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Abstract: Bicoherence or Bispectrum analysis is emerging as a new powerful technique
in signal processing, especially in areas where traditional linear spectral analysis provides
insufficient information. It is most effective in analyzing systems with non-linear coupling
between frequencies. Faults in rotating machineries leave their signature on the vibration signal
sensors and generally manifest themselves as a non-linear transformation in the vibration signal.
Bicoherence analysis detects and quantifies the presence of non-linearity in the signal and thus
indicates the severity of the fault in the machine. This paper demonstrates the use of bicoherence
analysis on both simulated and rig-generated vibration data from a rub-effected rotor-stator
system, and shows the application of bicoherence analysis on industrial data from final tailing
pumps to detect impeller wear in an oil-sands plant.
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1. INTRODUCTION

Analysis of vibration signals is widely used to detect early
faults in rotating machineries, such a gearboxes, motors,
pumps, compressors etc. The vibration data collected from
a faulty rotating machine can exhibit different nonlinear
and transient events. The analysis of such events requires
specific techniques which go beyond the classical Fourier
approach. A number of machine faults can create compli-
cated modulation patterns which are often difficult to de-
tect and understand. Conventional linear spectral analysis
is of limited use in instances when frequency components
interact together to form new spectral components due to
some non-linear process (Howard, 1997).

Failure of a mechanical system is always preceded with
changes from linear or weakly non-linear to strong non-
linear dynamics. As faults develop in the system the
process becomes chaotic and the amount of non-linearity in
the system increases. Therefore, a measure of non-linearity
in the vibration signal is a good indicator of the deviation
of the process from normal operation to the emergence
of a fault in the process. Higher Order Statistics (HOS)
can be used to detect and quantify the presence of a non-
linearity in the vibration signals (Choudhury et al., 2005).
Bicoherence, which is the normalized frequency domain
representation of the third order cumulants, successfully
detects the emergence of new frequencies due to generation
of faults in the system.
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Fackrell has applied bicoherence analysis on vibration sig-
nal from a loosened beam, air compressor mounted on
wooden blocks, and also on domestic vacuum cleaner noise
(Fackrell et al., 1995). The results indicate that bicoher-
ence is immune to noise, and to an extent independent
of the measurement position used. Moreover, bicoherence
analysis has been used by the present authors with success
into identifying emerging gear faults in gearboxes (See
(Halim et al., 2006)). The authors have shown the com-
bined use of cyclo-stationary and bicoherence analysis on
real vibration signals to detect both local and distributed
faults in a multiple shaft gearbox. Furthermore, bicoher-
ence or bispectrum analysis has been applied on vibration
signals to detect aerodynamic excitation faults and oil
whirl faults in a rotor system (Wang et al., 2001), and
bearing faults and collector faults in a DC motor (Boltezar
and Slavic, 2006).

This paper initially demonstrates the use of bicoherence
analysis on both simulated and rig-generated vibration
data from a rub-effected rotor-stator system. Finally, it
shows the application of bicoherence analysis on industrial
data from final tailing pumps to detect impeller wear in
an oil-sands plant. The results obtained from the industrial
application are promising as bicoherence analysis seems to
give consistent results even when the characteristics of the
pumped slurry mixture are likely to be inconsistent.

The process fluid or the fluid passed through the impellers
may have different amounts of fine or coarse sand mixed
with water and gypsum. Based on the composition of the
fluid the amplitude of the vibration signal can vary dras-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4517 10.3182/20080706-5-KR-1001.1974



tically. As the amplitude of the vibration signal changes,
time trend analysis and Classical Fourier analysis fail to
give the true measure of impeller wear. But bicoherence
analysis is still able to indicate the exact measure of
impeller wear and thus is invariant to the density of the
process fluid.

