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Abstract: The expectation maximization(EM) algorithm and particle filtering have been
greatly used in many estimation problems. In this paper, we propose a combination of the
EM algorithm and particle smoothing for identification of nonlinear state space models using
artificial neural networks. After representing a radial basis function(RBF) neural network as
a parametric structure for describing the state transition and output equations of a state
space model, the EM algorithm is applied for updating parameters and estimating states of
the nonlinear system. Moreover, the particle smoothing algorithm is used at the E phase for
state estimation. Simulation studies show the fast convergence rate and satisfactory accuracy
of the proposed method in identification of nonlinear plants whose state transition function,
output structure or both are unknown.
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1. INTRODUCTION

The expectation maximization(EM) algorithm initially
proposed by [1], [2] has been greatly used in many pa-
rameter and state estimation problems [3], [4]. Indeed,
the considerable flexibility of the EM algorithm in joint
parameter and state estimation has made them popular
to many nonlinear system identification problems.
The combination of the EM algorithm and various state
estimation methods for identification of nonlinear systems
has been the topic of the literature [7]. However, the
significant weakness of the literature is an assumption on
the overall structure of the nonlinear system supposed to
be completely or, in some cases, partially known. In fact,
no discussion has been made on generalization of the EM
algorithm to a more complex case in which the overall
system is completely unknown. This problem can arise
in many real applications such as blind signal processing
whose best example is blind equalization of nonlinear
channels [8] or many common models whose dynamic is
unknown [4].
Using parametric structures for modeling nonlinear sys-
tems when the system is completely unknown was first
proposed by [9]. They proposed using a linear dynamical
system instead of the state transition and output models
and, then, applied the EM algorithm to the joint parame-
ter and state estimation of the proposed structure. Next,
they extended their method to a nonlinear case when a ra-
dial basis function(RBF) network was used as a parametric
structure [4]. The aforementioned strategy was also suc-
cessfully applied to identification of nonlinear systems and
time series forecasting in the presence of missing data. The

most significant flaw of the mentioned work was using the
extended Kalman filter/smoother(EKF/EKS)[10] method
at the state estimation phase leading to poor results in
the presence of severe nonlinearities. Moreover, deriving
learning rules when the EKS is used in conjunction with
the EM algorithm is very hard and, therefore, applying
new learning rules, specifically adjusting the parameters
of the basis functions, may be impossible.
Recently, the sequential Monte Carlo framework known as
particle filtering has been greatly used in many estima-
tion, tracking and control issues [11], [12], [13]. Besides
the much more superior quality of this method in deal-
ing with nonlinear systems compared with the traditional
Kalman based approaches, the particle filter/smoother can
be much more easily joint with the EM algorithm than the
EKS method. The latter advantage has caused that the
combination of the particle smoothing algorithm and the
EM to be applied to many state and parameter estimation
issues [7], [14] although applying the proposed method to
blind case where a parametric structure has been used to
model the state transition or output structure is yet an
open problem.
In this paper, we show how to apply the particle smoothing
and EM algorithm, named as the smoothed EM-particle,
to identification of general nonlinear state space models
(NSSM) described by an intelligent structure where we
consider the class of discrete time state space models. After
a brief review of NSSMs and parameter and state estima-
tion problems in section 2, the EM algorithm is presented
in section 3. In this section, a very brief discussion is made
on particle filtering/smoothing and its application in the
state estimation phase of the EM algorithm. Section 4
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deals with our proposed method for adjusting the parame-
ters of the RBF network used as the parametric structure
in the paper. Simulation studies justifying the superiority
of the algorithm are presented in section 5. Finally, section
6 concludes the paper.

2. NONLINEAR STATE SPACE MODELS

A general representation of an NSSM can be written as:

xt = fθx(xt−1,ut) + vt

yt = gθy(xt) + wt (1)

where xt is the state vector at time t, yt are the out-
put observations, ut is the external input vector, vt and
wt are the white noises with zero mean and covariance
matrixes Q and R, respectively. Furthermore, f and g are
the nonlinear parametric equations with parameters θx

and θy , respectively, meeting the local Lipschitz condition
[15]. In addition, without any loss of generality, we have
eliminated the external input ut from the output function.
This issue is usually justified in control applications where
the external input is considered in the state transition
model. However, in many other applications, inputs ap-
pear in the output model. For example, in the observer
trajectory planning topic [16], the state transition model
is independent from external inputs. The identification
stages can be summarized as the following ones:

(1) State Estimation
Because the state vector is represented by a stochastic
variable, the final aim of the state estimation is
estimating the posterior density function of states
given outputs and parameters, p(xt|d1:t, θt), where
d1:t = {y1:t,u1:t}.

