
     

Efficient Estimation of Errors-in-Variables Models  
 

István Vajk, Jenő Hetthéssy 
 

Department of Automation and Applied Informatics, Budapest University of Technology and Economics,  
Budapest, Hungary, (e-mail: {vajk,hetthessy}@aut.bme.hu) 

Abstract: The paper addresses the discrete-time linear process identification problem assuming noisy 
input and output records available for the parameter estimation. The efficient algorithms are derived for the 
simultaneous estimation of the process and noise parameters. Implementation techniques based on matrix 
and polynomial decompositions are given in details resulting in estimation algorithms with reduced 
computation demand. The presented algorithms deliver the parameter estimation in an iterative way as a 
result of a generalized eigenvalue-eigenvector or a generalized singular value decomposition. 

 

1. INTRODUCTION 

Various approaches of system identification with noisy input-
output records have been with us for decades. It is enough to 
refer to the works of Koopmans, Frisch, Levin or Aoki. This 
classical field has been discussed with new techniques by a 
number of authors recently. Excellent reviews can be found 
in a survey paper (Söderström, 2007) or in regular papers 
(Diversi et al., 2007),   as well. In addition, the structural total 
least squares technique (Markovsky et al., 2005), the PCA 
approach (Wang and Qin, 2002), as well as several topics 
elaborated on the 14th IFAC Symposium on System 
Identification (Markovsky, et al. 2006), (Ekman, et al. 2006) 
should be mentioned as recent results. The particular aim of 
this paper is to present an efficient simultaneous estimation 
procedure for the process and noise parameters in EIV 
environment. The new algorithm results in the estimation via 
iterative generalized eigenvalue-eigenvector (EVD) or 
generalized singular value decomposition (SVD). Unlike the 
widely used gradient techniques, the EVD/SVD techniques 
deliver several local minima while minimizing the loss 
function associated with the performance of the parameter 
estimation. 

The paper is organized as follows. Section 2 formulates the 
identification problem in EIV environment.  In Section 3 the 
maximum likelihood estimation is discussed as a 
minimization problem of an appropriate loss function. 
Section 4 is devoted to discuss efficient realizations for the 
parameter estimation. Three options are presented: the 
method using matrix decompositions reduces the 
computation demand without reducing the performance of the 
parameter estimation, while the method using polynomial 
decompositions introduces some approximations via the 
autoregressive filtering. The third method is using an 
approximation related to the gradient of the loss function. 
Section 5 presents an important extension of the EIV model 
identification, namely a method is derived to identify not 
only the process parameters, but the noise coefficients, too. In 
Section 6 a simulation example is given to illustrate the 
behavior of the extended algorithm.  

2. PROBLEM FORMULATION 

In the paper single-input single-output (SISO) linear time-
invariant discrete time systems will be studied. Describe the 
noise-free process by 

1 1( ) ( )o o
k kA q y B q u− −=  , (1) 

where 
1

1k kq x x−
−=  (2) 

is the backward shift operator, further on  
1 1 2

1 2( ) 1 ... m
mA q a q a q a q− − − −= + + + +  (3) 

and 
1 1 2

1 2( ) ... m
mB q b q b q b q− − − −= + + + . (4) 

Eq. (1) can be transformed to an implicit form of  
0T o

k =θ x  ,  (5) 
where 

1 1[ , ,..., , , ,..., ]o o o o o o o T
k k m k m k k m k m ky y y u u u− − + − − +=x  (6) 

is the complete observation vector and  

[ ]T T T= −θ a b  (7) 
is the parameter vector with 

1 1[ , ,..., ,1]T
m ma a a−=a    and   1 1 0[ , ,..., , ]T

m mb b b b−=b , (8) 

provided that the 0b  coefficient is set to 0 0b = . Note that 0b  
has just been introduced to ensure a symmetrical structure in 
the observation vector. Later on a and b with reversed 
sequencing as 

*
1 1[1, ,..., , ]T

m ma a a−=a   and   *
0 1 1[ , ,..., , ]T

m mb b b b−=b  (9)  

will also be applied. 

