
values of output y(t) = x0(t) (6) are available. Func-
tions φi(x0, λ2i, t) are supposed to be known, and the
actual values of parameters θ0, . . . , θn, λ1, . . . , λ2n, are
assumed to be unknown a-priori. We assume, however,
that domains of admissible values of θi, λi are known. In
particular, we consider the case when θi,j ∈ [θi,min, θi,max],
λi ∈ [λi,min, λi,max], and the values of θi,min, θi,max, λi,min,
λi,max are available.

For notational convenience we denote
θ = θ0 ⊕ θ1 ⊕ · · · ⊕ θn, λ = λ1 ⊕ · · · ⊕ λ2n,

and domains of admissible values for θ, λ are denoted by
symbols Ωθ and Ωλ respectively.

We aim to derive an algorithm which is capable of re-
constructing unknown state and parameters of system (6)
from the values of y(t) = x0(t). In our present work we
consider this problem within the framework of designing
an adaptive observer for (6). In particular, we should find
an auxiliary system

q̇ = f(q, y(t), t)
p = h(q),

(7)

such that for some given δ ∈ R>0 and all t0 ∈ R≥0 the
following property holds:

∃ t′ ≥ t0 : ‖p(t) − ξ‖ ≤ δ, ∀ t ≥ t′ (8)
where ξ = θ ⊕ λ.

4. MAIN RESULTS

Let us introduce the following function φ(x0,λ, t) : R ×
R

2n × R≥0 → R
d, d =

∑n
i=0 di:

φ(x0, λ, t) =

φ0(x0, t)
n⊕

i=1

∫ t

0

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ)dτ
(9)

The function φ(x0, λ, t) is a concatenation of φ0(·) and
integrals ∫ t

0

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ)dτ. (10)

Given that functions φi(·) are known and that the values
of x0(τ), τ ∈ [0, t] are available, integrals (10) can be
explicitly calculated as functions of λ, t. When x0(t) is
periodic, bounded, and φi(x0, λ2i, t) is locally Lipschitz
in x0 and periodic in t with the same period, function
φi(x0(t), λ2i, t) can be expressed in the form of the Fourier
series:

φi(x0(t), λ2i, t) =
ai,0(λ2i)

2

+
∞∑

j=1

(ai,j(λ2i) cos(ωjt) + bi,j(λ2i) sin(ωjt))
(11)

Taking a finite number N of members from the series ex-
pansion (11) yields the following computationally effective
approximation of (10):

∫ t

0

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ)dτ � a0,i(λ2i)
2λ2i−1

+

N∑
j=1

ai,j(λ2i)
λ2

2i−1 + ω2
j

(sin(ωjt)ωj + λ2i−1 cos(ωjt)) (12)

+
N∑

j=1

bi,j(λ2i)
λ2

2i−1 + ω2
j

(− cos(ωjt)ωj + λ2i−1 sin(ωjt)) + ε(t),

where ε(t) : R≥0 → R is an exponentially decaying term.
In case when functions φi(x0(t), λ2i, t) are not periodic in
t integrals (10) can be approximated as follows∫ t

0

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ)dτ �∫ t

t−T

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ),
(13)

where T ∈ R > 0 is sufficiently large.

Consider the following system{ ˙̂x0 = −αx̂0 + θ̂T φ̄(x0, λ̂, t)
˙̂
θ = −γθ(x̂0 − x0)φ̄(x0, λ̂, t), γθ, α ∈ R>0

(14)

where the function φ̄0(x0, λ̂, t) is a computationally real-
izable approximation of (10):

‖φ̄(x0, λ̂, t) − φ(x0, λ̂, t)‖ ≤ Δ, Δ ∈ R>0, (15)

and the components of vector λ̂ = col(λ̂1, . . . , λ̂2n) evolve
according to the following equations

˙̂x1,j = γjs(t)
(
x̂1,j − x̂2,j − x̂1,j

(
x̂2

1,j + x̂2
2,j

))
˙̂x2,j = γjs(t)

(
x̂1,j + x̂2,j − x̂2,j

(
x̂2

1,j + x̂2
2,j

))
λ̂j(x̂1,j) = λj,min +

λj,max − λj,min

2
(x̂1,j + 1),

s(t) = σ(‖x0(t) − x̂0(t)‖ε), j = {1, . . . , 2n}

(16)

x̂2
1,j(t0) + x̂2

2,j(t0) = 1, (17)
where σ(·) : R → R≥0 is a bounded function, i.e. σ(s) ≤
S ∈ R>0, and |σ(s)| ≤ |s| for all s ∈ R. We set γj ∈ R>0

and let γj be rationally-independent:∑
γjkj �= 0, ∀ kj ∈ Z.

