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Abstract: This paper considers the design of feedforward controllers when model uncertainty
is present. The main contribution is an alternative approach to the generation of the feedorward
control action on the basis of the Internal Model Control formulation. This new structure allows
for completely independent tuning of the feedback and feedforward controllers and provides an
explicit expression for the achieved nominal performance degradation when the uncertain case
is considered. The formulation of the feedforward controller as an Internal Model Controller
allows existing design approaches to be applied and uncertainty effect taken into account by
means of the corresponding analysis equation.
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1. INTRODUCTION

The use of a feedforward control action is well recognized
as a complement to the feedback controller in order to com-
pensate the effect of a measurable disturbance. Under this
assumption, when a disturbance occurs, corrective action
starts immediately in order to cancel the disturbance be-
fore it affects the controlled variable. This fact makes pos-
sible a faster disturbance attenuation than by using only
feedback control (the disturbance can only be corrected
after his effect on the controller variable) Stephanopoulos
[1984] Shinskey [1967]. The introduction of a feedforward
controller obviously increases the complexity of the control
system but may provide a faster and more efficient way of
compensating the disturbance than with the exclusive use
of a feedback controller.

The idea of the corrective feedforward control action is
to start compensating for the disturbance effect before it
really affects the output variable. Therefore the scenario
where the use of feedforward control action can easily
provide advantages are, mainly, those where the effect of
the control variable on the process output is slower than
the disturbance variable, either due to long process time
constants or a transport delay. Early examples provided
by Luyben [1969] show their application to distillation
columns albeit other situations can be found in the lit-
erature Morari and Zafirou [1989], Weng and Ray [1997]
Zhang and Agustriyanto [2001] Gooden et al. [1999] Mc-
Nab and Tsao [1997].

� Financial support from the CICYT program under projects CI-

CYT DPI2007-63356 and DPI2007-64570 is greatly appreciated.

The financial support from the University of Costa Rica and from the

MICIT and CONICIT of the Government of the Republic of Costa

Rica for the O.Arrieta’s Ph.D. studies is greatly appreciated.

The extensive practical use of this control structure moti-
vated some theoretical research to be initiated. From the
works of Sternad and Soderstrom [1988] that consider a
design problem based on a stochastic disturbance char-
acterization and the formulation of the design problem
as a Linear Quadratic problem. That work was further
extended in Soderstrom [1999] to the case where measur-
able disturbances are correlated with some unmeasurable
ones. On another side, some works more related to the
proposal of feedforward schemes have also appeared. It is
remarkable the structure proposed by Morari and Zafirou
[1989] that presents a feedforward controller within the
Internal Model Control framework. An alternative can be
found in the work of Grimble [1999a] and Grimble [1999b]
where the solution to a combined feedforward/feedback
design problem is done within a polynomial approach.
One of the important features of Grimble [1999a] is that
the problem formulations can explicitly incorporate un-
certainty considerations into the design of the feedforward
component.

It is noticed that a combined feedforward-feedback scheme
provides two degrees of freedom which allows for two differ-
ent design objectives to be tackled (one can design for both
set-point tracking and disturbance rejection). Whereas the
feedforward controller is used for disturbance rejection,
it demands a model description, at least approximate,
of the effect of the disturbance on the process output.
Therefore, feedback action will also provide the benefit
of compensating for possible model inaccuracies. From a
design point of view is therefore important the way both
controllers interact.

Within the Internal Model Control formulation Morari
and Zafirou [1989] of the combined feedforward-feedback
control scheme, an independent design of both controllers
can be performed. However, as uncertainty is considered,
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the design relations do not maintain this property and the
analysis equations become somewhat messy (where both
uncertainty on plant and disturbance transfer function
appear). To overcome this aspect and to provide a more
suitable framework for design is the main contribution of
this paper. Instead of adding feedforward action to an
Internal Model Controller an Internal Model Feedforward
Controller is formulated.

The rest of the paper is organized as follows. A presen-
tation of existing schemes and approaches to feedforward
control is faced first in section 2. In order to present the
considerations that arise when uncertainty is considered
and possible design advantages for the resulting combined
feedback-feedforward control scheme. Section 3 presents
the proposed scheme based on an Internal Model Control
conception of the feedforward controller and an analysis of
the control properties for both the nominal and uncertain
cases is presented. A characterization of the degradation
effect of uncertainty is also provided in section 4. Section
5 outlines the design procedure for the feedforward con-
troller and an example is presented in section 6. Section 7
conducts the conclusions of the work.