To complete the EIV model, according to Fig. 1, additive 
noise components will be taken into account and N  pair of 
noisy observations will be assumed to be available to 
estimate the unknown ia  and ib  coefficients:  

o
k k ku u u= +             2 2var( ) cosk uu σ µ ϕ= =  (10) 

o
k k ky y y= +            2 2var( ) sink yy σ µ ϕ= =  (11) 
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Regarding the identification problem just outlined, the final 
goal is to derive a parameter estimation algorithm assuming 
that both the var( ) / var( )k ku y  ratio and the noise intensity 
parameter µ  are unknown. In Eqs.(10) and (11) observe the 
parameterization of the var( ) / var( )k ku y  noise ratio by  ϕ , 
indicating the noise ‘direction’. As far as the noise covariance 
matrix is concerned the notation by 

T
yu ϕ ϕ ϕµ µ= =C C C C  (12) 

will be used in the sequel, where 
0

0 cos
sin

ϕ

ϕ
ϕ

 
=  

 
C  .                         (13) 

 

1

1

( )
( )

B q
A q

−

−

ku kyku ky

o
ku o

ky

 

Fig. 1.   Errors-in-variables model 

To prepare the mathematical treatment of the identification 
problem a few notations need to be introduced at this point:  

[0,0,...,0] ,        dim( )=T
n n n=0 0 , (14) 

, :        zero matrixn n n n×0 , (15) 

:           unity matrixn n n×I , (16) 

1 1

1 2

1 1

...

...
( , )

... ... ...
...

q q

q q

N N N q

v v v
v v v

Toeplitz q

v v v

−

+

− − +

 
 
 =  
 
  

v , (17) 

1 2

2 3 1

1 2

...

...
( , )

... ... ...
...

q

q

N q N q N

v v v
v v v

Hankel q

v v v

+

− + − +

 
 
 =  
 
  

v  (18) 

where 1 2[ , ,..., ]T
Nv v v=v . 

Though only SISO systems are considered in the paper, all 
the results shown in the following sections can be generalized 
for multiple-input multiple-output (MIMO) systems.  

3. MAXIMUM LIKELIHOOD ESTIMATION 

The N  pair of the input/output samples available for the 
parameter estimation will be arranged in several structures in 
the sequel. Starting the discussion with the maximum 
likelihood (ML) parameter estimation assume that the  
var( ) / var( )k ku y  noise ratio is known and in order to derive a 
compact form let us put all the noisy and noise-free 
observations into long observation vectors, respectively: 

1 2[ , ,..., ]T
Nu u u=u ,    1 2[ , ,..., ]o o o T

o Nu u u=u  (19) 

1 2[ , ,..., ]T
Ny y y=y ,  1 2[ , ,..., ]o o o T

o Ny y y=y  , (20) 

[ , ]T T T=x y u ,             [ , ]o T T T
o o=x y u , (21) 

then introduce an appropriate  

( )
T

a b = = − G G θ G G   (22) 

matrix containing the model parameters such that vector 
equation 

T o =G x 0    (23) 
involves the scalar equations   

0T o
k =θ x  for 1m k N+ ≤ ≤ .  (24) 

Both aG and bG  turn out to be matrices of Toeplitz type: 
*

1 1([ ; ; ], )a N m N mToeplitz N m− − − −= −G 0 a 0  (25) 
and 

*
1 1([ ; ; ], )b N m N mToeplitz N m− − − −= −G 0 b 0 , (26) 

respectively. As far as the likelihood function is concerned, if 
the noise components are of Gaussian distribution then the 
conditional distribution of the measurements is  

( ) 11.exp ( ) ( ) ( )
2

o T oprob const µ − = − − − 
 

x θ x x C x x  (27) 

where 
Nϕ= ⊗C C I . (28) 

