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Abstract: This paper presents a set of optimal filtering results for a class of kinematic systems
with particular application to the estimation of linear quantities in Integrated Navigation
Systems for mobile platforms. At the core of the proposed methodology there is a time varying
orthogonal Lyapunov coordinate transformation that renders the overall system dynamics linear
time invariant (LTI). The design is based on the Kalman or H∞ filtering steady state solutions
for an equivalent LTI system and allows for the natural use of frequency weights to explicitly
achieve adequate disturbance rejection and attenuation of the noise of the sensors on the
state estimates. Afterwards, the resulting solution is converted back to the original coordinate
space, yielding a globally stable time varying optimal estimator for the problem at hand.
A simple example of practical importance in marine systems is provided that demonstrates
the applicability of the proposed design methodologies and simulation results are included to
illustrate the filtering achievable performance.

1. INTRODUCTION

This paper presents a set of optimal time varying filtering
solutions for a class of kinematic systems with direct
application to the estimation of linear quantities in precise
Integrated Navigation Systems.

The design of Navigation Systems plays an important
role in a great variety of applications. Naturally, many
strategies have been suggested in the literature to tackle
the problem. In Fossen and Strand (1999) a globally
exponentially stable (GES) observer for ships (in two-
dimensions) that includes features such as wave filtering
and bias estimation is proposed and in H. Nijmeijer and
T. I. Fossen (Eds) (1999) an extension to this result with
adaptive wave filtering is available. An alternative filter
is presented in Pascoal et al. (2000) where the problem
of estimating the position and velocity of an autonomous
vehicle in three-dimensions was solved resorting to special
bilinear time varying complementary filters. Refsnes et al.
(2006) presents a pair of coworking GES observers for
underwater vehicles that includes the ocean current in the
model plant to improve the performance of the observer.
A passivity based controller-observer design for robots is
proposed in Berghuis and Nijmeijer (1993) and a sliding
mode observer for robotic manipulators is reported in
C. De Wit and J.-J. Slotine (1991). The development of
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nonlinear observers for Euler-Lagrange systems has been
addressed in Skjetne and Shim (2001) and Ortega et al.
(1998). In these approaches robustness to environmental
disturbances and/or noise of the sensors is considered but
no optimal results are provided.

The filter design techniques presented in this paper are
based on previous work by the authors, see Batista et al.
(2006), where a globally stable ocean current observer was
designed to feed a nonlinear sensor based integrated guid-
ance and control law. This state feedback law was designed
to drive an underactuated autonomous underwater vehicle
to a neighborhood of a fixed target, in 3D, using the infor-
mation provided by an Ultra-Short Baseline positioning
system. At the core of the observer design methodology
there was a time varying orthogonal Lyapunov coordinate
transformation that rendered the observer dynamics linear
time invariant (LTI), and global exponential stability was
attained for the observer error. This transformation is now
exploited to derive a set of optimal filtering solutions for
a much larger variety of dynamic systems. The proposed
methodology is based on the Kalman or H∞ filtering
steady state solutions for an equivalent LTI system and
allows for the natural use of frequency weights to explicitly
achieve adequate disturbance rejection and attenuation of
the noise of the sensors on the state estimates. Afterwards,
the resulting solution is converted back to the original
coordinate space, yielding a globally stable time varying
optimal estimator for the problem at hand.

The paper is organized as follows. Section 2 introduces
the class of dynamic systems and the filtering problem
addressed in this work. In Section 3 the proposed design
technique is presented and the Kalman filter derived. The
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H∞ optimal filtering solution is outlined in Section 4 and
Section 5 references some extensions and properties of the
proposed solutions. A simple example of application is
presented and simulation results are discussed in Section
6 and finally Section 7 summarizes the main contributions
of the paper.

2. PROBLEM STATEMENT

Consider the class of dynamic systems
{

η̇p(t) = Apηp(t) − MS (ω(t))ηp(t) + Bp(t)u(t)

ψ(t) = Cpηp(t)
, (1)

where ηp(t) =
[

ηT
1
(t) . . . ηT

N
(t)

]T
, with ηi(t) ∈ Xi ⊆

R
3, i = 1, . . . , N , is the system state, ψ(t) ∈ R

3 is
the system output, u(t) is a deterministic system in-
put, ω(t) ∈ R

3 is a continuous bounded function of t,
MS (ω(t)) is the block diagonal matrix MS (ω(t)) :=
diag (S(ω(t)), . . . , S(ω(t))), where S(ω(t)) is a skew-
symmetric matrix that verifies S (a)b = a × b, with ×
denoting the cross product, and that satisfies