2. FEEDFORWARD-FEEDBACK CONTROL
APPROACHES

This section presents the use of feedforward control action
on the classical feedback and Internal Model Control
structures. The corresponding advantages with respect to
the feedback control system in compensating measurable
disturbances are presented as well as the main design
advantage that the Internal Model Control based one
(although their equivalence) provides. This presentation
will enable, in the next section, to introduce an alternative
approach that shares their advantages but allows a suitable
way of addressing the design under model uncertainty
considerations.
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Fig. 1. Classical Feedback + Feedforward control

The classical feedback-feedforward control system struc-
ture is shown in figure (1), where the process output, y,
can be described in terms of the plant transfer function,
P , the transfer function describing the way the measur-
able disturbance enters the process output, Pd, and the
controllers K and Kff as:

y =
KP

1 + KP
r +

Pd − KffP

1 + KP
d (1)

whereas in the Internal Model Control, the structure
depicted in figure (2) is suggested in Morari and Zafirou
[1989]. In this case the output is given by:

y =
QP

1 + Q(P − P )
r +

(Pd − QffP ) + (PdP − PdP )Q

1 + Q(P − P )
d(2)
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Fig. 2. Internal Model Control Feedback + Feedforward
control

where an additive uncertainty description has been as-
sumed for both system models:

P (jw) = P (jw) + Δ(jw) |Δ(jw)| ≤ l(w)∀w (3)

Pd(jw) = Pd(jw) + Δd(jw) |Δd(jw)| ≤ ld(w)∀w (4)

where l(w) and ld(w) are the upper bounds for the additive
uncertainty description; P and Pd are the assumed nom-
inal models; and Q and Qff are referred as the Internal
Model Controllers. A nice feature of this structure is that
becomes completely equivalent to the classical one if both
sets of controllers are related by means of:

K =
Q

1 − PQ
Kff =

Qff − PdQ

1 − PQ
(5)

From this equivalence, both structures become equivalent
and they can be used indistinctly. However if we compute
the corresponding expressions for the process output vari-
able under a nominal situation (Δ = Δd = 0) we obtain:

y =
KP

1 + KP
r +

Pd − KffP

1 + KP
d (6)

y = QPr + (Pd − QffP )d (7)

The Internal Model Controller approach generates a 2-
DOF controller that allows the independent design of the
two controllers in which Q can be tuned for good tracking
and Qff for disturbance rejection. This is not the case of
the classical structure.

In both cases, perfect disturbance rejection can be accom-
plished by choosing:

Kff = Qff =
Pd

P
(8)

If such an assignment can be done both designs are equally
trivial. However this assignment usually provides a non
causal, or even unstable, controller. Therefore some alter-
native approach has to be taken to design the feedforward
controller. In this situation the possibility of design Qff

independently of the feedback controller can be really
advantageous.

If the presence of uncertainty is considered, simple rela-
tions (6) and (7) are no longer valid and the complete and
interacting expressions (1) and (2) have to be used.
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3. PROPOPOSED INTERNAL MODEL
FEEDFORWARD CONTROLLER COMPENSATOR

This section presents an alternative approach to face the
problem of disturbance compensation when a measure of
the disturbance is available as well as a model of the effect
of the measurable disturbance on the process output.

The rationale behind this proposal is slightly different
from the ones presented in the preceding section. Both
approaches, classical and IMC, are based on the incor-
poration of a computed feedforward control action as a
complement to the control action determined by an al-
ready existing feedback controller. Specially for the case
of the IMC based, the approach based on figure (2) is
seen to incorporate feedforward control action to an In-
ternal Model Controller. What is proposed here is to base
the computation of the feedforward control action on the
Internal Model Control principles. According to this, the
feedforward control action, uff , is computed on the basis
of a feedforward controller, Qff , and by comparison of the
effect this feedforward control action has on both the plant
model and the real plant. Therefore Qff becomes a real
Internal Model Controller, in fact an Internal Model Feed-
forward Controller. Figure (3) shows this arrangement.
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Fig. 3. Proposed Internal Model Feedforward Control

Note this is different from the situation depicted in figure
(2) where the model is feed with the total control action.
This way, the difference returning signal, z, provides a
measure of how good performs the feedforward controller,
whereas in (2) this signal is generated by the combination
of both controllers Q and Qff .

Assuming, without any loss of generality, the reference
signal is set to zero the output variable can be written
as:

y = (Pd − QffP )d + (1 + PK)−1(Δd − QffΔ)d (9)

from where we can observe the following properties:

Property 1 (Nominal Stability): As long as the plant; P ;
and the way the disturbance enters the process output;
Pd; are stable, the stability of the closed loop combined
control system is determined by the stability of the feed-
back control system (therefore determined by K) and the
stability of the feedforward controller Qff (as it acts on
open loop).

