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∗ Université de Toulouse; LAPLACE; CNRS, INPT, UPS; 2 rue
Camichel, 31071 Toulouse Cedex France ( e-mail:

sebastien.carriere@laplace.univ-tlse.fr).

Abstract: Direct drives applications are more and more common and rise up the control
weakness to parameters variation. New method have been created but are most of time complex
to tune and need powerful processor. In this paper, state feedback controllers optimized by Linear
Quadratic principle are shown up. These methods achieve cost requirements due to constant
gain coefficients. Methods tune criterion to let the closed loop stable and unsensitive to load
variation. The first one uses an iterative algorithm on few tuned parameter. The last one blends
poles placement and Linear Quadratic principle to achieve a fast synthesis method. Experimental
results have been obtained taking into account internal current control and inverter limitation.

1. INTRODUCTION

In lot of industrial domains, speed control of a load is
still a problem mainly due to load parameter variations.
Moreover it is commonly known that elasticity phenom-
enon must be taken into account in the transmission model
between the actuator and its load. In different applications
such as: crusher, drilling system, re-winder and paper
machine, elasticity and inertia variation of the load are
of paramount importance. For example, in machine tools
operation, railway traction and rolling mill drives, the
mechanical load varies considerably under certain operat-
ing conditions. Permanent Magnet Synchronous Machine
(PMSM) is chosen in many industrial drive applications
and the mechanical transfer elements (shafts, gears, fric-
tion, backlash, etc) introduce imperfections that must be
considered in dynamic speed controllers. The control prob-
lem goals are in one hand to keep the closed loop system
stable whatever the load parameters are and on the other
hand to keep some performances as constant as possible
(overshoot and response time). In the case studied a two
masses model is used for the mechanical part under large
load inertia variation.

In industry the controllers must be simple to implement.
To be easily tuned on different systems, the synthesis
has to take into account parameter variations. A classical
polynomial PID approach regains interest for few years to
obtain a self tuned PID controller Ang et al. [2005]. Using
a PID with filters, anti windup and no zero structures keep
the system stable but is not sufficient for the performances
robustness point of view. In another way, using more
information on the device and the state space formula-
tion allow the designer to define robust state feedback
controllers. The designer must use optimization principles
and more performing pole placements. But, most of robust
control theories provide high order controllers Chilali and
Gahinet [1996]. To be implemented such controller must
be reduced. But reduction of such controller is not so

easy and provide the lost of the initial robustness. The
mathematical approach must be structured depending on
the parameter variation and closed loop desired behav-
ior Kajiwara et al. [1999]. Moreover these methods use
mathematical and optimization analyzes providing more
problems to be understood in non academic research field.

The approach developed here, tries to obtain a compromise
between complexity of the synthesis and performances
obtained. In fact, using Linear Quadratic criterion for a
state space feedback synthesis is well known to keep stable
a controlled device. To take into account consideration
of performances, the parameters used in the criterion
must be accurately specified Anderson and Moore [1989].
Theory shows it is possible to tune the LQ optimization
for a robust poles placement. The proposed approach links
the state feedback to the LQ criterion and the poles
placement taking into account actuators limitations and
inertia variation.

Section 2 of this paper presents the two masses and elastic-
ity model focusing on the inertia variation problems. The
state space representation to be used in the state feed-
back speed controller is presented too. Section 3 presents
the controllers synthesis with an integral term added.
An optimal PID controller and different state feedback
are presented for comparisons purposes. Note that state
feedback approaches are used in speed control and not
in a position control problem. The proposed approach for
state feedback controller design is detailed for a simple
four degree of freedom LQ criterion. To keep specified
closed loop performances, the final LQ approach with
poles placement is exposed. Validation results shown in
section 4 are conduced with an actual synchronous actu-
ator with bounded inertia variations on its driven load.
The controller designed does not only let the closed loop
system response stable, but also let constant the requested
performances whatever the load inertia variation is.
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Fig. 2. Two mass model for speed mechanical load control

2. ACTUATOR AND LOAD MODELING

Permanent Magnet Synchronous Motor (PMSM) is the
most used drive in machine tool servos and modern speed
control applications due to its desirable features (compact
structure, high air-gap flux density, high power density,
high blocked torque). The influence of inverter in such
control is commonly neglected if an accurate current
control and torque control is effective to contribute to the
accurate velocity on the load side.