(2) Parameter Estimation
Generally, the parameter estimation stage can be de-
fined as either estimating the posterior density func-
tion of parameters given states and measurements
when dual filters are used or optimizing a cost func-
tion such as the log likelihood function. To tackle
the dual filtering method, the following simple time
evolution model is usually considered for parameters
of the system:

θt = θt−1 + nt (2)

Here nt is an artificial gaussian noise with zero mean
and an arbitrary covariance matrix. The augmented
state vector can be constructed as X = {xt, θt}.
There are various ideas for estimating the above aug-
mented state vector such as using the dual Kalman
or particle filtering [7] and Rao-Blackwellized particle
filtering [17]. However, some weaknesses of the afore-
mentioned strategies such as sensitivity to the initial
value of parameters or the computational cost [13] has
persuaded researchers to prefer the point estimation
approaches for estimating parameters of the model.
The EM algorithm discussed later is a very popular
type of point estimation approaches.

With regard to the above discussion, the objective of
the system identification problem can be summarized as
estimating the model states (xt) and a set of parameters

(θx, θy) given measurements {u1:t,y1:t+1}.

3. THE EM ALGORITHM FOR JOINT PARAMETER
AND STATE ESTIMATION

The EM algorithm was first proposed by Dempster [1]
as an extension of the work conducted by Baum and his
colleagues [2]. The EM algorithm can be considered as
a type of maximum likelihood (ML) estimator. In other
words, the final goal of the EM algorithm is to maximize
the log likelihood function, ln(p(y|θ)). To maximize the log
likelihood function, or equivalently minimize −ln(p(y|θ)),
the function should be integrated over estimated states as
follows:

ln(p(y|θ)) = ln(

∫

x

p(y, x|θ)dx) (3)

Now, consider an arbitrary distribution function, q(x), for
states. By using the jensen’s inequality principle [5] and
the arbitrary distribution of states, the above equation can
be written as follows:

ln(p(y|θ)) =

∫

ln
(

p(y, x|θ)q(x)
)

−

∫

ln(q(x))q(x) = F (q, θ) (4)

where for the sake of brevity the phrase dx has been elim-
inated. The maximization of the log likelihood function is
equivalent to maximizing the lower bound, F (q, θ). The
EM algorithm uses two separate stages to maximize the
lower bound of the log likelihood function. These two steps
can be summarized as follows:

• E Step
At the E step of the EM algorithm, the distribution
function of states are updated to maximize F (q, θ). It
is very straightforward to show that maximization of
F is equivalent to estimate the posterior distribution
of hidden states given measurements as follows [4]:

qt = p(xt|y1:t, θt−1) = argmaxq

(

F (q, θt−1)
)

(5)

Indeed, the E step is not anything but a common
state estimation framework.

• M Step
Similarly, the M step of the EM algorithm can be
considered as the maximization of F (q, θ) with regard
to parameters when states estimated at the E step
are used.In other words, the M step is dealt with by
maximizing the following function:

θt = argmaxθ < p(y|x, θ) >qt (6)

where < p(y|x, θ) >qt is the complete likelihood
function whose expected value is computed over the
distribution of hidden states.

By repeating the E and M step of the EM algorithm
at consecutive time steps, one can easily show that the
likelihood increases at each time step [5]. This important
characteristic entails the stability of the EM algorithm.
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3.1 E Step: State Estimation Algorithms

Although Kalman based smoothers such as Extended
Kalman Smoother (EKS) and Unscented Kalman Smoother
(UKS) [18] provide a simple framework to estimate hidden
states in an off-line mode, the lack of suitable accuracy in
dealing with nonlinear systems is taken into account as one
of their important problems. Moreover, implementation of
the M step of the EM algorithm, specifically computing
the expected value of the likelihood function, may be
very hard or even intractable when hidden states’ density
function is described by a Gaussian one. To remedy this
problem, sampling approaches have been proposed in the
literature among which the particle smoothing algorithm
plays an important role in many estimation problems. The
great power of the particle smoothing in modeling and
estimation of the nonlinear state space systems and its
flexibility in joining with the EM algorithm compared with
the EKS or UKS method have increased its popularity. In
the following, first, the particle filter algorithm is presented
and, then, some recent ideas for implementation of the
particle smoothing algorithm are introduced.