Property 2 (Nominal Performance): In the absence of
uncertainty, (Δd = Δ = 0), the design of the feedforward
controller becomes completely independent of the feedback

controller. The effect of the disturbance on the output
variable is obtained from (9) as:

y = (Pd − QffP )d (10)

Therefore the ideal feedforward controller that yields y = 0
is given by an identical expression as in (8): Qff =
Pd

P
. As it has been commented this expression may lead

to an improper or even unstable transfer function and
alternative approximation approaches are needed.

Property 3 (Perfect Input Load Disturbance rejection): In
case the disturbance enters at the plant input we will have
P = Pd. Therefore Δd = Δ. Under this assumption, (9)
leads to:

y = (P − QffP )d + (1 + PK)−1(Δ − QffΔ)d (11)

and it is seen that by setting Qff = 1 we get y = 0 even
for the uncertain case.

Property 4 (Robust Stability): When uncertainty in both
the plant model, P = P +Δ, and the disturbance transfer
function, Pd = Pd + Δd, are considered, the robust
stability of the closed loop combined control system is
determined by the robust stability of the feedback control
system (‖(1 + PK)−1KΔ‖∞ < 1) and the stability of the
feedforward controller Qff (as it acts on open loop).

Property 5 (Robust Performance) When uncertainty in
both the plant model, P = P + Δ, and the disturbance
transfer function, Pd = Pd + Δd, are considered, the effect
of the disturbance on the output process variable is de-
termined by the combined action of both the feedforward
and feedback controllers. Therefore a complete design for
Robust Performance will imply a joint tuning of both
controllers in order to minimize:

‖(Pd − QffP ) + (1 + PK)−1(Δd − QffΔ)‖∞ (12)

This expression is similar to that frequently encountered in
Feedback Control system design Doyle et al. [1992], where
Robust Performance is accomplished by simultaneously
guaranteeing Robust Stability and Nominal Performance.
However this framework does not fit with the combined
feedback-feedforward control system as the analysis to be
presented in the next section will show. However, as it
is seen from (9) and (10) an explicit expression for the
degradation of the nominal performance is got. This is a
distinctive feature of the proposed scheme over the existing
feedforward approaches and allows the Robust Perfor-
mance design to be alternatively posed as to minimize
the effect of model uncertainty on the achieved nominal
performance:

‖(1 + PK)−1(Δd − QffΔ)‖∞ (13)

4. ROBUST PERFORMANCE ANALYSIS

As it has been mentioned in Property 5, eq. (9) clearly
shows the effect of the uncertainty with respect to the
achieved nominal performance. As a consequence expres-
sion (12) could be taken as the design expression for
disturbance attenuation on the uncertain case. This ex-
pression suggest a direct design of both feedforward and
feedback controllers in order to achieve a better Robust
Performance. However, an alternative analysis is possible
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where the effect of the uncertainty on the achieved nom-
inal performance is to be minimized. This view could be
understood as extending the nominal performance to the
whole set of plants. At each frequency there will be a con-
tribution of the combined effect of plant and disturbance
model uncertainty given by |(1 + PK)−1(Δd − QffΔ)d|.
It is therefore natural to express a condition for Robust
Performance as:

‖W (1 + PK)−1(Δd − QffΔ)‖∞ =

‖WS(Δd − QffΔ)‖∞ < 1 (14)

for any admissible perturbations, Δ and Δd, and where W
is a suitable weight that determines the desired frequency
range where it is desired to maintain the performance
degradation as small as possible. It is worth to remark
that the S = (1 + PK)−1 term corresponds to the real
closed loop Sensitivity function. Therefore an expression
in terms of the nominal closed loop transfer functions is
to be obtained. From the plant description as P = P + Δ
the Sensitivity function can be written as:

S = S(1 + SKΔ)−1 (15)

Therefore, at each frequency, we have 1 :

|WS(Δd − QffΔ)| ≤ 1

⇐ |WS(1 + SKΔ)−1(Δd − QffΔ)| ≤ 1

⇐ |WS(Δd − QffΔ)||(1 + SKΔ)−1| ≤ 1

⇐ |WS(Δd − QffΔ)| + |SKΔ| ≤ 1 (16)

and the following expression is got for Robust Perfor-
mance:

∣
∣|WS(Δd − QffΔ)| + |SKΔ|

∣
∣ ≤ 1 ∀w (17)

This expression clearly shows the interplay contributed
by each part of the control scheme due to the presence
of uncertainty. If there is no plant uncertainty, Δ = 0,
expression (17) can be stated as:

|WSΔd| ≤ 1 ∀w ⇒ ‖WSld‖∞ ≤ 1 (18)

and minimization of the performance degradation due
to the uncertainty in Pd becomes a typical sensitivity
minimization problem:

‖S‖∞ < 1/‖Wld‖∞ (19)

Therefore the design problem can be completely decou-
pled: the feedforward controller Qff can be designed first
in order to get nominal performance and, on a second step,
the feedback controller, K, is got in order to determine the
performance degradation due to plant modelling errors.

