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Abstract: This paper presents a feed-forward model-based friction compensation technique
using the LuGre friction model. An off-line method is given to estimate the model’s parameters
based on simple ramp-response experiments. In addition, an on-line parameter adaptation
procedure for the two most important model parameters is provided. Experimental results
obtained with a robotic manipulator are presented to illustrate the merits of the friction
compensation technique.
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1. INTRODUCTION

Precise motion control is essential in applications like
machining, wafer steppers or robotic systems. Friction
is one of the main factors that limit the performance
achievable with linear control methods [Canudas de Wit
et al., 1995, Canudas de Wit and Lischinsky, 1997]. It
affects both static and dynamic performance and it may
cause limit cycles, steady-state error or even instability.
Failure to compensate the friction effects can substantially
degrade the performance of a motion control system,
especially in low-velocity tasks.

Because of these limitations, methods have been devel-
oped to minimize the effects of friction. The basic idea
of these methods is to compensate the friction force.
The most well-known approach is model-based friction
compensation. This method relies on a friction model,
identification of the model parameters and an implemen-
tation of a friction compensator in the control scheme.
An appropriate friction model is a basic requirement for
good compensation results. A dynamic model called LuGre
model [Canudas de Wit et al., 1995] has frequently been
used, as it offers a good compromise between complexity
and accuracy. It covers the main phenomena of friction,
i.e., viscous friction, Coulomb friction, stiction and also
the dynamic bristle behavior at the contact surface, all
captured in a relatively compact formula. This model has
also been recommended by many other authors [Waiboer,
2007], [Alpeter, 1999], [Tan and Kanellakopoulos, 1999]
and [Panteley et al., 1998]. Variations of environmental
factors such as the normal force, temperature, lubricant
conditions, etc., affect the friction model parameters. It is
therefore necessary to extend the compensation approach
to an adaptive version that can cope with environmental
changes and model uncertainties.

There are also model-free compensation methods, which
do not require a detailed model of friction. A well-known

example is the sliding mode controller. In this approach,
friction is regarded as a bounded disturbance signal and
the control strategy is designed such that the tracking error
converges to zero. This approach is robust against friction
model uncertainty. However, the main drawback of sliding-
mode control is the chattering of the control signal, which
is undesired in practice because it shortens the lifetime
of mechanical components. Because of this drawback, we
concentrate on the model-based friction compensation.

This paper contributes a detailed description of the Lu-
Gre friction model, an off-line estimation method for all
the model’s parameters based on simple, low-cost ramp-
response experiments and an on-line parameter adaptation
procedure for the two most important model parameters.
Experimental results obtained with a robotic manipulator
are presented to illustrate the merits of the friction com-
pensation technique.

2. FRICTION MODEL

2.1 DC Motor Actuator

Consider a robot’s joint actuated by a DC motor. The
differential equations describing the motor are:

Li̇ + Ri = V − ktẏ (1)

Jÿ = kti − Tf (2)

With L and R being the armature inductance and resis-
tance, respectively, kt the motor torque constant and J
the combined inertia of the rotor and the link attached to
it. The input voltage is denoted by V , the joint angle by
y and the friction torque by Tf .

2.2 Friction Model

To model Tf , we use the LuGre model introduced by
Canudas de Wit et al. [1995]:
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Tf = σ0z + σ1
dz

dt
+ α2v (3)

dz

dt
= v −

σ0

g(v)
z|v| (4)

g(v) = α0 + α1e
−(v/vs)2 (5)

This model has one input variable, the joint velocity,
v = ẏ, and one state variable, z, representing the bristle
displacement in the pre-sliding phase. The model has the
following six parameters:

α0 Coulomb friction vs Stribeck velocity
α1 stiction σ0 bristle stiffness
α2 viscous friction σ1 bristle damping

Methods to estimate these parameters off line and on line
are given in the following section.

3. PARAMETER ESTIMATION

3.1 Friction Torque Computation

To estimate the model parameters, the friction torque
must be known. The friction torque cannot be measured
directly, but it can be computed using the DC motor model
(1)–(2). Neglecting the armature inductance, from (1) we
can express i

i =
V − ktẏ

R
(6)

and substitute it into (2) to obtain:

Jÿ = kt
V − ktẏ

R
− Tf (7)

At a constant velocity, ÿ = 0, this yields:

T ∗
ss(v) = kt

V − ktv

R
(8)

Clearly, with the knowledge of the motor parameters kt

and R, we can compute the steady-state friction torque
T ∗

ss from the constant-velocity data. These parameters are
easy to determine, either from the motor’s data sheet or by
means of direct static measurements of the applied voltage,
the resulting current and torque or force.