In our current contribution we prove that system (14),
(16) can serve as the desired observer (7) for the class
of systems specified by equations (6). Our result is based
on the concept of non-uniform convergence (Milnor 1985),
(Gorban 2004), non-uniform small-gain theorems (Tyukin
et al. 2008b), and the notion of λ-uniform persistency of
excitation (Loria & Panteley 2003):
Definition 1. (λ-uniform persistency of excitation). Let
ϕ : R≥0 × D → R

n×m be a continuous function. We say
that ϕ(t,λ) is λ-uniformly persistently exciting (λ-uPE)
if there exist μ,L ∈ R>0 such that for each λ ∈ D∫ t+L

t

ϕ(t,λ)ϕ(t,λ)T dτ ≥ μI ∀t ≥ 0.

The latter notion, in contrast to conventional definitions
of persistency of excitation, allows to deal with param-
eterized regressors ϕ(t,λ). This is essential for deriving
asymptotic properties of our observer (14), (16). These
properties are formulated in the theorem below:
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Theorem 2. Let system (6), (14), (16) be given. Assume
that function φ̄(x0(t), λ, t) is λ-uniformly persistently ex-
citing and Lipschitz in λ:

‖φ̄(x0(t), λ, t) − φ̄(x0(t),λ′, t)‖ ≤ D‖λ − λ′‖. (18)
Then there exist numbers ε > 0, γ∗ > 0 such that for all
γi ∈ (0, γ∗]:

1) trajectories of the closed loop system (14), (16) are
bounded;

2) there exists λ∗ ∈ Ωλ: limt→∞ λ̂(t) = λ∗;
3) there exist κ, δ > 0 such that the following estimates

hold:
lim sup

t→∞
‖θ̂(t) − θ‖ < κ(Dδ + 3Δ),

lim
t→∞ |λ̂j(t) − λj | < δ, j = {1, . . . , 2n}
lim

t→∞ ‖x̂0(t) − x0(t)‖ε = 0

(19)

Proof of Theorem 2. In order to prove the theorem we will
need the following lemma.
Lemma 3. Let system (14),(16) be given, and function
φ̄(x0(t), λ, t) be λ-uniformly persistently exciting. Then
there exist numbers ρ > 0, ε > 0, γ̄ > 0, c > 0 such that
for all γi ∈ (0, γ̄) the following holds along the solutions of
system (6), (14), (16):

‖x0(t) − x̂0(t)‖ε ≤ e−ρ(t−t0)‖x(t0) − x̂(t0)‖ε

+ c‖λ̂(τ) − λ‖∞,[t0,t]

(20)

Proof of Lemma 3. Consider the following function
η(λ, t) = φ̄(x0(t), λ, t) − φ(x0(t), λ, t) (21)

According to (15), the function η(λ, t) is bounded:
‖η(λ, τ)‖∞,[0,t] ≤ Δ. Let us now introduce the following
vector

q = (x̂0 − x0) ⊕ (θ̂ − θ). (22)
Taking into account (6), (14), its time-derivative can be
expressed as follows:

q̇1 = −α q1 + θ̂
T
φ̄(x0, λ̂, t) − θT

0 φ0(x0(t), t)

−
n∑

j=1

xj(t)

q̇i = −γθ q1 φ̄i(x0(t), λ̂, t), i = {1, . . . , n}

(23)

Expressing trajectories xi(t) in (6) in the closed form

xi(t) = e−λ2i−1(t−t0)xi(t0)+

θT
i

∫ t

t0

e−λ2i−1(t−τ)φi(x0(τ), λ2i, τ)dτ,

and taking (9), (21) into account, we can rewrite (23) as

q̇1 = −α q1 + (θ̂ − θ)T φ̄(x0, λ̂, t) + u(λ̂, λ, t)

q̇i = −γθ q1 φ̄i(x0(t), λ̂, t), i = {1, . . . , n}, (24)

where
u(λ̂, λ, t) = θT (φ̄(x0, λ̂, t) − φ̄(x0,λ, t))

+ θT η(t,λ) + ε(t),
(25)

and ε(t) is a bounded and exponentially decaying term.
Rewriting (24) in vector-matrix notation yields:

q̇ = A(λ̂(t), t)q + b u(λ, λ̂, t), (26)
where

A(λ̂(t), t) =
( −α φ̄(x0(t), λ̂(t), t)T

−γθφ̄(x0(t), λ̂(t), t), 0

)
,

b = (1, 0, . . . , 0)T .