2. BICOHERENCE ANALYSIS

The first and second order statistics (e.g., mean, vari-
ance, autocorrelation, power spectrum) are popular sig-
nal processing tools and have been used extensively for
the analysis of process data. However second order sta-
tistics are only sufficient for describing linear processes.
In practice, there are many situations when the process
deviates from linearity and exhibits nonlinear behavior.
Such type of processes can be conveniently studied using
Higher Order Statistics (HOS). There are three main rea-
sons for using Higher Order Statistics (HOS): to extract
information due to deviations from Gaussianity, to recover
the true phase character of the signals, and to detect
and quantify nonlinearities in the time series (Nikias and
Petropulu, 1993). Time domain data itself is a good source
of information. Many statistical measures, e.g., moments,
cumulants, auto-correlation, cross-correlation have been
developed to measure the time domain information in such
data. Not all the information content of a signal can be nec-
essarily and easily obtained from time domain statistical
analysis of the data. Transforming the signal from time
to frequency domain can expose the periodicities of the
signal, can detect the nonlinearities present in the signal
and can also aid in understanding the signal generating
process.

2.1 Theory

Just as the power spectrum is the frequency domain
counterpart of the second order moment of a signal and
represents the decomposition or spread of the signal energy
over the frequency channels obtained from the Fast Fourier
Transform, the bispectrum is the frequency domain repre-
sentation of the third order cumulants. It is defined as

B (f1, f2) = DDFT [c3(τ1, τ2)] ≡ E[X(f1)X(f2)X∗(f1 + f2)] (1)

where, B(f1, f2) is the bispectrum in the bifrequency (f1,
f2), DDFT stands for Double Discrete Fourier Transfor-
mation, c3(τ1; τ2) is the third order cumulant, τ1 and
τ2 are the time-lag variables, X(f) is the discrete Fourier
transform of any time series x(k), and ‘*’ denotes complex
conjugate. Equation 1 shows that the bispectrum is a
complex quantity having both magnitude and phase. It can
be plotted against two independent frequency variables, f1

and f2 in a three dimensional (3d) plot.

Just as the discrete power spectrum has a point of sym-
metry at the folding frequency, the discrete bispectrum
also has 12 regions of symmetries in the (f1,f2) plane
(Nikias and Petropulu, 1993). The bispectrum, in the
principal domain, gives sufficient information. The other
regions of the (f1,f2) plane are redundant. Each point in
such a plot represents the bispectral content of the signal
at the bifrequency, (f1, f2). In fact, the bispectrum at

Fig. 1. Time Trend and Power Spectrum plots of the Linear
and Non-Linear Signals.

(a) linear signal x (b) non-linear signal y

Fig. 2. Bicoherence Analysis of Linear and Non-Linear
Signals.

point (B(f1,f2), f1, f2) measures the interaction between
frequencies f1 and f2. This interaction between frequencies
can be related to the non-linearities present in the signal
generating systems (Fackrell, 1996) and therein lies the
core of its usefulness in the detection and diagnosis of non-
linearities.

In order to remove the undesired property effect of the
variance of the estimated bispectrum (Hinich, 1982), the
bispectrum can be normalized in such a way that it gives
a new measure called bicoherence whose variance is inde-
pendent of the signal energy (Fackrell, 1996). Bicoherence
is defined as:

bic2(f1, f2) ,
|B(f1, f2)|2

E
[

|X(f1)X(f2)|2
]

E
[

|X(f1 + f2)|2
] (2)

where ’bic’ is known as the bicoherence function. A useful
feature of bicoherence function is that it is bounded
between 0 and 1.

For details of estimating the bispectrum/bicoherence, see
(Nikias and Petropulu, 1993; Choudhury et al., 2002).

2.2 Bicoherence of a nonlinear sinusoid signal with noise

The objective of this example is to demonstrate the power
of the bicoherence in the detection of nonlinearity. An
input signal was constructed by adding two sinusoids, each
having a different frequency and phase. That is,

x
′

(k) = sin(2πf1k + φ1) + sin(2πf2k + φ2)

x(k) = x
′

(k) + d(k)

y(k) = x
′

(k) + 0.1x
′

(k)2 + d(k) (3)

where, f1 = 0.12, f2 = 0.30 on the normalized frequency
scale, and d(k) is a white noise sequence with variance
0.04.
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The left panel of Figure 1 shows the time series while the
right panel shows the power spectrum of the signal x and
y, respectively. Neither of these plots help in distinguishing
the two signals. However, the use of higher order statistics
can successfully detect the nonlinearities present in y.
Figure 2 shows the three dimensional squared bicoherence
plots of x and y, respectively. For the signal x, the plot
shows no peaks and thus clearly indicates that the signal
is linear. On the other hand, for the signal y, the plot shows
significant peaks indicating the presence of non-linearity in
the signal.