To study the complete actuator elements, simulation-
based synthesis are conduced with the structure presented
on (Fig. 1) for a classic current control in d,q rotating
frame.

The current and speed controllers are in cascade, so even
if the internal closed loop is neglected, some assumptions
must stay verified (speed dynamic lower than current one,
torque reference lower than current limitation of the in-
verter and motor size). The following controllers tuning
takes into account all this phenomena.

2.1 Two masses model

Considering effective the torque control, the load speed
control is only link to the mechanical behavior. In this
paper, a two-mass system is considered for mechanical
part. The PMSM and load are connected through a shaft.
The mechanical simulation model is presented in (Fig. 2)
corresponding to the experimental device (Fig. 3). Indices l
and m represent load and motor parameters respectively.
The joint and a long axis introduce a torque shaft Tsh

depending on the position difference and the elasticity
Ksh. On speed control scheme, position can not be em-
ployed cause it leads to an uncontrollable model. Position
difference is a finite variable so with known initial condi-
tion, it can be calculated by speeds difference integration.
This points out the difference between position and speed
control scheme.

Zero, one or two wheels can be mounted on the load axis
to vary load inertia Jl. Controlling the brake can introduce
a disturbance torque Tl. This experimental device allows

PMSM 

drive

Mechanical load

Joint – variable inertia - brake

Load speed 

sensor

Fig. 3. Experimental setup with load inertia variation
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Fig. 4. Generic closed loop poles variation

specific disturbances which are characteristic of most of
industrial issues. Controlling the load velocity ωl through
the motor torque Tm consists in controlling transfer func-
tion (1) with the inertia value Jl ∈

[
Jlmin Jlmax

]
.







d0 = Ksh(Jl + Jm)

d1 = fmfl + JlKsh + JmKsh

d2 = 2Jlfm

d3 = JlJm

ωl(s)

Tm(s)
=

Ksh

d0 + d1s + d2s
2 + d3s

3
(1)

Nevertheless, the inertia variation bring modification on
system poles making the system behavior different in
respect to inertia as shown in (Fig. 4). This problem does
not resume as a stabilization problem (avoid zone g1) but
consist also to a robust problem limiting time response
variation (reducing zone g3) , overshoot (avoid zone g2) and
disturbance rejection.

Variations showed on (Fig. 4) reveal that two high modulus
complex poles have their real part tending to positive value
when inertia is decreasing. So to avoid any instability on
inertia variation, to calculate controller, minimal inertia is
chosen.

PID synthesis can cancel the instability phenomena but
is limited for robust performances and a robust pole
placement is not sufficient to be stable, fast and robust
Shin and Huh [2000]
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2.2 State space formulation

To use optimization algorithms based on mathematical
principles a state space representation is requested. For
the speed control problem, the speed behavior of both the
load and machine must be used in the state vector. In fact,
in speed control, using positions leads to an uncontrollable
formulation. Thus, the third variable is position difference
integrated from speeds difference (Fig. 2)

Then, the state vector is defined to be : X =
[
ωm ωl ∆θ

]T

And the 3-dimensional state space representation is given
in (2) where Jl is the varying load inertia.







Ẋ =






− fm

Jm
0 −Ksh

Jm

0 − fl

Jl

Ksh

Jl

1 −1 0






︸ ︷︷ ︸

A

X +






1

Jm

0

0






︸ ︷︷ ︸

B

Tm

y =
(
0 1 0

)

︸ ︷︷ ︸

C

X

(2)

The controller must force the closed loop system to be
faster as possible and keep it unsensitive to load varia-
tion. To elaborate the controller design, different strategies
are possible and the load variation has to be taken into
account. Robust control methods commonly add weight
functions or inequalities to this system and try to provide
best controller. The problem is solved with heavy compu-
tational programs and expert analyzes (H∞, LMI...). The
deduced controller is not satisfactory and the methods to
solve the complex problem are not self-evident therefore
lighter formulation are applied here as the following one.