Let Φ(t) be a solution of

Φ̇ = A(λ̂(t), t)Φ, Φ(t0) = I (27)
Then the solution of (26) is defined as

q(t) = Φ(t)
(
q(t0) +

∫ t

t0

Φ−1(τ)bu(λ̂(τ), λ, τ)dτ

)
,

t ≥ t0

(28)

We are going to show that there exists γ̄ ∈ R>0 such that
for all γj ∈ [0, γ̄] solutions of (26), (16) are bounded.

First, we notice that trajectories x̂1,j(t), x̂2,j(t) are glob-
ally bounded. Furthermore, the right-hand side of (16) is
locally Lipschitz in x̂1,j , x̂2,j . Hence the following estimate
holds:

‖ ˙̂
λ(t)‖ ≤ γ∗M, M ∈ R>0, γ

∗ = max
j

{γj}. (29)

As follows from assumptions of the lemma, function
φ̄(x0(t),λ, t) is λ-uniform PE. This implies existence of
L, μ ∈ R>0 such that

J(λ, t) =
∫ t+L

t

φ̄(x0(τ),λ, τ)φ̄T (x0(τ),λ, τ)dτ ≥ μI

∀ t > 0, λ ∈ Ωλ (30)
Consider the following matrix:

J(λ̂(t), t) −
∫ t+L

t

φ̄(x0(τ), λ̂(τ), τ)φ̄T (x0(τ), λ̂(τ), τ)dτ

=
∫ t+L

t

(φ̄(x0(τ), λ̂(t), τ) − φ̄(x0(τ), λ̂(τ), τ)) ×

φ̄
T (x0(τ), λ̂(t), τ)dτ +

∫ t+L

t

φ̄(x0(τ), λ̂(τ), τ) × (31)

(φ̄(x0(τ), λ̂(t), τ) − φ̄(x0(τ), λ̂(τ), τ))T dτ

= J1(λ̂(t), t) + J2(λ̂(t), t)
Using inequality

‖Hz‖ ≤ max
k,l

|hk,l|‖z‖, H ∈ R
m×n, z ∈ R

n

and that ‖φ̄(x0(t), λ, t)‖ ≤ B for all t ≥ 0, λ ∈ Ωλ we can
conclude that matrix (31) satisfies∣∣zT (J1(λ(t), t) + J2(λ(t), t))z

∣∣ ≤
≤ 2BD‖λ̂(t) − λ̂(τ)‖∞,[t,t+L]‖z‖2, D ∈ R>0.

Hence∫ t+L

t

φ̄(x0(τ), λ̂(τ), τ)φ̄T (x0(τ), λ̂(τ), τ)dτ

≥ J(λ̂(t), t) − 2BD‖λ̂(t) − λ̂(τ)‖∞,[t,t+L]I ≥
(μ − 2BD‖λ̂(t) − λ̂(τ)‖∞,[t,t+L])I

(32)

Taking (29), (32) into account we can conclude that∫ t+L

t

φ̄(x0(τ), λ̂(τ), τ)φ̄T (x0(τ), λ̂(τ), τ)dτ

≥ (μ − 2BDLMγ∗)I
(33)

Then choosing γi such that

γ∗ =
μ

4BDLM
(34)
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we can ensure that∫ t+L

t

φ̄(x0(τ), λ̂(τ), τ)φ̄T (x0(τ), λ̂(τ), τ)dτ ≥ μ

2
I ∀ t ≥ 0.

In other words the function φ̄(x0(t), λ̂(t), t) is persistently
exciting.

According to (Morgan & Narendra 1992), this implies that
system

q̇ = A(λ̂(t), t)q
is uniformly exponentially stable for all λ̂(t) satisfying
conditions (29), (34). Hence there exists ρ ∈ R>0 such
that the following inequality holds

‖Φ(t)q(t0)‖ ≤ e−ρ(t−t0)‖q(t0)‖ (35)
for all q(t0) ∈ R

n, t ≥ t0, t0 ∈ R. Therefore, taking
(28), (35) into account we can conclude that for any
bounded and continuous function u(t) solutions of system
(26) satisfy the following estimate:

‖q(t)‖ =
∥∥∥∥Φ(t)q(t0) +

∫ t

t0

Φ(t − τ)bu(τ)dτ

∥∥∥∥
≤ e−ρ(t−t0)‖q(t0)‖ +

∫ t

t0

e−ρ(t−τ)‖b‖|u(τ)|dτ. (36)