3.2 The Particle Filter for State Estimation

Consider the problem of online state estimation as comput-
ing the posterior probability density function p(xt|y1:t). To
provide a recursive formulation for computing the above
density function, the following stages should be taken:

• Prediction stage: this step is proceeded as computing
the following distribution functions:

p(xt|y1:t−1) =

∫

xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (7)

• Update stage: this step can be described as follows:

p(xt|y1:t) ∝ p(yt|xt)p(xt−1|y1:t−1) (8)

The particle filter estimates the probability distribution
function p(xt|y1:t) by sampling from a specific distribution
function as follows:

p(xt|y1:t) = ΣN
i=1w̃

i
tδ(xt − xi

t) (9)

where i=1,2,...,N is the sample number, w̃t is the normal-
ized importance weight and δ is the delta dirac function. In
the above equation, the state vector xi

t is sampled from the
proposal density function q(xt|xt−1,y1:t). By substituting
the above equation in (7) and, then, simplifying (8) and
the fact that states are drawn from the proposal function
q, the recursive equation for the prediction and update
steps can be written as follows:

wi
t = wi

t−1p(yt|x
i
t)

p(xi
t|x

i
t−1)

q(xi
t|x

i
t−1,y1:t)

(10)

where xi
t is the ith sample of xt. The main failure of the

above procedure known as the sequential importance sam-
pling (SIR) algorithm in the literature is the degeneracy

problem. That is, after a few iterations one of the nor-
malized importance ratios tends to 1, while the remaining
ratios tend to zero. This problem causes the variance of the
importance weights to increase stochastically over time [5].
To avoid the degeneracy of the SIS algorithm, a selection
(resampling) stage may be used to eliminate samples with
low importance weights and multiply samples with high
importance weights. Indeed, the resampling stage conducts
the following mapping:

{xi
t, w

i
t} → {x

m(i)
t ,

1

N
} (11)

In [5], a comprehensive discussion has been made on how
to implement the residual resampling method known as
the most efficient resampling approach in the literature.
Using the residual resampling joint with the SIS algorithm
can be presented as the sequential importance resampling
(SIR) algorithm used for state estimation in many NSSMs.
Remark 1: The easiest choice for the proposal density
function is the dynamical probability function as follows:

q(xt|x
i
t−1,y1:t) = p(xt|x

i
t−1) (12)

In [19], some other candidates for the proposal function
have been presented but we use the simple dynamical one
in this paper.

3.3 Particle Smoothing

The main goal of smoothing algorithms is estimating
the smoothed distribution function p(xt|y1:T ) where T is
the number of available distributions. Many ideas have
been presented in the literature for estimating the above-
mentioned distribution function [20]. Three main algo-
rithms are known as Forward-Backward Algorithm, Two
filter smoothing method and maximum a posteriori ap-
proach. The first two methods are not discussed here.
Indeed, the first method is very time consuming while its
accuracy completely depends on the forward pass conduct-
ing a particle filter procedure. The second method cannot
be applied to our framework because sampling from a
proposal function at the backward stage is very hard or
even impossible when a neural network structure is used
as the output function [14]. The maximum a posteriori
method is more reliable than the forward-backward ap-
proach. Moreover, it can be easily implemented for our
application. In the following, a very brief review is made
on the aforementioned algorithm and further details can
be obtained from the given references.

• Maximum a Posteriori Particle Smoothing:
In this approach, after implementing the forward pass
and computing particles, smoothed states are esti-
mated by maximizing the posterior density function
as follows:

x̂1:T = argmaxx1:T ∈xi=1:N
k=1:T

p(x1:T |y1:T ) (13)

The above maximization can be accomplished by us-
ing the Viterbi algorithm implemented on a set of
discretized state space induced by the particle filter
approximation. Indeed, the above algorithm consists
of two separate stages. The first stage is a simple fil-
tering method while the other one is an optimization
conducted over a set of nominal trajectories which
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are samples states. Therefore, the idea behind this
approach is very easy and its implementation is also
straightforward. More details of this algorithm can be
found in [21].