2.3 Linear Quadratic formulation

Instead of robust approach, or a direct robust pole place-
ment, a Linear Quadratic method is performed in this pa-
per. The criterion (3) is used and must be minimized with a
state feedback Tm = −KX. This method always provides
a stable closed loop system with wide phase margin Ferreti
et al. [1998] and a simple controller to implement.

J =

∫
∞

0

(XT QX + RT 2

m)dt (3)

The controller gains K are obtained by computing (4).
Where Q and R are matrices to be defined and P is the
positive solution of Riccati equation (5).

K = R−1BT P (4)

PA + AT P − PBR−1BT P + Q = 0 (5)

Equation (5) is well known and it is easy to find programs
to solve this linear problem. The optimization is done by
a function as lqr() in Matlab c© or open source code.

The problem now is to define the Q and R matrices.
Depending on the definition of these matrices, different
controller gains and different closed loop behaviors are ob-
tained. A pole placement, a minimal energy management
or a minimum time constant can be imposed, etc. In the
following part, the goal is to tune Q and R coefficients
to keep in touch the effects on closed loop performances.

Procedures experimented have to convert easily desired
performance in requested parameters in the criterion def-
inition.

3. CONTROL SYNTHESIS APPROACH

Three methods are discussed in this paper. The first one,
a PID synthesised in a previous work Sou [2006] serving
for comparison. The second one takes advantages of Linear
Quadratic optimization but matrices are tuned by a trial
and error algorithm. Finally, the third one blends previous
criterion to a dominant poles placement to achieve quickly
the synthesis.

3.1 Optimized PID

The most implemented regulator in industrial system has
been selected for a first study. The point is to compare
the new applied approach introduced using the best pos-
sible PID and show its limitations. In (6) are the PID
formulation used and its coefficient’s value. This regulator
has been optimized in frequency domain. Detailed analyses
through different methods (Genetic Algorithm, Iterative
approach..) and calculation are given in Sou [2006]. the
bounded limitations of torque, inertia variation were taken
into account to assure optimizes performances by minimiz-
ing time response variation and limiting overshoot.

PID = Kp · [1 +
1

Tis
+

Tds

1 + aTds
]

Kp = 1.3 rd/(Nm.s) Ti = 0.19 Nm/rd

Td = 0.00083 rd/(s2.Nm) a = 0.5

(6)

This set of coefficients assures performances shown in
the experimental part and the over-all variations are in
(Table 1).

Of course, the wide range of performances implies that
this regulator is not convenient for our needs. In the
following par, a lot of cautions were made to designed a
regulator with better performance and usable by industrial
applications.

3.2 State feedback

A state feedback with the addition of an integral action
was chosen now, as described in (Fig. 5)

The previous 3-dimensional state space formulation is
augmented to describe the integral terms evolution. The
resulting state system (7) has its integral action on load
velocity. It results on a null steady state error. The
state feedback gain are performed by the minimization of
the criterion (3). This method on a mono-input system
provides a minimal (60◦) phase margin. That may allow
more robust performances than PID.

Xaug =
[
ωm ωl ∆θ Xi

]T







Ẋaug =

(
A 0

0 −1 0 0

)

︸ ︷︷ ︸

Aaug

Xaug +

(
B

0

)

︸ ︷︷ ︸

Baug

Tm

y =
(
C 0

)

︸ ︷︷ ︸

Caug

Xaug

(7)
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Fig. 5. LQI controller

To achieve our performance objectives, two different ways
of Q and R tuning are now compared. The first one uses
simplified matrices (only 3 degrees of freedom. The last
one blends optimization and dominant poles placement.

3.3 Limited Q and R synthesis (LQ3)

A simplified form using only 3 DOF in Q and R is first
presented. The sparse matrices used in this case are shown
in (8). Each effect are identified and compared with PID
coefficients in experimental part (4). Moreover, the 3 DOF
presented in the state space formulation are equivalent to
the 3 DOF of the PID polynomial form.

R =γ Q =







0 0 0 0

0 α 0 0

0 0 0 0

0 0 0 β







(8)

The major problem of this control design is to set up
the correct weights in the quadratic function. Due to
the few weight number, the tuning of α, β and γ can
be performed using trial and error method. This method
checks requirements by executing off-line simulations. For
this purpose, some important influences of parameters
must be underlined :

• α imposes the constraints to the load velocity dynam-
ics. High value makes the system slower. It is directly
correlative with load speed overshoot.