Here ⊗  denotes Kronecker product. Taking the constraint by 
T o =G x 0  into account finding the maximum of the 

likelihood function is equivalent to minimize the following 
loss function by θ : 

 ( ) 11( ) ( ) ( ) ( ) ( )
2( )

T T TJ
N m

−
=

−
θ x G θ G θ CG θ G θ x . (29) 

Note that the above expression of the loss function can be re-
arranged as 

( ) ( ){ }11( ) ( ) ( ) ( ) ( )
2( )

T TJ tr
N m

−
=

−
θ G θ CG θ G θ DG θ  , (30) 

where the notation of 
T=D xx  (31) 

has been used for the data matrix. 

To find the minimum of the loss function by Eq. (29) 
consider its derivative with respect to the i-th entry of the 
θ vector ( iθ ) 

1

1 1

( ) [ ]

[ ] [ ]

T T T
i

i
T T T T T

i

JN m δ
θ

δ

−

− −

∂
− = −

∂
x G G CG G x

x G G CG G CG G CG G x
 (32) 

where iδ G  is a shorthand notation for 

/i iδ θ∂ ∂G G  . (33) 

To proceed the necessary condition 

/ 0iJ θ∂ ∂ =   (34) 

will be investigated. Having as many equations as parameters 
to be determined, in principle there might be a way to solve 
the above set of equations.  
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Once the process parameters have been estimated the noise 
gain µ can be calculated as follows: 

( ) 1ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) /( )T T T
pN m nµ

−
= − −x G θ G θ CG θ G θ x .     (35) 

Note that the above relation delivers a consistent unbiased 
estimation for µ̂ , where pn  denotes the number of the 
estimated process parameters. 

However, only iterative solutions can be looked for to solve 
Eq.(34), because G  depends on θ . MATLAB, for example, 
offers tools to solve a set of nonlinear equations, however, in 
practice these tools work effectively only if favorable initial 
conditions are set. In this paper EVD or SVD algorithms will 
be considered rather than classical gradient algorithms. 
Namely unlike traditional local minimization algorithms (e.g. 
the Levenberg-Marquardt method), the EVDS/SVD 
algorithms can find several local minima.  

Elaborating on Eq. (34) leads to 

 * *( )− =D C θ 0  , (36) 

where the matrices *D and *C have the following entries: 

* 1
, [ ]T T T

i j j iD δ δ−= x G G CG G x  (37) 
* 1 1
, [ ] [ ]T T T T T

i j i jC δ δ− −= x G G CG G C G G CG G x . (38) 

While calculating the *
,i jC  elements, considerable reduction 

in the related computation demand can be achieved if *
,i jC  is 

substituted with its expected value (this can be a rather good 
approximation for large N):  

* 1
, ,{ } {[ ] }T T o

i j i j i jE C tr Cµ δ δ µ−= =G CG G C G , (39) 

where ,
o
i jC is the i,j  element of oC . Accepting the proposed 

approximation Eq. (36) takes the following form: 
*( )oµ− =D C θ 0 . (40) 

Consequently, Eq.(40) can be solved as an iterative EVD 
problem: 

*
1 1( ( ) ( ))oµ + +− =D θ C θ θ 0  .  (41) 

According to Eq.(41) in step  θ  is given, * ( )D θ  and 
( )oC θ  can be calculated, then the solution of the EVD 

problem results in 1+θ  and 1µ + .  

Remark: if *D , *C  and oC  are available in a decomposed 
form by 

* * *T
=D D D   * * *T

=C C C   *To o o=C C C ,          (42) 

then the generalized  EVD decomposition of  * *( , )D C and 
*( , )oD C  can be calculated in a numerically advanced way 

performing the generalized SVD decomposition of  * *( , )D C  

and *( , )oD C . 