The peaks in the bifrequency plane can be explained by
rewriting the expression for y as:

y(k) = sin(2πf1k + φ1) + sin(2πf2k + φ2)

+0.1[1 − cos(2(2πf1k + φ1)) − cos(2(2πf2k + φ2))

+ cos(2π(f2 − f1)k + φ2 − φ1)

− cos(2π(f1 + f2)k + φ1 + φ2)] + d(k) (4)

The nonlinearities are caused by the interactions between
any two of the signals with frequencies f1, f2, 2f1, 2f2,
f2-f1, and f1 + f2. For the output signal y, the squared
bicoherence plot shows peaks at (0.12,0.12), (0.12,0.18),
(0.30,0.30), and (0.12,0.30) bifrequencies. These bifrequen-
cies correspond to (f1, f1),(f1, f2-f1), (f2, f2),and (f1,
f2), respectively. Therefore, the bicoherence plot correctly
identifies the frequency interactions that resulted from the
presence of nonlinearity in the signal.

3. SIMULATION CASE STUDY

In this section, rub-impact data of different levels of
severity has been simulated and bicoherence analysis has
been applied on the data to detect and quantify the fault
present in the rotating system. A model of a rotor system
based on the Jeffcott rotor model (Chu and Zhang, 1998)
has been used to simulate the rub-impact data. The
displacements of the disc center in x− and y− direction
are denoted as x(t) and y(t). The damping coefficient of
the shaft is c with k as its stiffness coefficient. If rubbing
occurs, it creates impacts and the interactions of impacts
are denoted as forces Fx, Fy. The friction coefficient
between the rotor and the stator is f with kc as the radial
stiffness of the stator. The radial displacement of the rotor
is given as e =

√

(x2 + y2). The static clearance between
the rotor and the stator is δ, and U is the imbalance. The
weight of the rotor system acts as a gravitational force
of mg with m as the mass and g as the gravitational
constant. The differential equations of motion for the rotor
system that has rub-impact can be modelled in x− and y−
direction as

{

mẍ(t) + cẋ(t) + kx(t) = Fx(x, y) + mUω2cos(ωt)

mÿ(t) + cẏ(t) + ky(t) = Fy(x, y) + mUω2sin(ωt) − mg
(5)

The forces induced by the rub impacts Fx(x, y) and
Fy(x, y) can be further expressed as,

{

Fx

Fy

}

= −H(e − δ)
(e − δ)kc

e

[

1 −f

f 1

]{

x

y

}

. (6)

where H is the Heaviside function.

Fig. 3. Time Trend and Power Spectrum plots of the
simulated data sets generated from the Jeffcott rotor
model.

(a) no rub (b) mild rub

(c) severe rub

Fig. 4. Bicoherence Analysis of simulated rub signals from
Jeffcott rotor model.

The SIMULINK toolbox of MATLABr was used to
simulate the rotor model and ode45 (Dormand-Prince)
was used to integrate Equation 5 to obtain the simulation
data. The parameters used in the computation are, the
mass m = 4 kg, the damping coefficient c = 0.12 × 106

N/m, the stiffness coefficient k = 0.25 × 106 Ns/m, the
friction coefficient f = 0.2, the impact stiffness coefficient
kc = 0.6 × 108 Ns/m, and the imbalance U = 0.1 × 10−4

m. Sampling frequency was 5917 Hz.

Based on ωc =
√

(k/m), different levels of rub-impact
were simulated in the Jeffcott rotor model by varying
the rotational speed. The three levels of rub (none, mild
and severe respectively) were produced at three different
speeds (500 rpm, 562.5 rpm and 625 rpm respectively).
For more details refer to (Chu and Zhang, 1998). Figure 3
shows the time trend and power spectrum plots of the
three simulated signals at three levels of rub. Clearly,
neither the time trend nor the power spectrum can detect
the rub or level of rub.
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Fig. 5. Configuration of the test rig used to generate data for the pilot plant case study. (a)normal condition (b) generating
rub using screw mount.

