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Abstract: In model predictive control of processes, the process model plays an important role.
The performance of the controller depends on the quality of the model and hence on the model-
plant mismatch. Although model-plant mismatch is inevitable, it is highly desirable to minimize
it. For processes with large number of inputs and outputs, re-identification of the model is a
costly exercise as keeping a large number of inputs in a perturbed or excited state for a long
time means loss of normal production time. Hence, it would be highly desirable to detect the
precise location of the mismatch so that only a few inputs would have to be perturbed and only
the degraded portion of the model updated. In this work, a methodology is proposed for the
detection of mismatch from closed-loop operating data. The proposed methodology is based on
the analysis of partial correlations between the model residuals and the manipulated variables.
Its efficacy is demonstrated on two simulation case studies as well as its application to data

from an industrial process.
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1. INTRODUCTION

Model predictive control (MPC) has been widely used
in the process industry over the last two decades for
controlling key unit operations in chemical plants. As a
consequence, there has been significant research activity in
the process control community with the aim of improving
the analysis and synthesis of MPC controllers (Morari
and Lee, 1999) and also towards developing techniques for
performance assessment of existing controllers (Shah et
al, 2002). The main motivation for this is economic as the
existing MPCs are expected to cope with tight product
specifications, improved quality and reduction in waste
(Tsakalis and Dash, 2007).

The foundations of the research on controller performance
assessment have been laid by Harris (1989), who pro-
posed a performance benchmark based on the performance
of a minimum variance controller (Astrom, 1970). Since
then there have been significant research efforts in this
area for which Kozub (1996), Qin (1998) and Huang
and Shah(1999) have presented comprehensive surveys.
Although several benchmarks for performance assessment
have been developed, very few researchers have addressed
the performance diagnostics aspect. The work of Pat-
wardhan and Shah (2002) focusses on the performance
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diagnostics of MPC controllers. They have tried to quan-
tify the effect of constraints, modelling uncertainty and
nonlinearity on the performance of linear MPCs.

MPC determines the optimal input moves by solving an
optimization problem in which, the objective function
makes use of predicted outputs over a finite horizon.
Since a model of the process is used for generating these
predictions, the quality of the model affects the closed-
loop performance. The model used in MPC is usually
identified at the commissioning stage of the plant. This
model is never exact and contains some mismatch with
the plant. Over time, several changes can occur in the
process during the MPC operation. Moreover, most of
the chemical processes are inherently nonlinear and linear
models representing these processes are valid only over a
limited range around the operating point. Thus, changes in
the plant dynamics and nonlinearities in the process widen
the gap between the model and the plant which in turn
may lead to a degradation in MPC performance. Hence,
it would be desirable to detect such a mismatch between
the model and the plant and correct it by updating
the model. However, updating the model requires re-
identification which in turn asks for intrusive plant tests.
Such tests disturb the normal operation of the plant and
hence have economic repercussions. Therefore, it would be
highly desirable to identify only that part or subsystem of
the plant (or model), where significant mismatch occurs
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Fig. 1. Open Loop System

so that only inputs or setpoints related to that part of
the plant will have to be perturbed if the need for re-
identification arises.

In this work, we propose a methodology based on the
analysis of partial correlations between the model residuals
and manipulated variables (MVs) for the detection and
isolation of model-plant mismatch. The methodology uses
closed-loop operating data for the analysis and does not
ask for intrusive tests on the plant. The methodology may
be considered to be a part of a complete procedure for
MPC controller performance assessment and diagnostics.
The proposed methodology would be invoked after a
deterioration in controller performance is detected and
when it is confirmed that the root cause of poor MPC
performance is significant model-plant mismatch.

The paper is organized as follows: In Section 2 the problem
of mismatch detection and the associated challenges are
presented. It also briefly gives the motivation for using par-
tial correlation analysis for the problem at hand. A brief
introduction to partial correlation analysis is presented
in Section 3. In Section 4, the proposed methodology is
discussed. The application of the proposed methodology
is demonstrated on three case studies in Section 5. Ini-
tially, the efficacy of the methodology is evaluated on two
simulation case studies followed by its application to an
industrial case study. Section 6 gives concluding remarks
and future directions.