Ṙ(t) = R(t)S(ω(t)),

where R(t) ∈
{

R ∈ R
3×3 : RRT = I3, det(R) = 1

}

, i.e.,

R(t) is a proper rotation matrix,

Ap =
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.
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0 . . . . . . . . . 0

















, (2)

γi ∈ R, γi 6= 0, i = 1, . . . , N − 1, and Cp =
[I3 03×3 . . . 03×3]. It is assumed that R(t) and ω(t) are
known over time. Finally, suppose that there exist system
disturbances ξ(t) and noise of the sensors θ(t), as depicted
in Fig. 1, where Mp is assumed to be a full row-rank
matrix.

Ap

Bp(t) Cp

Lp
Mp

ξ θ

u ψηp

MS (ω)

∫

+ +

+

++

+

−

Fig. 1. Generalized system dynamics

The filtering problem considered in the paper can be stated
as follows.

Problem statement: Consider the dynamic system (1),
as previously described, subject to system disturbances
and measurement noise, as depicted in Fig. 1. Design
an optimal filter that minimizes the impact of the noise
of the sensors and the system disturbances on the state
estimates.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×
n, and diag(A1, . . . ,An) a block diagonal matrix. When
the dimensions are omitted the matrices are assumed of
appropriate dimensions. The usual Hilbert space of square
integrable functions is denoted by L2.

3. KALMAN OPTIMAL FILTER

This section presents the derivation of the time varying
Kalman filter for the dynamic system (1), subject to sys-
tem disturbances and measurement noise. The main idea,
which is also at the core of the H∞ filter design, consists of
converting the linear time varying (LTV) dynamic system
into an equivalent LTI system. A classic Kalman filter
is then applied to the resulting LTI system, in its more
general setup with frequency weights to model the system
disturbances and noise of the sensors. Afterwards, the
solution is transformed back to the original coordinate
space, yielding the equations and structure of the filter.
Finally, a brief interpretation on the proposed solution is
given.

Without loss of generality, consider the dynamic system
(1) where the deterministic input u(t) is omitted, and

define xp(t) =
[

x1(t)
T . . . xT

N
(t)

]T
as

xp(t) := T(t)ηp(t), (3)

where T(t) is the coordinate transformation matrix de-
fined by

T(t) := diag (R(t), . . . ,R(t)) .

Notice that (3) is a Lyapunov transformation (see Brockett
(1970)) as

• T(t) is continuous differentiable for all t;

• T(t) and Ṫ(t) are bounded for all t, where Ṫ(t) =
T(t)MS(ω(t));

• det [T(t)] = 1.

Define also a new system output as

y(t) := R(t)ψ(t)

It is straightforward to show that after these coordinate
transformations the resulting system dynamics are LTI.
Adding system disturbances d and noise of the sensors n
to this new coordinate space, the resulting dynamics can
be written as

{

ẋp(t) = Apxp(t) + Lpd(t)

y(t) := Cpxp(t) + Mpn(t)
. (4)

It is now immediate to design a Kalman filter for the
LTI system (4). In particular, this design technique allows
for the natural use of dynamic systems to model both
the system disturbances and the noise of the sensors.
To that purpose, consider the block diagram depicted
in Fig. 2, where the LTI system dynamics are shown
together with LTI weight filters Wd and Wn. In the

figure, w(t) =
[

wT
1
(t)wT

2
(t)

]T
represents the generalized

disturbance vector, assumed to be continuous-time zero-
mean unit intensity white noise.

Define x(t) =
[

xT
p (t)xT

d (t)xT
n (t)

]T
, where xd(t) and

xn(t) denote the internal states of state space realizations
(Ad,Bd,Cd,Dd) and (An,Bn,Cn,Dn) of Wd and Wn,
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Ap

CpLp

Mp

yp yxp

n

dw1

w2

Wd

Wn

∫

++

+

+

Fig. 2. Generalized LTI Plant

respectively. Then, the augmented plant can be written,
in a compact form, as

{

ẋ(t) = Ax(t) + Bw(t)

y(t) = Cx(t) + Dw(t)
,

where

A :=

[

Ap LpCd 0

0 Ad 0

0 0 An

]

, B :=

[

LpDd 0

Bd 0

0 Bn

]

,

C = [Cp 0 MpCn], and D = [0 MpDn]. It is assumed
that the Kalman filtering problem is well-posed (this only
depends, in this case, on the choice of the frequency
weights and the matrices Lp and Mp). Define V as

V :=

[

B

D

]

[

BT DT
]

=

[

Vxx Vxy

VT
xy Vyy

]

.