On the other hand, if the disturbance effect in process
output is perfectly characterized, Δd = 0, expression (17)
becomes:

∣
∣|WSQffΔ| + |SKΔ|

∣
∣ ≤ 1 ∀w (20)

Therefore, if we use the upper bound l(w) on the plant
uncertainty, the previous expression can be given the form
of a constraint for the feedforward controller Qff as:

|Qff | <
1 − |SK|l

|WS|l
∀w (21)

1
⇐ should be understood as: is implied by assuring that

Provided the constraint for Robust Stability is satisfied
(‖SKl|‖∞ ≤ 1). Along the same lines as in the Internal
Model Controller tuning Morari and Zafirou [1989], in
order to satisfy constraint (21) the feedforward controller
can be augmented by a low-pass filter, providing a de-
tuning of the nominal performance in order to satisfy the
robustness constraint. According to this, assume we have
a feedforward controller, Qff designed on the basis of

the corresponding nominal models, P and Pd, the final
feedforward controller expression will be given by

Qff = QffFff (22)

where Fff is a filter that can be taken with usual from in
Internal Model Control design as

Fff =
1

(λffs + 1)n
(23)

where the order n can also be used to deal with realiz-
ability considerations about the nominally got feedforward
controller, Qff .

In case uncertainty in both P and Pd are present, (17)
shows the term that will affect the nominal performance
achieved by the combined control scheme, given by (10), is
not completely determined by the terms that characterize
Robust Stability, ‖SKΔ‖∞ ≤ 1, but a second term
that accounts for the interaction among both controllers,
WS(Δd−QffΔ). This point prevents from the possibility
of establishing a complete parallelism, as it has been
mentioned above, with the typical Robust Performance
condition on feedback control systems Doyle et al. [1992].

In the developments above, (17) has been used as a
measure of performance degradation. If we put (17) into
(12) in order to deal with the original Robust Performance
expression, we will have to deal with the interaction of
three terms:

- Nominal Performance term: (Pd − QffP ).

- Robust Stability term: SKΔ.

- Interaction term: WS(Δd − QffΔ).

whereas in feedback Robust Control Theory Doyle et al.
[1992] just the Nominal Performance and Robust Stability
terms appear.

5. PROCEDURE FOR FEEDFORWARD
CONTROLLER DESIGN

This section discusses a simple procedure for the design of
the feedforward controller Qff . A direct alternative could
be to set up a general optimization approach by identifying
a suitable generalized control problem and performing, for
example, H∞ optimization along the lines of Zhou and
Doyle [1998]. However, from the preceding discussion, a
simple procedure is proposed here based on the explicit
separation of the nominal and perturbing terms due to
uncertainty in the disturbance effect on process output
(9).

The basic procedure is, according to the Internal Model
Control philosophy, to design first a feedforward controller
based on nominal model information only and, on a
second step, augment this controller by a low pass filter.
Discussion of the previous section on the uncertainty effect
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on the final performance will be used to guide the tuning of
this filter. Effectively, when a detuning filter is introduced,
it will have two opposite effects: (i) it will deteriorate the
achieved nominal performance and, (ii) will reduce the
performance degradation due to uncertainty. A tradeoff
among them is needed. For this purposes, two measures
are defined first:

• Nominal Performance detuning (NPD): Measures the
effect of introducing the filter, Qff = QffFff , in
terms of performance loss with respect to the achieved
nominal performance, Qff = Qff .

NPD =
‖Pd − QffP‖∞ − ‖Pd − QffFffP‖∞

‖Pd − QffP‖∞
(24)

Instead of measuring the error, ‖Pd − QffP‖∞,

also a weighted version;‖W (Pd − QffP )‖∞ ; of the
approximation problem could be taken. With this
respect the weight W can be taken, for example, as
the same as in (14) - determining the region where
performance is stressed is, also, the frequency region
where uncertainty effect is desired to be reduced.