Taking notational agreement (22) into account and using
(36) we can obtain:

‖θ̂(t) − θ‖ ≤ e−ρt‖q0‖ +
∫ t

0

e−ρ(t−τ)|u(τ)|dτ. (37)

Notice that according to (18), (25) function u(t) in (37)
satisfies the following inequality:

|u(t)| ≤ ‖θ‖D‖λ̂(t) − λ‖ + ‖θ‖Δ + |ε(t)|.
Hence

‖θ̂(t)−θ‖ ≤ ‖θ‖D
∫ t

0

e−ρ(t−τ)‖λ̂(τ)−λ‖dτ+
‖θ‖Δ

ρ
+ε1(t),

(38)
where ε1(t) is an exponentially decaying term. Denoting
B1 = supλ1,λ2∈Ωλ

‖λ1 − λ2‖ we obtain the following
estimate from (38):

‖θ̂(t) − θ‖ ≤ ‖θ‖D
ρ

‖λ̂(τ) − λ‖∞,[t−T0,t] +
‖θ‖Δ

ρ

+
‖θ‖DB1

ρ
e−ρT0 + ε2(t),

(39)

where ε2(t) is an exponentially decaying function, and
T0 ∈ R>0. Equations (39), (34), and (29) imply existence
of γ0 such that for all γ∗ ≤ min{γ0, μ/4BDLM} the
following holds:

‖θ̂(t) − θ‖ ≤ ‖θ‖D
ρ

‖λ̂(t) − λ‖ + 2
‖θ‖Δ

ρ
+ ε2(t). (40)

Combining the first equation in (24) with (40) we obtain
desired estimate (20) (see, for example, (Tyukin, Tyukina
& van Leeuwen n.d.) for details). The lemma is proven.

According to Lemma 3 there exists a non-empty interval
(0, γ̄) such that for all γj ∈ (0, γ̄) solutions of system
(6), (14), (16) satisfy inequality (20). On the other hand
solutions of system

˙̂x1,j = γj

(
x̂1,j − x̂2,j − x̂1,j

(
x̂2

1,j + x̂2
2,j

))
˙̂x2,j = γj

(
x̂1,j + x̂2,j − x̂2,j

(
x̂2

1,j + x̂2
2,j

))
λ̂j(x̂1,j) = λj,min +

λj,max − λj,min

2
(x̂1,j + 1)

(41)

with initial conditions (17) are forward-invariant on
x̂2

1,j(t) + x̂2
2,j(t) = 1 and can be expressed as x̂1,j(t) =

sin(γjt), x̂2,j(t) = cos(γjt). Taking into account that γj

are rationally-independent we can conclude that trajec-
tories x̂1,j(t) densely fill an invariant n-dimensional tori
(Arnold 1978), and system (41) with initial conditions (17)
is Poisson-stable in Ωx = {x̂1,j , x̂2,j ∈ R|x̂1,j ∈ [−1, 1]}.
Therefore, according to (Tyukin et al. 2008b) there exists
γ∗ such that

lim
t→∞ λ̂(t) = λ∗, λ∗ ∈ Ωλ (42)

lim
t→∞ ‖x0(t) − x̂0(t)‖ε = 0. (43)

for all γj ∈ (0, γ∗). Taking (40) into account and denoting
κ = ‖θ‖/ρ, ‖λ − λ∗‖ = δ/2 we can conclude that

∃ t′ > 0 : ‖θ̂(t)−θ‖ ≤ κ(Dδ+3Δ), ‖λ̂(t)−λ‖ ≤ δ ∀ t ≥ t′.
The theorem is proven.

Theorem 2 assures that the estimates θ̂(t), λ̂(t) converge
to a neighborhood of the actual values θ, λ asymptotically.
It does not specify, however, how precise these estimates
are. Yet, taking properties (19) into account we can
conclude that precision of estimating θ, λ depends merely
on the precision of estimating the values of λ.