4. M STEP: THE GRADIENT BASED ALGORITHM
FOR PARAMETER ESTIMATION

Consider (1). In this section, we show how to adjust pa-
rameters of the dynamical part and a completely similar
procedure can be also proceeded for the output equation.
To adjust the parameters of the model recursively, the
likelihood function should be first determined. To do so,
the likelihood function can be written as follows:

p(xt|θ
x, Q) =

1

(2π)
nx
2 |Qt|

1

2

×

exp[−
1

2
(xt − x̃t)

T Q−1
t (xt − x̃t)] (14)

where nx is the dimension of states. Also, xt is the state
vector estimated at the E step of the EM algorithm. How-
ever, x̃t refers to the predicted values of the state vector
computed with regard to states at the previous time. Given
the above equation, the negative log likelihood function for
the dynamical model is written as:

L(θx, Q) =
1

2
(xt − x̃t)

T Q−1
t (xt − x̃t) +

1

2
ln(|Qt|) (15)

The method used for maximizing/minimizing the afore-
mentioned function depends on the parametric structure
considered for the state transition or output model. The
RBF network has been preferred to many other intelligent
structures because of linear relationship between the net-
work’s parameters and output of the RBF network. This
characteristic facilitates dealing with the maximization
procedure by implementation of the least square method.
To do so, the RBF network is first presented as follows:

xt = Σkx

k=1hkρk(φ,xt−1) + Axt−1 + But + b + vt (16)

where kx is the number of basis functions for the state
transition model and ρ(φ) is a radial basis function with
the parameter φ. Moreover, the parameter of the model is
defined as follows:

θx = [h1 h2 . . . hkx
A B b] (17)

Various types of functions have been proposed to represent
the basis functions in (17) such as exponential, polynomial
or linear structures [5]. Among them, exponential func-
tions provide a powerful tool to tackle the nonlinearity
embedded in many real systems. Briefly, an exponential
basis function can be introduced as follows:

ρ(φ) = exp[−
1

2
(xt − µ)T S−1(xt − µ)] (18)

where µ and S represent the mean and covariance of each
exponential basis function, respectively. Now, the overall
form shown in (17) can be rewritten for the dynamical

model as:

xt = θx
t−1Φ

x
t−1 + vt

(19)

where Φx is known as the nonlinear regressor and deter-
mined as:

Φx
t−1 =























exp(xt−1, µ
1
x, S1

x)
.
.
.

exp(xt−1, µ
kx
x , Skx

x )
xt−1

ut

1























(20)

The M phase of the EM algorithm is equivalent to max-
imizing the expected value of the log-likelihood function
over estimated states. In other words the cost function is
defined as below:

Jx = ΣT
t=1 < L(θx, Q) >px

t

(21)

where < L(θx, Q) >px
t

is computed by using the following
equation:

< L(θx, Q) >px
t
=

∫ ∫

L(θx, Q)p(xt,xt−1|y1:T )dxt−1dxt

(22)

Taking derivative from (21) and equating zero leads to the
following learning rules for updating the parameters of the
model and covariance matrixes:

θx
m+1 =

(

ΣT
t=1 < xt(φ

x
t−1)

T >px
t

)

(

ΣT
t=1 < (φx

t−1)
T (φx

t−1)
T >px

t

)−1

Qm+1 =
1

T

(

ΣT
t=1 < xtx

T
t >px

t
−

θx
m+1Σ

T
t=1 < φx

t−1x
T
t >px

t

)

(23)

Similarly, a learning rule is derived for parameters of the
output function only by substituting xt for yt and defining
Jy like Jx shown by (21).
Now, the expected values in above equations should be
computed. To do so, the joint probability density function
of smoothed states can be written as:

p(xt,xt−1|y1:T ) = p(xt|xt−1,y1:t)p(xt|y1:T ) (24)