3.2 Off-Line Parameter Estimation

The initial values of the LuGre model parameters can be
estimated off line by using data from dedicated experi-
ments. We split the parameters into ‘static’ and ‘dynamic’
parameters. For the static ones, take the steady-state form
of equations (3)–(5), i.e., set dz

dt = 0, to obtain:

Tss(v) =
(

α0 + α1e
−(v/vs)2

)

sgn(v) + α2v (9)

The four parameters in this equation (α0, α1, α2, vs) are
called the static parameters. The remaining two parame-
ters (σ0 and σ1) are the dynamic parameters.

Estimation of Static Parameters. Closed-loop experi-
ments at constant velocities (angle ramp response) were
performed. Using (8), these experiments yield data sets
consisting of velocity – friction torque pairs. The goal is to
find the parameters (α0, α1, α2, vs) such that (9) optimally
fits the experimental data (in the least-square sense).

Recall that T ∗
ss is the torque computed from the data

and Tss is the friction model output. The following cost
function is used to quantify the fit:

Js =

n∑

j=1

(

T ∗
ss(vj) − Tss(vj)

)2

(10)

where j is the data sample index and n is the total number
of samples. As (9) is nonlinear with respect to vs, we apply
linear-least square estimation for an array of pre-selected
values of vs. We first restate (9) as

Tss =
(

sgn(v) e−(v/vs)2sgn(v) v

)

( α0 α1 α2 )
T

(11)

and fill in the friction-velocity data:





T ∗
ss(v1)

...

T ∗
ss(vn)






︸ ︷︷ ︸

Tf

=






1 e−(v1/vs)2 v1

...
...

...

1 e−(vn/vs)2 vn






︸ ︷︷ ︸

Af






α0

α1

α2






︸ ︷︷ ︸

Pf

(12)

The next step is to generate a set of discrete values of
vs in the range where vs is expected to be. From the
physical understanding of the friction effects, we known
that the Stribeck velocity vs is a velocity at which the
friction torque drops before it starts to increase as the
velocity increases, see Fig. 1 for an example. This figure
shows the steady-state characteristic of the LuGre model
for α0 = 0.0194, α1 = 0.0055, α2 = 0.0394, σ0 = 20,
σ1 = 0.02 and for three distinct values of vs.
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Fig. 1. The friction force as a function of the joint velocity
according to the LuGre model (steady-state).

For each vs, the parameter vector Pf = (α0, α1, α2)
T is

estimated by:

Pf = (AT
f Af )−1AT

f Tf (13)

For each estimate, we compute the cost function Js and
choose (α0, α1, α2, vs) corresponding to the lowest Js.

Estimation of Dynamic Parameters. A method to esti-
mate the dynamic parameters σ0 and σ1 was proposed in
[Waiboer, 2007] and [Lischinsky et al., 1999]. Supply a very
slow ramp input (voltage) to the open-loop system. This
results in a simplification of (3) into the form Tf = σ0z.
We take the first displacement measured by the sensor
(denoted by x1) and the applied torque (denoted by T1)
at that moment, so σ0 is approximated as

σ0 =
T1

x1
(14)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2021



The σ1 parameter is estimated by using an empirical
equation based on observations in practical experiments
[Waiboer, 2007]:

σ1 = 0.2
√

Jσ0 (15)

3.3 On-Line Parameter Adaptation

Friction characteristics can change due to changes in
environmental factors such as temperature, normal force,
lubricant viscosity, etc. These changes cause a mismatch
between the friction model, with the parameters estimated
off-line, and the actual friction. Therefore, the friction
parameters should be updated on-line in order to have a
reliable estimate of the friction torque.

Updating the friction model parameters on-line requires
an adaptation mechanism. However, only those parame-
ters that have significant influence on the LuGre model
accuracy are updated. Sensitivity analysis revealed that
parameters α0 (Coulomb friction) and α2 (viscous friction)
have the most significant influence on the accuracy of the
LuGre model. Therefore, we update these two parameters
only. A modified friction model is formulated as follows:

Tf = σ0z + σ1
dz

dt
+ θ2α2v (16)

dz

dt
= v −

σ0

g(v)
z|v| (17)

g(v) = θ1α0 + α1e
−(v/vs)2 (18)

where the gains θ1 and θ2 are updated according to the
following law:

dθ1

dt
=−γ1

∂Tf

∂α0
e

=−γ1
σ0σ1|v|ze−(v/vs)2

(α0 + α1e−(v/vs)2)2
e (19)

dθ2

dt
=−γ2

∂Tf

∂α2
e

=−γ2ve (20)

with the learning rates γ1, γ2 ∈ [0, 1].

4. FRICTION COMPENSATION SCHEME

To compensate for friction, the friction torque is simply
computed by the model and added to the control signal.
There are two possibilities to compute the velocity which
is needed as an input of the friction model: feed-forward
scheme, in which the velocity is computed from the refer-
ence signal, and feedback scheme, in which the velocity is
computed from the measured joint angle (or it is measured
by a joint velocity sensor).