2. PROBLEM DEFINITION

Suppose that G is a model representing the n x m
MIMO plant G. Let A = G — G be the model-plant
mismatch or model uncertainty. Now consider the open-
loop situation of Figure 1, where y(k) and y(k) are the
plant and model output vectors respectively, u(k) is the
vector of uncorrelated inputs or manipulated variables
(MVs), e(k) = y(k) —y (k) is the vector of model residuals
and v(k) is the vector of Gaussian disturbances acting on
the process. The model residuals can then be written as,

e(k) =y(k) —y(k)
= Au(k) + v(k) (1)

From the above expression it is clear that a correlation
analysis between signals e and u would give the extent
of mismatch A. Thus, if A;; was significant i.e. the
mismatch in channel y;-u; was significant, then it would
be seen through a significant correlation between e; and
Uj-

Now consider the closed-loop IMC structure of Figure 2.
Here Q is a multivariable controller, the design of which is

r(k) +

a0

e(k)

Fig. 2. Closed-Loop System: IMC Structure

based on the model G and r(k) is the vector of setpoints.

Then, the following expressions can be written
e(k)=[I+AQ]"'AQr(k) + [T+ AQ] 'v(k) (2)
u(k) =QL+AQ] 'r(k) - QL+ AQ] 'v(k) (3)

Sru Svu

where, S,y and Sy, are the input sensitivities from r and
v respectively. If from Eq.3, Qr(k) is substituted in Eq.2,
the expression of Eq.1 is obtained.

In closed-loop operation, each MV in u is computed at
every instant by the multivariable controller Q. The com-
putation for each MV is based on the same error vector.
Depending on the design of the controller, this may lead to
correlations between the MVs. Such correlations amongst
the MVs may confound the regular correlation analysis
between the model residuals and the MVs. This in turn
may lead to misleading information regarding the existence
(or non-existence) of a significant correlation between the
model residual and MV(s) under consideration and hence
regarding the location of significant mismatch. To over-
come this, we propose to use partial correlation analysis
with an overall objective of isolating those input-output
channels that contain significant mismatch.

Remark 1. If r = 0 i.e. there are no setpoint changes, then
from Egs. 2 and 3, e(k) is related to u(k) as,

e=-Q'u (4)
Thus, in the absence of setpoint changes, it would not be
possible to determine the extent of mismatch. However, in
a typical MPC operation, the targets (i.e. setpoints) are
regularly computed by the upper LP (Linear Program-
ming) layer (Shah et al, 2002). Hence, it can be safely
assumed that sufficient setpoint excitation exists due to
these specifications. Therefore, if data during periods of
sufficient setpoint excitation is chosen, the channels con-
taining mismatch can be effectively isolated.

3. PARTTAL CORRELATION ANALYSIS

Linear relationships between two or more variables can be
detected by performing correlation analysis. However, if
the causal or independent variables are correlated amongst
themselves, correlation analysis may give misleading re-
sults - it may show correlation between two variables when
none exists (spurious correlation due to the effect of other
variables) or it may show zero correlation when one exists
in reality (masking of true correlation).

Partial correlation analysis helps spot spurious correla-
tions as well as to reveal hidden correlations. Partial
correlation analysis has been extensively used in fields
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ranging from social sciences to bio-informatics. Recently,
Gudi and Rawlings (2006) have used partial correlation
analysis for isolating interacting channels in identification
for decentralized MPC. In principle, partial correlation
analysis involves the determination of correlation between
two variables with the effects from other variables removed
(Smillie, 1966). Suppose that Xi, X5..., X,, are variables
affecting a variable Z and suppose that the X;’s are
correlated with each other. Then, to evaluate the partial
correlation between, Z and X1, for example, Z and X; are
first linearly regressed on Xs, X3..., X,

Z=X0z+ FE, (5)
X, :X9X1 + Ex, (6)

where, X = [X3 X3 ... X,,] is the matrix of regressors,
0z and Ox, are the vectors of regression coefficients. Next,
the prediction errors for the models in Egs. 5 and 6 are
evaluated,

ez=2-X (XXT)AXTZ (7)
ex, = X1 — X (XXT) TxTx, (8)

ez and ey, above are those components of Z and X;
respectively that are free of effects from X. The partial
correlation between Z and X is then given by the regular
correlation between ez and ex;,.

4. PROPOSED METHODOLOGY FOR MODEL
PLANT MISMATCH DETECTION

As discussed earlier, if the MVs are correlated with each
other, a regular correlation analysis between the model
residuals and the MVs would give misleading results. This
would lead to detection of mismatch in channels that in
reality do not contain any mismatch. Hence, we propose to
use partial correlation analysis. However, for the problem
at hand, partial correlations analysis in its usual form, as
described in the previous section, cannot be used for two
reasons:

(1) We wish to analyze partial correlations in a dynamic
sense because the variables under consideration (MVs
and model residuals) are time series variables.