Analyzing the size of the matrices involved in the solution 
discussed above, one can conclude that the above proposed 
solution can hardly be applied for practical identification 
problems feeding the algorithms with a number of records. 
The next Section is devoted to derive parameter estimation 
algorithms avoiding the direct inversion of the matrix 

TG CG . 

4. EFFICIENT REALIZATIONS 

Summing up the main result derived in the previous Section a 
maximum likelihood estimation algorithm has been 
elaborated for process parameter identification in an EIV 
environment. At the same time Eqs. (36-38) show that the 
implementation of the algorithm may have high computation 
demand. Specifically, the straightforward calculation of the 
gradient by Eq.(32) requires O(N3) flops (floating point 
operations) in each iteration step, where N characterizes the 
size of the matrices involved in the calculations related to the 
estimation algorithm. Consequently, the complexity of the 
identification algorithm can be reduced by reducing the base 
in N3 or by reducing the exponent in N3. The first option is 
known as the generalization of the Koopmans-Levin method 
and it reduces the size of the matrices involved in the 
calculations (Vajk, 2005). The second option exhibits an 
efficient calculation of the gradient / iJ θ∂ ∂ . This alternative 
will be discussed in details in the rest of this Section. 

One way to reduce the calculation effort is to utilize the 
special banded structure for the TG CG  matrix. In the light 
of this concept three alternative solutions will be shown 
below. All of three algorithms significantly reduce the 
required calculations, namely the evaluation of / iJ θ∂ ∂  will 
need only O(N) flops. 

4.1. Reduction of the calculation effort via matrix 
decomposition 

The key idea behind the reduction is the utilization of the 
special banded structure of the TG CG  matrix: 

2 1 1 0 2 1( , [ ... ... ], )T
N m m m N mToplitz γ γ γ γ γ− − − −= =Γ G CG 0 0   (43) 

The above ( ) ( )N m N m− × −  Γ  matrix can be decomposed 
via Cholesky transformation to the product of an L lower and 
a T=U L  upper band-limited triangular matrix: 

T =G CG LU . Alternatively, avoiding the square root 
operation the Bierman decomposition can be applied to have 

T =G CG LDU , where L  is a lower and U  is an upper 
triangular matrix, while D  is a diagonal matrix. Either way, 
the separated matrices can be stored as matrices in a compact 
storage form with size of ( ) ( 1)N m m− × + . Moreover, the 
number of the operations required by the matrix 
decompositions is proportional to N . The elements of the Γ  
matrix can be determined by the following polynomial 
relations: 

2 1 2 1( ) sin ( ) ( ) cos ( ) ( )q A q A q B q B qγ ϕ ϕ− −= + . (44) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1386



 
 

     

 

Observe the symmetrical structure in ( )qγ : 

1
1 1( ) ... ...m m

m o mq q q q qγ γ γ γ γ γ− −= + + + + + + . (45) 
 
In the sequel the case of the Cholesky decomposition will be 
considered and the goal of the procedures is to derive the 
matrices *D  and *C  to activate the SVD decomposition. 
This matrix decomposition algorithm will be presented in 
details. As the fundamental point of the algorithm, first the 
steps of the  T= =Γ G CG LU  decomposition should be 
performed: 

1. Find 0,1,...,i i mγ =  based on the knowledge available for 
a, b and the var( ) / var( )k ku y  noise ratio using Eq.(44). 

2. Find U  from T= =Γ G CG LU  using the compact storage 
form. Note that applying the Cholesky decomposition L can 
automatically be generated once  U  has been determined. 

Having the T= =Γ G CG LU   decomposition performed the 
next phase is to find the *D  matrix in the following steps: 

1.  Construct 1 ... ...T
iδ =  Z G x  from the block Hankel 

matrices of the input-output records: 

[ ]1 ( , 1) ( , 1)Hankel m Hankel m= + +Z y u  (46) 

2.  Calculate 1
2 1

−=Z L Z . For L  is a lower band limited 
triangular matrix, the number of the operations required to 
calculate 2Z  is proportional to N . 