According to Alpeter [1999], better results were obtained
with the feed-forward compensation scheme than with
the feedback scheme. Therefore, we use the feed-forward
scheme in this research. Combining the feed-forward com-
pensation scheme and the adaptation law, the overall fric-
tion compensation scheme is obtained as shown in Fig. 2.

vr z
Tf

yr e u v y

Fig. 2. Adaptive feed-forward friction compensation
scheme.

5. EXPERIMENTAL RESULTS

The friction compensation method is applied to the Ed-
Ro robotic manipulator. This lightweight robot has been
designed at the Delft University of Technology as an
experimental platform for research and education. This
robot has five rotational joints as indicated in Fig. 3.

base
rotation

Shoulder

elbow
pitch

wrist
pitch

gripper
rotation

Fig. 3. Ed-Ro - a small experimental robotic manipulator.

By using the off-line parameter-estimation method de-
scribed in Section 3, we gathered the friction-velocity
data and calibrated the friction model for each joint. An
example of the results obtained is given for the gripper
rotation in Fig. 4.

The friction model parameters for all the joints of the Ed-
Ro robot are given in Table 1.

The friction compensator is used in conjunction with the
standard PID controller

C(s) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)

dt
(21)

with Kp = 3, Kd = 0.2, Ki = 1.2. The entire control
scheme was implemented in Simulink, using continuous-
time blocks and the ode45 integration method. The robot
was interfaced to the computer via a serial port. Synchro-
nization with real time was ensured by the rtsync block
of the Real-Time Toolbox for Matlab by Humusoft.

Real-time experimental results with a sinusoidal reference
signal for the gripper rotation are reported in Figures 5
through 7.
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Fig. 4. Friction model for gripper rotation.

Table 1. Parameters of the LuGre model for
the Ed-Ro robot for positive (+) and negative

(−) velocity.

Friction Gripper Wrist Elbow Base
Parameters rotation pitch pitch rotation

α0 (+) 0.0194 0.0704 0.1018 0.2371
(Nm) (−) 0.0148 0.1058 0.0957 0.1731

α1 (+) 0.0055 0.0145 0.0514 0.0285
(Nm) (−) 0.0040 0.0107 0.0209 0.1098

α2 (+) 0.0394 0.1362 0.2216 0.1394
(Nms/rad) (−) 0.0307 0.1200 0.1495 0.1338

vs (+) 0.0720 0.0320 0.1230 0.0750
(rad/s) (−) 0.0720 0.0710 0.0450 0.0620

σ0 (+) 6.1843 38.3236 59.3440 70.5845
(Nm/rad) (−) 4.5356 40.0495 38.4564 50.2721

σ1 (+) 0.0184 0.1168 0.2579 0.4673
(Nms/rad) (−) 0.0146 0.1162 0.1874 0.3908
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Fig. 5. Experiment with gripper rotation, position refer-
ence and output.

In Fig. 6, one can observe that friction compensation re-
duces the tracking error significantly. The same procedure
was repeated for the other joints and the results are sum-
marized in Fig. 8. Note that the RMS error between the
reference and the actual output drops significantly under
friction compensation.
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Fig. 6. Experiment with gripper rotation, position error.
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Fig. 7. Experiment with gripper rotation, control signal.

Fig. 8. An overview the RMS error for the different joints.

An experiment was designed to demonstrate the benefits of
adaptive friction compensation. The quality of the friction
model for the wrist rotation joint is purposely deteriorated
by multiplying the initial values of its adaptable parame-
ters by random constants as shown in Table 2.

Experimental results obtained with the adaptive compen-
sation scheme are given in Figures 9 through 12. In
Fig. 9, one can see that the adaptation gains converge
to recover the true parameters. Figure 11 shows that the
tracking error is initially large, but it rapidly decreases as
the parameters converge within the first 4 seconds.
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Table 2. Friction model parameter variation.

Original Initial Adapted
parameters parameters parameters

α0 = 0.0194 0.3α0 0.84α0

α1 = 0.0055 α1 α1

α2 = 0.0394 0.5α2 1.05α2

vs = 0.0720 vs vs

σ0 = 6.1843 σ0 σ0

σ1 = 0.0184 σ1 σ1
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Fig. 9. Adapted gains θ1 and θ2.
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Fig. 10. Experiment with gripper rotation, position out-
put.
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Fig. 11. Experiment with gripper rotation, position error.
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Fig. 12. Experiment with gripper rotation, control signal.

6. CONCLUSIONS

An application of model-based friction compensation to
a robotic manipulator has been presented. The design
procedure for the model-based compensation scheme in-
volves the computation of the friction torque and off-
line parameter estimation for the LuGre model struc-
ture. A straightforward on-line adaptation method for the
Coulomb and viscous friction model coefficients has been
presented to cope with environmental changes that may
affect the friction characteristics. Real-time experimental
results show that friction compensation yields a significant
improvement, indicated by the reduction of the tracking
error signal.
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