Notice that since D has full row-rank, Vyy is positive
definite, from which follows that it admits inverse. The
Kalman filter for this system is given by (A. Gelb (Ed)
(1974))

˙̂x(t) = Ax̂(t) + K2(t) [y(t) − Cx̂(t)]

where K2(t) is the Kalman gain matrix, given by

K2(t) =
[

P2(t)CT + Vxy

]

V−1
yy ,

where P2(t) is the solution of the matrix differential
Riccati equation

Ṗ2(t) = AeP2(t) + P2(t)AT
e − P2(t)CT V−1

yy CP2(t)

+Vxx − VxyV
−1
yy VT

xy , (5)

with Ae = A − VxyV
−1

yy C. The initial condition P2 (t0)
will be given later on.

In order to recover the filter equations in the appropriate
coordinate space, consider the coordinate transformation

η̂(t) = TT
c (t)x̂(t), (6)

where the matrix Tc is given by

Tc(t) := diag (T(t), I, I) .

Computing the time derivative of (6), and after a few
straightforward algebraic manipulations, the final filter
equations can be written as

˙̂η(t) = AAA(t)η̂(t) +BBBp(t)u(t) +KKK2(t) [ψ(t) −CCC(t)η̂(t)] , (7)

where

AAA(t) =

[

Ap−MS(ω(t))TT (t)LpCd 0

0 Ad 0

0 0 An

]

, BBBp(t) =

[

Bp(t)

0

0

]

,

CCC(t) =
[

Cp |0 |RT (t)MpCn

]

,

and
KKK2(t) = TT

c (t)K2(t)R(t). (8)

Notice that the deterministic input term BBBp(t)u(t) was
added to complete the filter dynamics. Fig. 3 presents the
corresponding original generalized system. As it can be
seen, the description of the system disturbances and the
noise of the sensors may not be exact due to the coordinate
transformations TT (t) on the system disturbances and

RT (t) on the noise of the sensors. Indeed, while in the
original framework presented in Fig. 1 the term Lpξ(t)
affects the system state and the term Mpθ(t) represents
the noise of the sensors, now TT (t)Lpd(t) acts on the

system state and RT (t)Mpn(t) models the noise of the
sensors. It so happens in practice that sometimes the
available description of the system disturbances or the
noise of the sensors is defined on the transformed (LTI)
space, for which this structure is appropriate. Neverthe-
less, when that is not the case, it should be noted that
the aforementioned coordinate transformation preserves
the norm. Thus, only the directionality is affected over
time.

Ap

Bp(t) Cp

Lp

Mp

MS(ω)

ψηp

TT (t) RT (t)

n

d

u

w1

w2

Wd

Wn

∫ +

+

+

+
+

+

−

Fig. 3. Kalman filter design setup

The following theorem is the main result of this section.

Theorem 1. Consider the generalized system dynamics as
depicted in Fig. 3, where w1 and w2 are continuous-
time zero-mean unit intensity white noises. Let PPP0 be the
initial covariance matrix of the system states η. Then, the
optimal Kalman filter is given by (7), where the initial
condition for the differential equation (5) is given by

P2 (t0) := Tc (t0)PPP0T
T
c (t0) .

Proof. The augmented system corresponding to the gen-
eralized dynamics, as depicted in Fig. 3, can be written
as

{

η̇(t) = AAA(t)η(t) +BBBp(t)u(t) +BBB(t)w(t)

ψ(t) = CCC(t)η(t) +DDD(t)w(t)
,

where AAA(t), BBBp(t), and CCC(t) are as previously defined,

BBB(t) = TT
c (t)B, and DDD(t) = RT (t)D. The optimal

Kalman filter has the structure of (7). The corresponding
differential Riccati equation is given by

ṖPP2(t) = AAAe(t)PPP2(t) +PPP2(t)AAAT
e (t) +VVVxx(t)

−PPP2(t)CCCT (t)V−1
yy (t)CCC(t)PPP2(t) −VVVxy(t)VVV−1

yy (t)VVVT
xy(t), (9)

with PPP2 (t0) = PPP0, AAAe(t) = AAA(t) −VVVxy(t)VVV−1

yy (t)CCC(t), and

VVV(t) :=

[

BBB(t)

DDD(t)

]

[

BBBT (t)DDDT (t)
]

=

[

VVVxx(t) VVVxy(t)

VVVT
xy(t) VVVyy(t)

]

.