• β impacts on integral action dynamics and so on
system dynamics. The higher it is, the smaller rising
time will be.

• γ is used to limit the maximum control input (mo-
tor torque) by choosing high value. Therefore, the
setting and rising time become longer until dynamic
changes from first to second order with an increasing
overshoot (which must be less than 5% in industrial
applications).

Nevertheless, the single weight variation knowledge is in-
sufficient to assume a correct dynamic and time response.
Obviously, the system must be stable on the over-all vari-
ation then trials allows us to specify weight rate (9) to be
quickly close to the wanted regulator.







α

γ
< 50

β

γ
< 20000

(9)

So, the design method consists in the following algorithm :

(A) Stability purpose leads us to set up minimal inertia
as reference : Jl = Jlmin.

(B) Using the supervised trial and error method and the
knowledge of the weights characteristics, a set of LQ
matrices is defined.

(C) Time response, poles placement and torque have to be
analized on the over-all variation. Here the complete
PMSM control is simulated to take into account
inverter and current dynamic compatibility.

(D) If the robustness criterion is achieved (limited motor
torque, time response variation and overshoot as less
as possible), the parameters set is taken otherwise
step back to (B).

After achieving this algorithm, a set of parameters has
been calculated providing the regulator (10) :

R = 10 Q =







0 0 0 0

0 36 0 0

0 0 0 0

0 0 0 30000







KT =
(
0.426 1.662 122.872 −54.772

)

(10)

The responses with this regulator are shown in section
4. According to (Table 1), this regulator provides better
performances than PID. This gain is quite good but this
method has the same drawback than PID. Indeed, to
optimize them, an algorithm must be executed with a lot
of off-line iterations. That means, lots of conception times.
The optimization is performed by a human being and it
is possible that the user found a local and not a global
optimum. The industrial world needs fast results method
and uses classical engineering tools. This is the purpose of
the last introduced method.

3.4 Q and R synthesis and poles placement (LQPLPP)

Most of regulator designers are used to place poles for
controller since it allows them the knowledge of closed loop
dynamic before simulation. Therefore, this new method
blends the LQI criterion and traditional poles placement
to reach a fast design method. Theoretically proven in
Anderson and Moore [1989] and based on a n-dimensional
standard state space formulation, the calculus needs the
four following steps;

(A) First of all, choose the (n − 1) closed loop poles.
(B) Solve (11) where Aaug and Baug are the system open

loop matrix, p0(s) the open loop polynomial, m(s)
the desired closed loop polynomial and d a column
vector which have to be found.

dT (pIn − Aaug)
−1Baug =

m(s)

p0(s)
(11)

(C) Afterwards, matrices Q and R can be deduced from
(12).

Q =ρddT R =1 (12)

Where ρ is an iterative placement parameter.
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Fig. 6. LQI controller

(D) Finally, like previous methods, the regulator must be
checked for both time response variation and motor
torque limitation. If requirements are not achieved,
step back to (A).

The placement parameter ρ has important effects on the
system. As high ρ is, as closed are the closed loop poles
from the desired placement. Otherwise, closed loop poles
tend towards open loop poles.

The last pole which has not been chosen will be on real axis
and its value grows up when ρ grows up. So, ρ is as much
higher as necessary to have both, the dominant poles place
and the last one five to ten time faster to be neglected in
the desired behavior. Poles placement is selected obviously
selected to obtain a firs order dynamic. This will minimize
the overshoot with maximum inertia. Poles are one real
dominant at −30rd.s−1 and two complex with big modulus
at (−30 ± 1700j)rd.s−1.

On (Fig. 6), the closed loop poles variation is drawn
function of ρ. Along with ρ increasing value, complex poles
move not to their position but as closer as possible to allow
a criterion minimization. Dominant poles become complex
before splitting into two real poles, the chosen dominant
one and the latest goes to infinite as foretold. Note that ρ
can take high value as in our example (10000). The main
pole is strictly placed so ρ is increased until the non placed
pole become five to ten times faster to be non dominant.