(2) Also, as seen from Eq. 2 and Eq. 3, the model
residuals and the MVs contain the effects of the
unmeasured disturbances (v). This may confound
the analysis of partial correlations as the effect of
disturbance may get added up to the effect of model-
plant mismatch. In particular, even if A = 0, this
may result in a non-zero partial correlation between
the model residuals and the MVs.

One approach to resolve the first issue would be to make
use of dynamic models in the regression step. For example
models based on the Prediction Error Method (PEM) of
Ljung (1999) may be used for this purpose. To address the
second issue, however, the MVs first need to be freed from
effects of the disturbances. This can be done by finding
that component of each MV that contains effects of the
setpoints only. This is discussed in more detail below. The
various steps in the proposed methodology are as follows:

(1) Choose data (model residuals and MVs) from the
period where there is sufficient setpoint excitation in
the process.

(2) Find the disturbance free components of the MVs:

The expression in Eq. 3 can be written as,

u(k) =Spur(k) — Syuv(k)
=u’(k) +u"(k) 9)
where u" and uV are those components of u that
contain effects of the setpoints and the disturbances
respectively. The component u® is free from distur-
bances because r and v are uncorrelated. Initially,
Sru is identified as,
u(k) = Spur(k) + Syuvi(k)
and u” is reconstructed as,
0" (k) = Spur(k)
(3) Decorrelate @} and the rest of the MVs:
For this, we find that component of @] that is
uncorrelated with the rest of the MVs. Initially, a
model is identified between u} and all other MVs,
uj (k) = Gu, 0" (k) + €y, (k) (12)
where Q" contains all MVs except @} and ¢,, is that
component of u] that is uncorrelated with the MVs
in @". An estimate of ¢,, is obtained as,
€u; (k) = uj (k) — Gy, 0" () (13)
Essentially, €,, is that component of the MV u; that
is free of effects from disturbances (due to step 2) as

well as the other MVs.
(4) Similarly, decorrelate model residual, e; and all MVs

(10)

(11)

except u;.

ej(k) = G, 0" (k) + e, (k) (14)
and obtain an estimate of €.,

€, (k) = €j(k) = Geju (k) (15)

(5) Evaluate the correlation between €,, and €,. A non-
zero correlation between €,, and € indicates the
presence of model-plant mismatch in the u;-y; chan-
nels. The more significant this correlation, the more
significant is the model-plant mismatch.

Remark 2. The analysis above considers data sets of finite
lengths with random variations due to disturbances. This
may lead to the partial correlation being non-zero even
when no correlation exists. The partial correlations can
then be tested for significance using the t-test, which gives
the probability of getting a correlation as large as the
observed value due to random errors or disturbances when
the actual correlation is zero.

5. CASE STUDIES

The methodology discussed in the previous section was
applied to two simulation cases and an industrial process.
Simple scenarios were considered in Case Study 1 such as
mismatch being present in only one channel whereas the
other channels contain zero mismatch. Simulation Case
Study 2 is the benchmark Shell Control Problem. This
case study was chosen for the large time delays and multi-
variable interactions contained therein. In a real situation,
mismatch would be present in all channels. The challenge
for the proposed methodology would then be to isolate
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all channels containing significant mismatch. Case Study
2 was used for simulating such situations. Finally, the
proposed methodology was tested on data obtained from
a Kerosene Hydrofiner Unit (KHU) at Suncor Energy’s
Oilsands plant in Fort McMurray, Alberta.

All results are presented in the form of partial correlation
plots (and regular correlation plots in some cases). The
probabilities associated with the computed correlations
were computed for all cases. However, these probabilities
are presented only for Case Study 1 because for all other
cases these probabilities are zero because of presence of
mismatch in all channels.

5.1 Simulation Case Study 1

This case study is an example of a 3CVsx4MVsx1FF
system. For simulating the discrete process, a sampling
period of 1 min. was used. Closed-loop simulations were
carried out using MPC. A state-space formulation of MPC
(Muske and Rawlings, 1993) was used. Prediction and
control horizons of 30 and 10 respectively were used. All
CVs were equally weighted (equal concern errors = 1) and
all MVs were equally weighted (move suppression factor=
0). MV4 was constrained at its lower limit effectively
reducing the controller to a 3 x 3 MPC. The 3 x 3 model
is as follows:
05 4o 177 .. 588 g,

4

50s+1°  60s+1C  B0s+1.
g3, U i ) .
0s 60s + 1 40s j; 1
L4b- 2

e (16)
438 5,

e
33s+1

s+ 10 195 + 1

Typical constraints on the MVs were (-20,20). Simulations
were carried out for 1440 samples or 1 day’s worth data.
Various cases were simulated to depict realistic situations
such as gain, delay and time constant mismatch of which
two are presented here.