3. To achieve a reduction in the computing complexity 
consider the orthogonal-triangular decomposition by 

2 =Z QR , where Q  is a unitary matrix ( T =Q Q I ), while 
R  is an upper triangular matrix. Consequently, we have 

 2 2
T T T T∗ = = =D Z Z R Q QR R R  . (47) 

Derive now R  from R  by discarding all the rows in R  
constructed by 0 elements only. Then T T∗ ∗ ∗= =D D D R R  
results in a way to find *D  via reduced computing 
complexity.  

Summing up  *
2_ ( )Q R=D Z  has been derived, where 

_ (...)Q R  denotes the operation performing the procedure 
discussed above. Note that assuming sufficient excitation the 
R  matrix is a quadratic matrix. 

As the next phase, to find *C  proceed with the algorithm as 
follows: 

1. Determine the error vector: 

1
T=z G x . (48) 

2. Using the compact form of the Cholesky decomposition 
calculate 1

3 [ ]T T−=z G CG G x in two phases: 

1
2 1

−=z L z   and   1
3 2

−=z U z . (49) 

3. Using 3z  construct 1
4 [... [ ] ...]T T

iδ −=Z G G CG G x  
1.. 1i m= +  as a Toeplitz matrix:  

4 3([ , , ], 1)m mToeplitz m= +Z 0 z 0 . (50) 

4.  Again, to reduce the size of the 4Z  matrix the _ (...)Q R  
operation discussed earlier is applied:  

5 4_ ( )Q R=Z Z . 
5. Finally derive *C  as   

*
5ϕ= ⊗C C Z . (51) 

All the steps of the algorithm shown above need operations in 
a number whose maximum is proportional to N. 
Consequently, each step of the minimization procedure based 
on the above algorithm needs O(N) flops.  

4.2. Reduction of calculation effort via polynomial 
decomposition 

The number of the operations within an iteration step can 
further be decreased applying polynomial decomposition 
instead of the matrix decomposition. To do so, instead of 
performing an LU decomposition consider the following 
decomposition of the Γmatrix:  

2 2sin cosT T T T
a a b b c cϕ ϕ= = + =Γ G CG G G G G G G , (52) 

where the structure of cG  is similar to that of aG  or bG . 
Equivalently, the underlying polynomial decomposition can 
be written as 

2 1 2 1 1sin ( ) ( ) cos ( ) ( ) ( ) ( )A q A q B q B q C q C qϕ ϕ− − −+ = . (53) 

Then the application of a whitening filter by 11/ ( )C q−  
allows us to avoid the matrix inversion. As the fundamental 
point of the algorithm the detailed sequence of the 
polynomial decomposition algorithm will be presented 
below: 

1. There is no change in the initial step. Find 0,1,...,i i mγ =  
based on the knowledge available for a, b and the 
var( ) / var( )k ku y  noise ratio. 

2. Consider z-transform by ( ) ( )
q z

z qγ γ
=

=  and factorize ( )zγ  

as 
1( ) ( ) ( )z C z C zγ −=  , (54) 

where the polynomial ( )C z  contains all the roots of 
( )zγ within the unit circle, while  1( )C z−  contains all the 

roots of ( )zγ outside the unit circle. Then use the coefficients 
of  ( )C z  and  1( )C z−  in polynomials of the backward shift 

operator ( ) ( )
z q

C q C z
=

=  and 1 1( ) ( )
z q

C q C z− −

=
= , 

respectively. 