To specify conditions ensuring that λ̂ are sufficiently close
to λ consider dynamics of variable q1:

q̇1 = −αq1 + f(λ,λ∗, t) + ελ(t),
where the function f(λ, λ∗, t) is defined as

f(λ,λ∗, t) = φ̄(x0, λ
∗, t)T H × (44)∫ t

t0

Φ(t − τ)bu(λ,λ∗, τ)dτ + u(λ, λ∗, t)

H =

⎛
⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
· · ·

0 0 0 0 . . . 1

⎞
⎟⎠

and ελ(t) converges to zero asymptotically according to the
conclusions of Theorem 2. When the value of λ coincides
with that of λ∗ the following equivalence holds (see (25)):

u(λ, λ∗, t) = θT η(t, λ) + ε(t). (45)
Due to the presence of nonlinearly parameterized terms
equivalence (45) may hold for multiple values of λ∗. By
symbol E(λ) we denote the set of all λ∗ ∈ ∏

[λi,min, λi,max]
for which equivalence (45) holds. Hence reconstruction of
λ is achievable up to their equivalence classes E(λ) at
most.

Similar to systems with linearly parameterized regressors,
in order to determine the possibility to distinguish between
two vectors in nonlinearly parameterized regressors we a
modified notion of nonlinear persistent excitation (Cao,
Annaswamy & Kojic 2003):

∃ T ∈ R>0, δ ∈ R>0 : ∀ t0 ≥ 0 ∃ t′ ∈ [t0, t0 + T ]
|f(λ, λ∗, t′)| ≥ δ‖λ∗‖E(λ) + Δ∗, Δ∗ ∈ R≥0

(46)

where ‖λ∗‖E(λ) = infλ̄∈E(λ) ‖λ∗ − λ̄‖, and Δ∗ is deter-
mined by term θT η(t, λ)+ε(t). Given that ε(t) is exponen-
tially decaying, and that η(t,λ) can be made arbitrarily
small we shall regard Δ∗ as small.
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According to (Tyukin, Prokhorov & van Leeuwen 2008a)
(Theorem 1, Lemma 1, see also (Loria, Panteley, Popovic
& Teel 2003)), variable q1(t) is persistently exciting for
sufficiently small Δ∗. On the other hand, the value of ε
in (19) can be made arbitrarily small as well (the smaller
the Δ, γj the smaller the ε). Then, applying the same
argument as in (Tyukin et al. 2008a) we can conclude that
‖λ∗‖E(λ) is bounded from above by a function of Δ∗, ε.
Furthermore, the smaller the Δ∗, ε the smaller the distance
‖λ∗‖E(λ), and so is the for the estimate λ̂(t) at t → ∞.

5. DISCUSSION

In the previous section we provided a system that can
track unknown parameters of the ”master”, equation (6),
subject to the conditions of linear/nonlinear persistency of
excitation for the corresponding regressors. State variables
of the original system can be estimated by the solutions of

ẋi = −λ̂2i x̂i + θ̂T
i (t)φi(x0, λ̂2i−1 , t). (47)

Because λi(t) → λ∗
i ∈ R, λ∗

2i
∈ R>0 at t → ∞ solutions

of (47) will approach xi(t) at t → ∞ in case the residual
terms (45) are kept small.

In our effort to achieve our goal we have not used Lyapunov
stability theory to ensure convergence of the estimates to
the neighborhoods of the actual values of the parameters.
The set to which the estimates converge is not stable in
the sense of Lyapunov. It is, nevertheless, attracting and
Poisson stable.

We would also like to stress that our present approach
share much in spirit with the earlier works on the topics
of universal adaptive stabilization (Pomet 1992), (Ilch-
man 1997), (Martensson 1985), (Martensson & Polderman
1993) and global nonlinear optimization (Shang & Wah
1996). In these references it was proposed to apporach the
problems of adaptation and optimization using controllers
and minimizers combining advantages of exponentially
stable and searching dynamics. We also employ these ideas
here, although targeting different problem and using dif-
ferent mathematical machinery.

6. CONCLUSION

In the present article we provided a solution to the prob-
lem of state and parameter reconstruction for uncertain
dynamical systems that cannot be transformed into the
canonical adaptive observer form. We established that
uniform persistency of excitation of a linearly parameter-
ized regressor in the observer combined with a nonlinear
persistency of excitation condition for the nonlinearly pa-
rameterized part are sufficient to ensure successful recon-
struction.

For the sake of simplicity we restricted our consideration
to the case when nonlinear parameters in each equation
of the original system were scalars. The method, however,
can straightforwardly be extended to the cases in which
these parameters are vectors.

We should comment that the amount of time required
for convergence depends substantially on the number of
uncertain time constants and nonlinear parameters. It does
not depend on the dimension of the linearly parameterized

part (subject to ensuring sufficient level of excitation).
This implies that the method is most successful for systems
in which dimension of the nonlinear uncertainties is low.
The latter seems to be a natural price for reasonable gen-
erality of our approach. Whether there are less demanding
and conservative solutions remains the subject for our
future study.
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