The results provide the controller parameter (13) :

ρ = 4960 R = 1

Q =







0.00 −0.11 −3.82 3.30

−0.11 4.72 159.67 −137.97

−3.82 159.67 5394.20 −4661.12

3.30 −137.97 −4661.12 4027.67







KT =
(
0.523 1.796 183.515 −63.464

)

(13)

4. EXPERIMENTAL RESULTS

To check our assumptions and methods, an experimental
setup shown on (Fig. 3) is used. Torque is provided by an
actual PMSM actuator. The motor is supplied by a three-
phase inverter controlled by a PMW law. All parameter
are lister in Appendix A. This setup tries to reproduce

the main industrial phenomena and consists in a variable
load inertia created by an axis and two removable discs.
So experiments are conduced and compared for a step
reference tracking and a torque disturbance response.

To be noted, with minimal inertia and all controller, a
sinusoidal disturbance of 50Hz is observable only when
inertia is minimal. This disturbance is inducted by current
PWM noises and amplified through inertia and stiffness
resonance. When inertia is bigger, this noise is filtered.

Firstly, PID and LQ3 regulators are compared on (Fig. 7).
Obviously PID controller at minimal inertia does not
match requirement with an overshoot bigger than 5%
on (Fig. 7(a)). However, it is the faster regulator. LQ3
controller is slower but match the requirements and has
a smaller time response variation. The torque disturbance
response is better for LQ3 controller (Fig. 7(b)). Indeed,
the deviation is two time smaller. The minimal phase
margin of the optimized method allow to keep overshoot
and time variation slower. Moreover, the PID overshoot at
minimal inertia is due to a saturated command. So LQ3
controller can be faster or may allow with less variation a
disturbance torque from the start.

Then the two Linear Quadratic optimized regulators are
compared on (Fig. 8). The two controllers have almost
the same responses. LQPLPP is a little faster than LQ3
(Fig. 8(a)). Q matrices is full and not sparse as LQ3
Q matrices. So optimization have more parameter and
reach a better solution. Last remark on deviation due to
a disturbance torque, the deviation is less important for
maximal inertia. The energy stocked by inertia smooth
the response and minimize the deviation.

Minimal
time
response
(ms)

Time
response
variation
(%)

Maximal
overshoot
(%)

Disturbance
error
amplitude
(%)

PID 40 120 8.3 4

LQPLPP 70 63 5 1.7

LQ3 73 92 5 1.7

Table 1. Methods performances

(Table 1) shows comparisons of each method under inertia
variation so parametric robustness. In spite of its fastest
response, PID has worse performances on the other crite-
rion. Linear Quadratic controllers have almost the same
performance. Finally between this two controllers, the
main differences is the way they are synthesised. The linear
quadratic criterion imposes minimal stability condition
on the two cases. Poles placement provides quick tuning
because it has less parameter ”1” instead of ”3” to tune
with off-line iterative simulation. the time design economy
is a big advantages for this method.

5. CONCLUSION

This paper describes the robust design and comparison of
linear quadratic controller by two method in elastic load
application with large load inertia variation driven by a
PMSM motor. Alike other studies, PID do not achieve
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Fig. 7. Experimental comparison between PID and LQ3
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purpose. State space allows more complex controller as
linear quadratic which has interesting characteristics in
term of robustness and keep implementation simple for
industrial application.

First optimization method has long time of development
and may lead to local optimum. Contrarily, the last
approach leads quickly to a solution which achieves the
robustness goal thanks to a poles placement. This is
more adapted to industrial time and complexity reduction
goal. Experimentations driven on a test bench corroborate
simulation and show up advantages of these methods.
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Appendix A. PMSM AND LOAD PARAMETERS

PMSM parameters

Rs = 0.6 Ω Kc = 0.83 Nm/A

Lc = 1.9 mH fm = 0.06 · 10−3 Nm.s/rd

pp = 4pair of poles Jm = 0.74 · 10−3 kg.m2

Load parameters

fl = 8.5 · 10−3 Nm.s/rd Ksh = 2000Nm/rd

Jl ∈
[
0.006 0.038

]
kg.m2

PI current control

Kp = 1.533 V/Nm Ti = 0.0024 V.s/Nm
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