Scenario 1: Gain mismatch  In this case, mismatch was
added in such a way as to create a situation where the
MV1-CV1 and MV1-CV2 gains are underestimated by
50%. Partial correlations between the model residuals and
the MVs were evaluated as discussed in the previous sec-
tion. These partial correlations are plotted in Figure 3.
For the purpose of comparison, the regular correlations
between each residual and each MV are also plotted in
Figure 4. The significant partial correlations between e;
and MV1 and ey and MV1 correctly point out the mis-
match located in MV1-CV1 and MV1-CV2 channels (red
boxes). On the other hand, the regular correlations seem
to give misleading information regarding the location of
mismatch as can be seen from the significant correlation
values for all channels with respect to CV1 and CV2.
The probabilities obtained from the t-test on the partial
correlations and regular correlations, are presented for 15
lag along with the correlation coefficients in Tables 1 and 2
respectively. The numbers are the partial (or regular) cor-
relation coefficients for 1% lag and the numbers in brackets
are the associated probabilities. These probabilities were
obtained using the corrcoef function in MATLAB. In
Tables 1 and 2, the bold figures represent channels that
contain significant correlations. Clearly for the channels

Fig. 3. Case Study 1: Gain Mismatch -Partial correlations
plots - Mismatch correctly located (red boxes)

Fig. 4. Case Study 1: Gain Mismatch - Regular correlations
between residuals and MVs

Table 1. Case Studyl-Gain Mismatch:
Partial correlation coefficients and asso-
ciated probabilities (in brackets) for 1st

lag
MV1 MV2 MV3
e1 | 0.38 (0) 0.05 (0.57) | 0.075 (0.14)
ez | 0.4(0) -0.025(0.33) | -0.039 (0.13)
ez | 0.011 (0.97) | -0.013(0.61) | 0.01(0.53)

that contain mismatch, the probabilities associated with
the partial correlation coefficients are zero and are large for
the other channels, indicating that whatever small partial
correlations are seen are spurious correlations. Also, for
the regular correlation analysis the probabilities associated
with the correlations for e; and es are zero. This is a result
of the correlation between the MVs.

Scenario 2: Delay mismatch — Here, a (underestimated)
delay mismatch of 2 samples was introduced in all channels
from MV1 ie. MV1-CV1,CV2,CV3. The partial correla-
tion plots for this case are plotted in Figure 5. The 1¢ lag
partial coeflicients and their associated probabilities are
presented in Table 3. The mismatches present in channels
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Table 2. Case Studyl-Gain Mismatch:
Regular correlation coefficients and asso-
ciated probabilities (in brackets) for 1st

lag
MV1 MV2 MV3
e1 | -0.63(0) 0.29 (0) -0.88 (0)
ea | -0.62(0) 0.28 (0) -0.87 (0)
ez | -0.006(0.81) | -0.02(0.42) | 0.003(0.92)
MV1 MV2 MV3

Fig. 5. Case Study 1: Delay Mismatch - Partial correlation
plots

Table 3. Case Studyl-Delay mismatch:
Partial correlation coefficients and asso-
ciated probabilities for 1st lag

MV1 MV2 MV3

c1 | 0.45 (0) | -0.001 (0.45) | 7.5¢-4 (0.64)
es | -0.2(0) | -2e-4(0.43) | -2e-4(0.52)
3 | 0.18 (0) | -1.3¢-4(0.61) | -1.4¢-3(0.39)

MV1-CV1,CV2,CV3 are revealed by the significant partial
correlation values for these channels.