It is straightforward to show that

PPP2(t) := TT
c (t)P2(t)Tc(t)
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satisfies the differential Riccati equation (9). The Kalman
gain follows as

KKK2(t) =
[

PPP2(t)CCCT (t) +VVVxy

]

VVV−1
yy (t),

which gives (8) after a few algebraic simplifications.

Remark 1. The proposed Kalman filter covariance matrix
has a limit solution, although the system at hand is not
LTI. Indeed, as t approaches infinity, P2(t) converges to
the solution P∞

2
of the matrix Riccati equation

AeP
∞
2 + P∞

2 AT
e − P∞

2 CT V−1
yy CP∞

2 + Vxx − VxyV
−1
yy VT

xy = 0.

Thus, as t approaches infinity, the covariance matrix
converges to the limit solution

lim
t→∞

PPP2(t) = TT
c (t)P∞

2 Tc(t).

4. H∞ OPTIMAL FILTER

This section introduces the H∞ optimal filter for the
class of dynamic systems (1). To that purpose, consider
Fig. 4, which depicts the general H∞ filtering framework
for the class of systems addressed in the paper. In the

figure w(t) =
[

wT
1
(t)wT

2
(t)

]T
represents the generalized

disturbance vector, assumed to be square integrable, i.e.,
w ∈ L2. The dynamic systems Wd and Wn denote, once
again, weights that shape both the system disturbances
and the noise of the sensors. The matrix L∞ weights the
states and defines the performance variable

ζ(t) := L∞T(t)ηp = LLL(t)η,

with LLL(t) := LTc(t), L := [L∞ 00]. The goal is to

design a filter to obtain an estimate ζ̂(t) of ζ(t), using
the measurements ψ(t), that minimizes

J∞ := sup
0 6=(η

0
,w)∈R3N×L2

∥

∥ζ − ζ̂
∥

∥

2

‖w‖2 + ηT
0 R0η0

with η(t0) = η
0
, R0 = RT

0
≻ 0. The solution to

ζ
Ap

Bp(t) Cp

Lp

Mp

MS(ω)

ψηp

TT (t) RT (t)

T(t) L∞

n

d

u

w1

w2

Wd

Wn

∫ +

+

+

+
+

+

−

Fig. 4. H∞ filter design setup

this problem is well known (see Nagpal and Khargonekar
(1991)) and, as the design follows similar steps as for the
Kalman filter, previously derived in detail, only the final
result is summarized in the next theorem.

Theorem 2. Consider the generalized dynamics presented
in Fig. 4, where w1,w2 ∈ L2. There exists a filter such that
J∞ < γ2 if and only if there exits a symmetric positive
definite matrix P∞(t) that satisfies

Ṗ∞(t) = AeP∞(t) + P∞(t)AT
e − P∞(t)CT V−1

yy CP∞(t)

+
1

γ2
P∞(t)LT LP∞(t) + Vxx − VxyV

−1
yy VT

xy ,

with P∞ (t0) = Tc (t0)R
−1

0
TT

c (t0), and such that the
unforced linear time varying system

ṗ∞(t) =

[

Ae − P∞(t)

(

CT V−1
yy C −

1

γ2
LT L

)]

p∞(t) (10)

is exponentially stable. Moreover, the filter structure is
equal to the structure of the Kalman filter, with gain

KKK∞(t) =
[

PPP∞(t)CCCT (t) +VVVxy(t)
]

VVV−1
yy (t),

where
PPP∞(t) = TT

c (t)P∞(t)Tc(t). (11)

Proof. It is straightforward to show that (11) is the
solution of the differential Riccati equation

ṖPP∞(t) = AAAe(t)PPP∞(t) +PPP∞(t)AAAT
e (t) +VVVxx(t)

−PPP∞(t)CCCT (t)V−1
yy (t)CCC(t)PPP∞(t) −VVVxy(t)VVV−1

yy (t)VVVT
xy(t)

+
1

γ2
PPP∞(t)LLLT (t)LLL(t)PPP∞(t),

with PPP∞ (t0) = R−1

0
. Moreover, if the LTV system (10) is

exponentially stable, so is the LTV unforced system

ṗ∞(t)=

[

AAAe(t)−PPP∞(t)

(

CCCT(t)VVV−1
yy (t)CCC(t)−

1

γ2
LLLT (t)LLL(t)

)]

p∞(t),

as p
∞

(t) = TT
c (t)p∞(t), which is a Lyapunov coordinate

transformation (see Brockett (1970)). This suffices to
complete the proof, see Nagpal and Khargonekar (1991)
for details.