Fig. 6. Picture of the test rig used to generate data for the
pilot plant case study.

Application of bicoherence analysis on the rub-impact
data is shown in Figure 4. In case of normal condition
there is very little interaction between frequencies and
the maximum bicoherence is 0.01. When mild rub is
introduced, the interaction between low level frequencies
increases and the maximum bicoherence increases to 0.025.
As rub is increased to a higher level, the maximum
bicoherence increases to a value of 0.03. This clearly
indicates that bicoherence can capture the increase of non-
linearity in the system due to increased rub between rotor
and stator. The maximum bicoherence can be used as
an index to indicate the severity of fault in the rotating
system.

4. PILOT PLANT CASE STUDY

A pilot plant case study was performed to assess the
effectiveness of bicoherence analysis in detection of fault
severity in rotating machinery. Data was generated using
a test rig that could simulate different levels of rub (Halim
et al., 2007). The rig is located in the Reliability Lab in
the Mechanical Engineering Building at the University of
Alberta, Canada. The configuration of the test rig is shown
in Figure 5 and 6. One disc was rotating at the center of
the rotor at a rotational frequency of 24 Hz. Four sensors
were used to collect the vibration data from the rig. Rub
of different levels were introduced to the system using a
rub screw mount.

Data from the rig were collected at a sampling frequency
of 12,800 Hz. Both vertical and horizontal accelerometer
sensors were used to record the vibration produced in the
system. For details on the setup and data collection the
reader is referred to (Halim et al., 2007). A total of three
data sets were selected for analysis, each having 8,192
samples. The data sets were collected under the following
conditions:

(1) no rub present
(2) mild rub introduced
(3) severe rub introduced

Fig. 7. Time Trend and Power Spectrum plots of the data
sets generated from the test rig for the pilot plant case
study.

(a) no rub (b) mild rub

(c) severe rub

Fig. 8. Bicoherence Analysis of real rub signals from the
rotor-stator rig.

Figure 7 shows the time trend and power spectrum plots
of the data sets. Clearly, it is hard to detect the presence
of rub from the time trend and power spectrum plots of
the data sets. Figure 8 shows the result of bicoherence
analysis on the collected data. Under normal conditions,
the maximum bicoherence is as low as 0.056. The value
of maximum bicoherence increases to 0.089 with the in-
troduction of mild rub to the system. Under severe rub
condition the maximum value of bicoherence increases
to 0.129. The result indicates that bicoherence analysis
successfully detects and is able to quantify the severity of
fault present in the system.
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Fig. 9. A half worn out impeller of a final tailing pump at
the Suncor oil sands plant.

5. INDUSTRIAL CASE STUDY

According to a recent survey, unplanned production shut-
downs are the largest cost in the process industries, in some
sectors costing $1 million or more per day (IEE, 2005).
Mechanical failure is the largest contributor to such plant
shutdowns, causing 43% of the plant incidents. In most
cases the failure occurs due to faults in rotating machiner-
ies (pumps, turbines, compressors etc.). Almost 60% of
the rotating equipments in plants are motor-pump com-
binations. Therefore, condition monitoring of pumps is
crucial for predictive prevention of shutdowns in process
industries.

5.1 Process Description

At Suncor Energy’s oil-sands plant (located in Fort Mc-
Murray, Alberta, Canada), bitumen is extracted from the
oil sands, which is in turn upgraded into high-quality
refinery-ready crude oil products and diesel fuel. Bitumen
is separated from the fine and coarse sand by settling
the sand particles in separation cells (also called Sep-
Cells). The middle and bottom layers of fluid (also known
as Middlings and Tailings respectively) in the Sep-Cells
contain mostly fine and coarse sand particles and have
to be pumped by Final Tailing Pumps (FTP) to settling
ponds after a few additional processing steps. There are
4 pump lines, each containing 5 pumps in series. The
impeller of the pumps are made of special wear-resistant
alloy. However, because of slurry transport of sand plus
water the pump impellers have to be replaced every 13
to 18 weeks since they get worn out fast by pumping
continuously. Figure 9 shows a worn out impeller. In order
to set up a condition based monitoring scheme, a true
measure of the wear of the impellers have to be obtained
from the vibration data acquired.