• Performance Degradation (PD): Provides a measure
of the effect the introduction of the filter has into
the performance degradation terms that appear in the
disturbance effect on process output (9). If, according
to (17) the following upper bound for (14), is used

‖WS(Δd − QffΔ)‖∞ ≤

‖WSld‖∞ + ‖WSQff l‖∞ + |SKl‖∞ (25)

where l and ld are corresponding bounds on plant
and disturbance transfer function uncertainties. From
(25) the term determined by Qff is identified and the
Performance Degradation index (PD) index defined
as:

PD =
‖WSld‖∞ + ‖WSQff l‖∞ + |SKl‖∞

‖WSΔd‖∞ + |SKΔ‖∞

= 1 +
‖WSQff l‖∞

‖WSld‖∞ + ‖SKl‖∞
(26)

According to (24) and (26) the time constant of the filter
Fff is to be chosen such that a tradeoff among both factors
is achieved. The feedforward controller design procedure
can now be outlined as follows:

(1) Design a feedback controller according to the specified
feedback properties. This step does not need to take
necessarily disturbances into account.

(2) Design a feedforward controller, Qff on the basis of

the nominal models, P and Pd. This design can be
done by trying to approximate the ideal feedforward
controller Qff = P/Pd or by existing model matching
procedures such as the H2 optimal design of Morari
and Zafirou [1989] or a min-max approach along the
lines of Vilanova [2006].

(3) Augment the obtained feedforward controller by a low
pass filter F in order to obtain the final feedforward
controller as Qff = QffF . The filter (23) degree
is chosen in order to make the controller transfer
function strictly proper. On the other hand, the
filter time constant λff is chosen to simultaneously
minimize (24) and (26).

6. EXAMPLE

This section will show, by means of a simple example,
the application of the proposed procedure for feedforward
controller design. The following transfer functions are
assumed for the plant and load disturbance:

P (s) = Kp

e−Lps

Tps + 1
=

e−1.5s

3s + 1
(27)

Pd(s) = Kd

e−Lds

Tds + 1
=

e−s

2s + 1
(28)

The parameters of both transfer functions are assumed
to be known with a 15% uncertainty. According to this
variation, the following frequency dependent bounds are
established with respect to the nominal models:

l(w) =
1

|1 + 1.2jw|
ld(w) =

1

|1 + 0.8jw|
(29)

With respect to the feedback controller, as it has been
described above, the ISA-PID tuned according to the
Internal Model Control Vilanova [2006] is used. The usual
choice λfb = 0.8Lp is used. As the main concern of the
example is that of the feedforward controller we will not
go further into the discussion of this choice for λfb. The
nominal feedforward controller is designed according to

Qff = arg min
Q

‖W (Pd − QP )‖∞ (30)

by using a frequency weight determined by W (s) = (0.3s+
1)/s, therefore specifying performance for low frequencies
(specially steady state : s = 0). With the supplied data
the nominal feedforward controller results to be:

Qff =
1.92s2 + 3.64s + 1

0.6s2 + 2.3s + 1
(31)

Figure (4) shows the performance exhibited by the feed-
forward controller Qff = QffFff for various selections of
(λff ) with respect to the optimal case.
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Fig. 4. Disturbance attenuation by means of Qff by using
different selections for λff

In order to help selecting the appropriate value for λff

the (24) and (26) measures are plotted against λff . Figure
(5) shows the value λff = 0.27 is the one that provides
the intersection among both measures. Of course, if we
weight both factors giving more importance to the nominal
detuning or to the attenuation of the uncertainty effect,
this point will change.
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0.27 when operating on the nominal system.
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Fig. 7. Output and control signals for the selection λff =
0.27 when operating on the uncertain system (simul-
taneous 15% parameter error.

The performance of the selected filter, therefore final
feedforward controller is shown in figure (6) showing the
proformance when acting on the nominal system and in
figure (7) where a parametric uncertainty of 15% in each
system and perturbation model is considered. As it can
be seen, the Robust Feedforward controller is able to
maintain the performance for the uncertain case closer to
the nominal one.

7. CONCLUSIONS

This paper has addressed the design of feedforward control
action, as a complement to a feedback controller, when
model uncertainty is considered. It has been shown that
the Internal Model Control approach to controller design
provides a suitable framework and a feedworward com-
pensation scheme is proposed under this considerations.
The proposed approach is based on the application of
the Internal Model Control approach to the feedforward
controller, irrespective of the implementation or design
approach used to tune the feedback controller.

Analysis equations provided a clear insight and measures
for the interplay among the feedback and feedforward
controllers and show how the nominal and uncertain cases
can be considered separately.
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