Remark 2. As with the Kalman filter, the H∞ optimal
filter also achieves a limit solution. Indeed, as discussed in
Nagpal and Khargonekar (1991), as t approaches infinity,
P∞(t) converges to the solution P∞

∞
of the Riccati equa-

tion

AeP
∞
∞ + P∞

∞AT
e − P∞

∞CT V−1
yy CP∞

∞

+
1

γ2
P∞

∞LT LP∞
∞ + Vxx − VxyV

−1
yy VT

xy = 0.

Thus,
lim

t→∞
PPP∞(t) = TT

c (t)P∞
∞Tc(t)

and the filter asymptotically converges to the correspond-
ing linear time varying filter that is obtained from the
linear time invariant H∞ filtering solution when the initial
condition is known.

Remark 3. If L commutes with T(t), then the H∞ perfor-
mance variable can be rewritten as ζ(t) = Lηp(t), which
weights directly the system states. This is often the case,
e.g., when L is of the form

L = [l1I3 . . . lNI3] , li ∈ R, i = 1, . . . , N,

the natural form to equally weight each set of states ηi.

5. EXTENSIONS AND PROPERTIES

The class of systems proposed in Section 2 has some
constraints that can be lessened. The system matrix Ap,
previously defined as (2), may be of the more general form

Ap =

















0 γ12I . . . . . . γ1NI

γ21I
. . .

. . .
.
..

..

.
. . .

. . .
. . .

..

.

.

.

.
. . .

. . . γN−1,NI

γN1I . . . . . . γN,N−1I 0

















,
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as long as the appropriate stabilizability and detectability
conditions remain untouched. This broadens the applica-
bility of this work. It is also easy to see that the output
matrix Cp admits more general forms. Finally, the problem
could have been defined for state variables ηi(t) living in
a space of different dimension, e.g., ηi(t) ∈ Xi ⊆ R

2, i =
1, . . . , N .

The following theorem addresses the robustness of the pro-
posed filters with respect to disturbances in the rotation
matrix R and the vector ω. This is of particular interest as
these may be quantities provided by external sensor suites,
which is the case of the example provided in the paper.

Theorem 3. Suppose that ω and R are only known up to
some error, i.e., the filters operate with ωm = ω + ω̃ and

Rm =
[

I + S(λ̃)
]

, where ω̃ and λ̃ parameterize the errors.

Further assume that η remains bounded for all t. Then, the
estimation errors of both the Kalman and the H∞ filters
are locally input-to-state stable from the input (ω̃, λ̃).

Proof. Since the structure of both filters is identical,
the proof is presented for the Kalman filter. If the filter
operates with ωm and Rm, the dynamics of the filter error
can be written as

˙̃η = f
(

t, η̃, ω̃, λ̃
)

, (12)

with

f
(

t, η̃, ω̃, λ̃
)

= [AAA(t) −KKK2(t)CCC(t)] η̃(t)

− ÃAA
(

t, ω̃, λ̃
)

η̂(t)

+
[

TT
c (t)+T̃T

c (t, λ̃)
]

K2(t)R(t)
[

I+S(λ̃)
]

C̃CC(t, λ̃)η̂(t)

− T̃T
c (t, λ̃)K2(t)R(t)

[

I+S(λ̃)
]

C̃CC(t, λ̃)η̃(t)

− TT
c (t)K2(t)R(t)S(λ̃)C̃CC(t, λ̃)η̃(t),

where T̃c(t, λ̃) = diag
(

T(t)MS(λ̃),0,0
)

,

ÃAA
(

t, ω̃, λ̃
)

=

[

−MS(ω̃) T(t)MS(λ̃)LpCd 0

0 0 0

0 0 0

]

,

and C̃CC(t, λ̃) =
[

0|0| − S(λ̃)RT (t)MpCn

]

. The function

f
(

t, η̃, ω̃, λ̃
)

is continuously differentiable and, assuming

that η remains bounded for all t, and as ω(t) is also
assumed to be a bounded function of t, it follows that

the Jacobian matrices [∂f/∂η̃] and
[

∂f/∂
(

ω̃, λ̃
)]

are

bounded, uniformly in t. As the system ˙̃η = f (t, η̃,0,0)
has a uniformly asymptotically stable equilibrium point at
the origin η̃ = 0, then the system (12) is locally input-to-
state stable (Lemma 5.4, Khalil (1996)).