5.2 Data Collection

At the Suncor plant, vibration data is collected using
a hand-held monitor at a sampling frequency of 1000-
1800Hz. Data is collected in horizontal, vertical and axial
positions for the motor, gearbox and the casing of each of
the 20 pumps. The time of data collection is approximately
3 seconds and data is collected only once every 4 weeks for
analysis. Currently the overall RMS value and Classical
Fourier Analysis is being used for the analysis of vibration
data. But the performance of current monitoring scheme
is not satisfactory.

Fig. 10. Time Trend and Power Spectrum plots (with the
same scale) of the vibration data sets collected from
the final tailing pumps over the 4 months period at
Suncor.

5.3 Bicoherence Analysis

Initially, 4 data sets were collected over 4 months from
July to October of 2006 for a single pump at the pump
inboard horizontal position. This pump went through
maintenance between September and October of 2006
when the impeller of the pump was changed. Therefore 3
data sets were collected before the maintenance and 1 data
set was collected right after maintenance. It is also known
that the consistency of the slurry mixture had changed
over the period of August and September of 2006. The
fluid that passes through the impeller usually carries a
specified amount of fine and coarse sand mixed with water
and gypsum. Between August and September of 2006 the
composition of process fluid had changed and less amount
of coarse sand was pumped through the impellers. As
a result the amplitude of the vibration signal decreased
during the month of September.

Figure 10 shows the time trend and power spectrum plots
for the 4 data sets. The scales are kept same for all the
cases. Both the amplitudes of the time trend and power
spectrum plot increased from the month of July to August,
but then decreases in September and decreased further
in October. The drop in amplitude from September to
October can be related to the replacement of the pump
impeller. But the drop in amplitude from August to
September can only be related to the process fluid change
and not to impeller wear. Therefore, both time trend
and power spectrum plots are not enough to capture the
condition of the impeller wear from vibration data.

Figure 11 shows the plots of bicoherence analysis on the
4 data sets over the 4 month period. The maximum bi-
coherence gradually increases from 0.42 in July to 0.49 in
August and finally to a maximum of 0.64 in September.
The bicoherence peaks indicate that the non-linearity is
very high for the month of September signalling that
severe wear has occurred to the impeller and replacement
is highly required. After maintenance is carried out, the
maximum bicoherence of the vibration signal from the
pump drops to 0.26 in October. It should be noted that,
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(a) July (b) August

(c) September (d) October

Fig. 11. Bicoherence Analysis of vibration signals from the
final tailing pumps for the 4 months.

unlike the time trend or power spectrum plot, the bico-
herence plot clearly indicates the severe fault condition of
the impeller during the month of September. The impeller
had to be changed due to its poor condition and only the
bicoherence analysis was able to correctly determine the
poor condition of the impeller.

6. CONCLUDING REMARKS

The application of bicoherence analysis to detect the sever-
ity of faults present in rotating machineries has been dis-
cussed in this paper with three different case studies. The
presence of faults in rotating machineries are accompanied
by the increased presence of non-linearity in the vibration
signal. Bicoherence analysis successfully detects and quan-
tifies the amount of non-linearity present in the signal.
The peaks in the plots of bicoherence analysis indicates
the presence of non-linear coupling of frequencies in the
system which in turn indicates the presence of faults. The
number of significant peaks in the plots increases with an
increase in the severity of faults present. The application
of the technique along with classical Fourier analysis on
the industrial data set from the impellers of the tailing
pumps indicate that only bicoherence analysis is able to
clearly identify the proper amount of impeller wear in the
pump even under process fluid changes, whereas other
techniques fail. The proper applications of bicoherence
analysis on vibration data from simulation, pilot plant and
industrial plant demonstrate the strength and efficacy of
the technique.

7. FUTURE WORK

Vibration data has been acquired from all the 20 tailing
pumps at the Suncor oil sands plant for a period of one
year. Currently bicoherence analysis is being carried out
on the collected data. Also threshold values of maximum
bicoherence is being calculated for the pumps to generate
different levels of alarm based on the severity of impeller
wear.
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