5.2 Simulation Case Study 2: The Shell Control Problem

The Shell Control Problem is a benchmark problem pro-
posed at the Shell Process Control Workshop (Prett and
Morari, 1987) and involves control of a heavy oil fraction-
ator system characterized by large time delays in each
input output pair. The heavy oil fractionator has three
product draws, three side circulating loops and a gaseous
feed stream. The system consists of seven measured out-
puts, three manipulated inputs and two unmeasured dis-
turbances. Product specifications for top and side draws
are determined by economic considerations. There is no
product specification on bottom draw, however, there is
an operating constraint on the bottom reflux temperature.
Top draw, side draw and bottoms reflux duty can be used
as manipulated variables to control the column while heat
duties on the two other side loops (upper reflux duty and
intermediate reflux duty) act as unmeasured disturbances
to the column. A schematic of the fractionator is shown in
Figure 6.

Since the controlled outputs of interest are top end point,
side end point and bottoms reflux temperature, in this
work we consider a subsystem consisting of only these

O
—

UPPER REFLUX

INTERMEDIATE REFLUX

&

BOTTOMS REFLUX

BOTTOMS

Fig. 6. A schematic of the Shell heavy oil fractionator

three outputs. Further, the process dynamics are simulated
under following assumptions (Patwardhan et al, 2006)

e Manipulated inputs are piecewise constant
e Disturbances entering the plant can be adequately
represented using piecewise constant functions

Under these assumptions, a discrete dynamic model of the
form

¥(2) = Gp(2)u(z) + Ga(2)d(2) (17)
is developed with sampling time (7") equal to 2 minutes. A
minimal order state space realization of (17) of the form

X(k+1)=AX(k) + B,u(k) + Byd(k) (18)

y(k) = CX(k) (19)

with 51 state variables is used for simulation of process
behavior. The stationary unmeasured disturbances d(z)

are assumed to be generated by the following stochastic
process

xw(k+1)=Auxy(k) + Byw(k) (20)
d(k) = Cuxyw(k) + Dyw(k) (21)
A,=C,=091 B,=D,=1 (22)
or equivalently by
—_ % 0
d(z) = | 2709 w(2) (23)
z—0.95
where w € R? is a zero mean normally distributed white
noise process with 0,1 = o2 = 0.0075. In addition,

the measured outputs are assumed to be corrupted with
measurement noise

y(k) =y(k) +v(k) (24)
where v € R3 represents zero mean normally distributed
white noise process with o,; = 0.005 for i = 1, 2, 3. Closed
loop simulations with MPC were carried out in MATLAB.
A state-space formulation of MPC (Muske and Rawlings,
1993) was used. The model used in MPC was the same as
the one used to simulate the plant dynamics except for the
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Fig. 7. Case Study 2: Gain Mismatch - Partial correlation
plots

Fig. 8. Case Study 2: Gain Mismatch - Regular correlation
plots

input-output channel where mismatch was introduced. As
stated earlier, setpoint changes are a common occurrence
in an industrial process. To simulate this scenario, setpoint
excitation was introduced by applying PRBS signals of
magnitude 0.1 and switching time of 20 minutes at the
setpoints. Various scenarios of model-plant mismatch were
simulated, two of which are presented here.

Scenario-1: Gain mismatch  In this case, a more realistic
scenario was created by introducing a 10% gain mismatch
and 10% mismatch in time constant in all MV-CV channels
except the MV1-CV1 channel. A larger (underestimated)
gain mismatch of 50% was added in this channel. This was
done to test whether the proposed methodology is able to
detect the more significant mismatches when all channels
contain some mismatch. The proposed methodology is
in fact able to isolate the channel containing the most
significant mismatch i.e. channel MV1-CV1. This can be
seen from the significant partial correlation values for this
particular channel (see Figure 7). Also it can be seen from
Figure 8, that the full correlations between the model
residuals and MVs give no useful information regarding
the location of the most significant mismatch.

0.4,

02 E i .

Wi

0 5 10 15 20
Lag

Fig. 9. Case Study 2: Delay Mismatch - Partial correlation
plots

Table 4. KHU Unit - Details of CVs

CcvV Description

CV1 | Kero stripper feed valve position
CV2 | Kero stripper pressure valve position
CV3 | Condenser outlet temperature

CV4 | Accumulator level valve position
CV5 | Pressure of fuel gas to reboiler

CV6 | Kero stripper bottom temperature
CV7 | Kero product flash

Table 5. KHU Unit - Details of MVs

MV Description

MV1 | Kero stripper pressure
MV2 | Kero stripper reflux flow
MV3 | Reboiler outlet temperature

Scenario-2: Delay Mismatch In this case, a delay mis-
match of 5 samples was introduced in channels MV1-CV1,
MV1-CV2 and MV1-CV3. Also, all channels contained
gain mismatches of 10%. The proposed methodology was
able to isolate the channels containing delay mismatches
even when all the channels contained some mismatch (gain
mismatch). The partial correlation plots for this case are
shown in Figure 9.