Having the 1( ) ( ) ( )z C z C zγ −=   decomposition performed the 
next phase is to find the *D  matrix: 
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1. Apply the 11/ ( )C q−  filter for the input-output records: 

1

1
( )

F
k ku u

C q−=    and  1

1
( )

F
k ky y

C q−= . (55) 

2. Using the filtered input-output records construct the 
following block Hankel matrices: 

[ ]( , 1) ( , 1)F F FHankel m Hankel m= + +Z y u  (56) 

where Fy  and Fu  are built up by filtered records according 
to Eq.(55). 

3. Finally calculate *D  according to 
* _ ( )FQ R=D Z . (57) 

As far as the calculation of *C  is concerned, steps from 1 to 5 
shown for the matrix decomposition algorithm can be used, 
except Step 2:  

Instead of using the compact form of the Cholesky 
decomposition calculate 1

3 [ ]T T−=z G CG G x  applying the 
following sequence of filters: 

2 11

1
( )k kz z

C q−=   and   3 2
1
( ) kkz z

C q
= ,     (58) 

where the first filter is a simple autoregressive filter, which is 
followed by a reverse filtering. Each of the above filters 
requires operations whose number is proportional to N .   

4.3. Reduction of calculation effort using expected value 

The calculation effort can further be reduced by applying 
Eq.(39) concerning the expected value of *C  and find oC , 
where oo T o=C C C   assuming N → ∞ , i.e. 

1 1

1 1 1{( )( ) }
( ) ( )

o T
k kC q C qµ − −=C n nΕ  (59) 

is looked for where kn  represents the additive noise 
component connected to o

kx . The steps of the calculation are 
as follows: 

1. Applying a polynomial decomposition and a series 
expansion construct  

1 0 1[ ... ... ]m mv v v v v=v  ,  (60) 

where 

1

1
1 0 1

1 1
( )( )

... ... ... ...m m
m m

C qC q
v q v q v v q v q

−

− −

=

+ + + + + + +
 (61) 

2. Construct 

( , 1)Toeplitz m= +Q v . (62) 
3.  Calculate the Cholesky decomposition of Q: 

T=Q Q Q . (63) 

4. Finally calculate oC according to 

o
ϕ= ⊗C C Q . (64) 

The above equations show that the number of the operations 
required by the calculation of oC  is independent of the 
number of the samples driving the parameter estimation 
algorithm.  

Using an iterative EVD/SVD algorithm based on the matrices 
derived along the above steps both θ  and µ  can efficiently 
be estimated. In practice a few (say 3-10) iteration steps lead 
to rather accurate results. Note that the above calculations can 
be used not only to support an EVD-SVD type estimation, 
but they can contribute to efficiently run gradient type search 
or Levenberg-Marquardt algorithms, as well.  

Up to this point it has been assumed that the var( ) / var( )k ku y  
noise ratio is available for the parameter estimation 
algorithm. With this assumption the iterative ML algorithms 
discussed so far result in unbiased and efficient estimation 
both for θ  and µ . In the next Section the scope of the study 
will be extended to estimate var( ) / var( )k ku y  noise ratio, as 
well. 

5. ESTIMATION OF THE NOISE RATIO 

Unlike in the previous sections, herewith below it will be 
assumed that the var( ) / var( )k ku y  noise ratio is not available 
for the parameter estimation algorithm. In fact, a number of 
methods have already been presented on the simultaneous 
estimation of the process and noise parameters. In this 
Section a procedure will be derived to estimate the variances 
of the noise components. Specifically, this procedure is based 
on matching of the covariance matrices and it can be 
considered as a generalization of the algorithms presented in 
(Diversi et al., 2003). 

To start the derivation find { ( ) ( )}T
s s sE G θ D G θ , where the 

matrix sD  is constructed from the noisy input-output records 

/( 1)T
s s s N s= − +D X X . (65) 

Here 
[ ]( , ) ( , )s Hankel s Hankel s=X y u   (66) 

and the matrix ( )sG θ  is still constructed similar to 
Eqs.(22,24-25) using the real process parameters: 

Ta b
s s s = − G G G , (67) 

where 
*

1 1([ ; ; ], )a
s s m s mToeplitz s m− − − −= −G 0 a 0  (68) 

*
1 1([ ; ; ], ) b

s s m s mToeplitz s m− − − −= −G 0 b 0 . 