By some algebraic operations, the above function can be
simply written as follows:

p(xt,xt−1|y1:T ) =
p(xt|xt−1)p(xt−1|y1:t−1)p(xt|y1:T )
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1
(25)

By using the MAP smoothing method presented in the
last section, the above equation can be approximated by
the following expression:
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p(xt,xt−1|y1:T ) ∼

ΣN
i=1

(wi
t−1p(xM

t |xi
t−1)δ(xt−1 − xi

t−1)δ(xt − xM
t )

ΣN
l=1w

l
t−1p(xM

t |xl
t−1)

)

(26)

where wi
t−1 denotes the ith normalized importance weight

computed at the forward pass (filtering) and xM
t is the

smoothed state estimated by using the MAP particle
smoothing approach. Now, expected values of (23) can be
easily approximated only by substituting (26) for px

t in (23)
and converting nonlinear integrals to a set of simple sum-
mations. Note that for computing expressions dependent
on xt the MAP smoother gives us a unique approximation
xM

t and, therefore, xt can be easily approximated by the
mentioned expression. Therefore, learning rules of (23)
can be easily implemented with regard to aforementioned
approximations.

5. SIMULATION RESULTS

Assume the following nonlinear state space model:

xt = .5xt−1 +
25xt−1

1 + x2
t−1

+ 8cos(1.2t) + vt

yt = .05x3
t + wt (27)

Here vt and wt are white noises with zero means and
arbitrary covariance matrixes. Assume that the dynamic
of the above model is unknown. To model the dynamic of
the presented structure, an RBF network with 10 basis
functions is used. The mean and covariance matrix of
basis functions are chosen to cover the support of states.
Training and test stages of the network are presented in
the following subsections.

5.1 Training the Network

First, synthetic data are generated according to the pro-
posed model. A sequence of states and observations is
generated with regard to the above-represented nonlinear
model. To train the network, the EM algorithm joint with
the MAP smoother presented in sections 3 and 4 are used.
To show the effect of the sample size, the algorithm is
implemented by various number of particles. To show the
power of the algorithm in estimation of the parameters of
the RBF network, Fig. 1 presents estimated values for one
of the parameters of the RBF network. It is obvious that
by increasing the number of particles the RBF network has
been able to learn the dynamic of the model much better.

5.2 Testing the Network

To evaluate the performance of the trained network, an-
other data set is generated. To consider the effect of the
initial value of states, we chose a random initial value with
a normal distribution by zero mean and covariance 1. Now,
we want to proceed the state estimation phase. To do so,
the trained RBF network is substituted with the actual
dynamical model. We use 500 particles for implementation
of the estimation phase. Fig. 2 shows the result of state
estimation using the generic particle filter where the RBF
network trained in the last section by 1000 particles has
been used. Moreover, Fig. 3 presents the estimation error
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Fig. 1. Parameter Estimation Results for Different Number
of Particles

with regard to various number of particles where the error
is computed as follows:

e =
1

N
ΣN

t=1

(

xt − x̂t

)2

(28)

Here x̂t denotes the estimated state and xt is the actual
one. Simulation results show that by increasing the number
of particles the generalization ability of the network grows.
Finally, the robustness of our trained network is tested by
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adding an artificial noise to coefficients of the actual model
described by (27) where coefficients are defined as θ =
[.5 25 8 .05]. After generating output observations, Fig. 4
shows the estimation error for the RBF network trained by
1000 particles with various values of the noise covariances.
Simulation studies show that the trained network gives
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satisfactory results for the variance lower than .02 but for
other variances results are not reliable.
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Fig. 4. Estimation Error for the Time Variant Model With
Different Variances of the Additive Noise

6. CONCLUSION

In this paper, a new approach was presented for identi-
fication of nonlinear state space models using the RBF
network. Because the identification issue can be formu-
lated as a joint state and parameter estimation problem,
the EM algorithm was discussed for estimating states
and updating the parameters of the RBF network. Lin-
ear relationship between the output of the RBF network
and its internal parameters caused the LS method to be
chosen for parameter estimation. Furthermore, the MAP
particle smoothing was used for state estimation at the
E phase of the EM algorithm. Simulation studies showed
the superiority of our proposed procedure for identification
of nonlinear state space models when no information is
available about the overall structure of the state transition
or output model.
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