6. EXAMPLE OF APPLICATION

This section presents an example of practical interest in
marine applications that demonstrates the applicability of
the proposed methodologies.

Consider an autonomous surface craft (ASC) equipped
with a GPS (Global Positioning System) that measures
the position of the vehicle with respect to an inertial

coordinate frame {I}, an AHRS (Attitude and Heading
Reference System), which provides the attitude and the
angular velocity of the vehicle, and a Doppler velocity
log that gives the velocity of the vehicle relative to the
water. Assume that the vehicle is moving in the presence
of constant unknown ocean currents. The problem here
considered is that of estimate the velocity of the ocean
current as well as the filtered vehicle position.

In order to properly cast the estimation problem into the
class of systems addressed in the paper, consider a fixed
mission reference point placed arbitrarily in the mission
scenario, denoted by I(r) in inertial coordinates. Denote
also by I(p) the position of the vehicle in inertial coor-
dinates, as provided by the GPS. Then, the position of
the mission reference point with respect to the origin of
the body-fixed coordinate system {B}, described in body-

fixed coordinates, can be written as r = RT
[

I(r) − I(p)
]

,
where R is the rotation matrix from body-fixed coordi-
nates to inertial coordinates. The time derivative of r can
be written as

ṙ = −vr − vc − S (ω) ,

where vr is the velocity of the vehicle relative to the
water, vc is the velocity of the ocean current, and ω is
the angular velocity of the vehicle, all expressed in body-
fixed coordinates. Since the ocean current is assumed to
be constant in the inertial frame, the time derivative of vc

is simply given by v̇c = −S (ω)vc. Clearly, the problem
of estimating of r and vc falls into the class of problems
addressed in the paper, with η

1
= r, η

2
= vc,

Ap =

[

0 −I3

0 0

]

, Bp(t) =

[

−I3

0

]

,

and u = vr. Thus, it is possible to design a position
and velocity Navigation filter using the methodology in-
troduced in the previous sections and, once an estimate of
r is obtained, an estimate of the position of the vehicle is
given by

I(p) = I(r) − Rr.

To illustrate the performance of the proposed Navigation
system a set of simulations was carried out with a sim-
plified model of the ASC DELFIM, Alves et al. (2006).
In the simulations the GPS noise was assumed Gaussian
with standard deviation of 1m. In addition, the measure-
ments of the vehicle velocity relative to the water and
the vehicle angular velocity were assumed to be corrupted
by Gaussian noise, with standard deviations of 0.01m/s
and 0.02 °/s, respectively. The system disturbances and
sensors noise weight matrix transfer functions were chosen
as Wd(s) = 0.01I6 and Wn(s) = I3, respectively, and
the filter initial conditions were selected as to reflect the a
priori knowledge of the position of the vehicle. Due to the
lack of space only the Kalman filter results are presented
and discussed.

The vehicle described a typical surveying trajectory, which
is shown in Fig. 5, along with the estimated trajectory
and the non-filtered trajectory as provided by the GPS.
The filter error variables are shown in Fig. 6, where
the initial transients arise due to the mismatch of the
initial conditions of the filter states and can be seen as
a Navigation filter warming up time. Notice that the
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Fig. 5. Trajectory described by the vehicle

magnitude of these transients can be highly reduced by
proper initialization of the filter state variables. The filter
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Fig. 6. Evolution of the Kalman filter error variables

error variables are depicted in greater detail in Fig. 7. From
the figures it can be concluded that the noise of the sensors
is highly attenuated by the proposed Navigation System,
producing very accurate estimates of the velocity of the
current and the position of the vehicle.
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Fig. 7. Detailed evolution of the Kalman filter error vari-
ables

7. CONCLUSIONS

This paper presented optimal filtering results for a class
of kinematic systems with application to the design of In-
tegrated Navigation Systems. At the core of the proposed
design techniques there is a time varying orthogonal Lya-
punov coordinate transformation that renders the system
dynamics linear time invariant (LTI). Resorting to classic

optimal filtering techniques, filters were derived in this new
LTI coordinate space. Afterwards, the resulting estimation
solutions were converted back to the original coordinate
space, yielding interpretations for the different proposed
structures. The design includes frequency weights to shape
both the system disturbances and the noise of the sensors.
A brief case study of practical interest in marine appli-
cations was presented along with simulations that clearly
illustrate the usefulness and performance of the proposed
filtering solutions. Other applications can be foreseen in
the design of Navigation Systems for other classes of vehi-
cles, including, e.g., in-door and aerospace vehicles.
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