Using the covariance matrix of the actual noise components 
the expected value can be expressed as 

{ ( ) ( )} ( ) ( )T T
s s s s s sE µ=G θ D G θ G θ C G θ , (69) 

where the structure of matrix sC  is given by  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1388



 
 

     

 

s sϕ= ⊗C C I . (70) 

In the above notation the index s  relates to the size of the 
Hankel matrices applied. Recalling the law of large numbers 
the expected value in Eq.(69) can be approximated by the 
algebraic average:  

( ) ( ) ( ) ( )T T
s s s s s sµ≈G θ D G θ G θ C G θ . (71) 

While an estimation procedure for the noise coefficients will 
be derived in the sequel, the left side (calculated covariance) 
and the right side (covariance reflecting the assumption made 
on µ and φ) of Eq.(71) will be forced to be as close to each 
other as possible. This condition will be called covariance 
matching. Moreover, both sides will be calculated using the 
latest available estimations. To characterize the modeling 
error define the error matrix by 

ˆ ˆ ˆ ˆˆ( ) ( ( )) ( ( )) ( ) ( ( )) ( ) ( ( ))T T
s s s s s sϕ ϕ ϕ µ ϕ ϕ ϕ ϕ= −P G θ D G θ G θ C G θ

 (72) 
and achieve covariance matching via minimizing some norm 
of P . One option is to minimize 1 2( )Ttr W P W P  with 
appropriate 1W  és 2W  weighting matrices. A special choice 
can be the Frobenius norm of P. This is the norm which will 
be used in the rest of the derivation.  

Once selecting a particular φ value and having an estimation 
for ˆ( )ϕθ  and ˆ ( )µ ϕ  the noise variances can be estimated by 
minimizing 

F
P , where the notation ...

F
 has been used for 

the Frobenius norm. Specifically, the following minimization 
results in a direct estimation for φ: 

ˆ ˆˆ arg min ( ( )) ( ( ))

ˆ ˆˆ( ) ( ( )) ( ) ( ( ))

T
s s s

T
s s s

F

ϕ
ϕ ϕ ϕ

µ ϕ ϕ ϕ ϕ

= −G θ D G θ

G θ C G θ
 (74) 

Finally, the estimated ϕ  value leads to the following solution 
in terms of the noise variances: 

2 2ˆ ˆˆ ˆ ( ) cos ( )uσ µ ϕ ϕ=    and   2 2ˆ ˆˆ ˆ ( )sin ( )yσ µ ϕ ϕ= . (75) 

6. SIMULATION EXAMPLE 

In this Section a simulation example will demonstrate the 
properties of the identification methods discussed in the 
previous sections. Consider a noise-free second order process 
given by 

1 2 1 21.5 0.7 2o o o o o
k k k k ky y y u u− − − −− + = + . (76) 

Let the noise-free process input be an ARMA(1,1) process: 

1 10.5 0.7o o
k k k ku u e e− −− = + , (77) 

where { }k l k lE e e δ −= . The noise components used in the 
simulation study have been generated setting φ=45°. The 
length of the input-output records used for the identification 
has been 10000N = . The aim of the simulation is to analyze 
the effect of various noise conditions while identifying the 
system parameters and the var( ) / var( )k ku y  noise ratio. 

The Frobenius norm by Eq. (72) is shown in Fig. 2 as a 
function of the a priori assumed φ values. The minimum in 
this case gives estimation fairly close to 45°. Further 
simulation examples verified the effectiveness of the 
proposed algorithms. In all cases the estimations for the noise 
coefficients were found acceptable.  

 
Fig.2. The covariance matching performance with respect to 

the assumed angle for φ=45˚ and s=15 
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