5.8 Industrial Case Study: Data from a Kerosene Hydrofiner
Unit (KHU) at Suncor Energy’s Upgrading Plant

The kerosene hydrofiner unit (KHU) at Suncor Energy
Inc. is a standard hydrofining unit that desulphurizes the
coker intermediate kerosene streams through a catalytic
reaction with hydrogen. The KHU is controlled by an
MPC controller which has 3 manipulated variables (MVs),
7 controlled variables (CVs) and 3 feedforward variables
(FFs) or measured disturbance variables. The MPC com-
putations take place every 1 minute. The details of the
CVs and the MVs are given in Tables 4 and 5 respectively.
A schematic of the KHU unit is shown in Figure 10. CV7
is not marked in the schematic because it is an inferred
variable and is obtained through online computations on
the process computer.

Since late 2006, the performance of the KHU MPC had
deteriorated considerably (Jiang et al, 2007). The closed
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Fig. 10. Schematic of the KHU unit (Courtesy-Suncor
Energy, Canada)

loop operating data was analyzed using the proposed
methodology to investigate for model problems. The num-
ber of data points used for analysis was 2000. A regu-
lar correlation analysis between the model residuals and
MVs cannot give any insight into the root-cause of the
problem as can be seen from the regular correlation plots
in Figure 11. If any conclusions were to be drawn based
on these plots, the models between several MVs and CVs
would have to be considered to be of a poor quality (red
boxes). However, the proposed methodology, when applied
to this data, reveals that the models between MV3-CV2
and MV2-CV4 contain a large mismatch with respect to
the plant. This can be seen from the significant partial
correlations between ez and MV3 and e4, and MV2 (See
Figure 12). The plots for e;-MV2 and e;-MV3 are blank
in Figures 11 and 12 because MV2 and MV3 do not affect
CV1 and hence there are no models for these channels.
The results obtained using the proposed methodology
are validated against those obtained by an independent
analysis performed by Jiang et al (2007) on the same
data. Their analysis involved re-identification of the mod-
els from closed-loop data using the Tai-Ji module of the
CPM product from Matrikon Inc (Matrikon Inc., Tai-Ji
Multivaraible Identification Package, 2007), which is based
on the ASYM method of Zhu (1998). The results of their
analysis are shown in Figure 13. It is clearly seen that the
current models (in the controller) for channels MV3-CV2
and MV2-CV4 are significantly different than those in the
re-identified models. Moreover, models for other channels
have also changed slightly (Eg. MV3-CV3). This may be
due to process changes that have taken place in the unit
since the time of commissioning. The blanks in Figure 13
are again those channels for which models do not exist.

6. CONCLUDING REMARKS

In this article, a methodology for the detection of model-
plant mismatch in MPC applications has been proposed.
The methodology is based on the analysis of partial cor-
relations between the model residuals and manipulated
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Fig. 11. KHU Unit: Regular correlation plots - Mislead-
ing information regarding location of significant mis-
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variables. The advantage of the proposed method is that
it requires routine operating data for analysis. It has been
shown that in the presence of correlations between the ma-
nipulated variables, it is not possible to identify the exact
location of a mismatch when regular correlation analysis
is used. Through simulations, the proposed methodology
has been shown to successfully detect mismatch when the
mismatch is contained in one channel as well as in multiple
channels in the presence of unmeasured disturbances. For
the KHU case study, the proposed methodology has been
able to successfully detect those channels of the model
that exhibit significant mismatch. The results are in exact
agreement with those from an independent analysis which
concluded that the gain signs in the model were incorrect.
This was due to significant changes in the operation of the
KHU unit since its commissioning two years ago.

Even though the poor models in the controller are de-
tected, a more pertinent question to ask is: what is the
quantitative effect of MPM on MPC performance? Is
it significant in which case one can apply the proposed
technique? Otherwise one should look at other causes for
poor MPC performance. These questions would have to
be answered by first analyzing how the existing controller
handles the mismatch. A particular model may be of a
very poor quality (significant mismatch with the plant)
and yet depending on the design of the controller, it may
or may not have a significant impact on the closed-loop
performance. Recently, a non-invasive methodology for
quantifying the impact of MPM on control performance
has been proposed by Badwe et al (2008). However, there
is still no complete solution available for this problem and
this avenue is still open for research.
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