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Abstract: This paper offers new, necessary and sufficient conditions for delay-dependent asymptotic 
stability of systems of the form 0 1( 1) ( ) ( )x k A x k A x k h+ = + − . The time-dependent criteria are derived by 
Lyapunov’s direct method. Two matrix equations have been derived: matrix polynomial equation and 
discrete Lyapunov matrix equation. Also, modifications of the existing sufficient conditions of 
convergence of Traub and Bernoulli algorithms for computing the dominant solvent of the matrix 
polynomial equation are derived. Numerical computations are performed to illustrate the results obtained. 

 

1. INTRODUCTION 

Stability problem of linear systems with time delays has been 
investigated by many researches. It is obvious that there are 
much more published papers in the area of continuous than 
discrete time delay systems. Certainly, one of the basic 
reasons for that lies in the fact that discrete time delay 
systems are of finite dimensions so, the equivalent systems of 
considerably high order can be easily built (Mori et al., 1982, 
Trinh and Alden, 1997, Boutayeb and Darouach, 2001and 
Gorecki et al., 1989). The majority of stability conditions in 
the literature available, of both continual and discrete time 
delay systems, are sufficient conditions independent of time 
delay. Only a small number of works provide both necessary 
and sufficient conditions (Lee and Diant, 1981, Xu et al. 
2001 and Boutayeb and Darouach, 2001), which are in their 
nature mainly dependent of time delay.  

Basic inspiration for our investigation is based on paper (Lee 
and Diant, 1981), however, the stability of discrete time delay 
systems is considered herein. In this paper, we first propose 
modification of the existing sufficient condition for 
nonsingularity of block Vandermonde matrix ( )1 1, , hV S S +… . 
This condition has weaker hypothesis than similar condition 
from (Dennis et al., 1976) and represents the generalization 
of results presented in (Kim, 2000).  

It has been then demonstrated that condition of 
nonsingularity of block Vandermonde matrix ( )2 1, , hV S S +…  
is the direct outcome of nonsingularity of block matrix 

( )1 1, , hV S S +… . Likewise, we have arrived at a new sufficient 
condition for the convergence of Traub and Bernoulli 
algorithms. This condition has weaker hypothesis than 
similar condition in (Dennis et al., 1978). 

At the end, we propose new necessary and sufficient 
conditions for delay dependent stability of discrete linear 
time delay system, which as distinguished from the criterion 

based on eigenvalues of the equivalent system matrix 
(Gantmacher, 1960) use matrices of considerably lower 
dimension. 

2. NOTATION AND PRELIMINARIES 

 
 Real vector space 

+T  All the non-negative integers 
 Complex vector space 

*λ  Conjugate of λ ∈  
F ∗  Conjugate transpose of matrix n nF ×∈  
0F >  Positive definite matrix 

( )det F  Determinant of matrix F  

( )i Fλ  Eigenvalue of matrix F  

( )Fλ  ( ){ }| det 0F Iλ λ− =  

( )Fσ  Spectrum of matrix F  

( )Fρ  Spectral radius of matrix F  

 
A linear, discrete time-delay system can be represented by 
the difference equation 

 ( ) ( ) ( )0 11x k A x k A x k h+ = + −  (1) 

with an associated function of initial state 
 ( ) ( ) { }, , 1, ... , 0x h hθ ψ θ θ= ∈ − − +   (2) 

The equation (1) is referred to as homogenous or the 
unforced state equation. Vector ( ) nx k ∈  is a state vector 

and 0 1, n nA A ×∈  are constant matrices of appropriate 
dimensions, and pure system time delay is expressed by 
integers h ∈ +T . System (1) can be expressed with the 
following representation without delay, (Mori et al., 1982, 
Malek-Zavarei and Jamshidi, 1978, and Gorecki et al., 1989). 
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The system defined by (3) is called the equivalent system, 
while matrix Aeq, the matrix of equivalent system. 
Characteristic polynomial of system (1) is given with: 

 
( ) ( )

( )

( 1)

0

1
0 1

det , ,ˆ

          

n h
j

j j
j

h h
n

f M a a

M I A A

λ λ λ

λ λ λ

+

=

+

= = ∈

= − −

∑
 (4) 

Denote with 

 ( ){ } ( )| 0ˆ eqf Aλ λ λΩ = = =  (5) 

the set of all characteristic roots of system (1). The number of 
these roots amounts to ( 1)n h + . A root mλ  of  Ω  with 
maximal module: 

 ( ): maxm m eqAλ λ λ∈ Ω =  (6) 

let us call maximal root (eigenvalue). If scalar variable λ in 
the characteristic polynomial is replaced by matrix n nX ×∈  
the two following monic matrix polynomials are obtained 
 ( ) 1

0 1
h hM X X A X A+= − −  (7) 

 ( ) 1
0 1

h hF X X X A A+= − −  (8) 

It is obvious that ( ) ( )F Mλ λ= . For matrix polynomial 

( )M X , the matrix of equivalent system Aeq represents block 
companion matrix (Dennis et al., 1976). 

A matrix n nS ×∈  is a right solvent of ( )M X (Dennis et al., 
1976) if 

 ( ) 0M S =  (9) 

If  

 ( ) 0F R =  (10) 

then n nR ×∈  is a left solvent of ( )M X (Dennis et al., 
1976).  

We will further use S to denote right solvent and R to denote 
left solvent of ( )M X . 

In the present paper the majority of presented results start 
from left solvents of ( )M X . In contrast, in the existing 

literature right solvents of ( )M X were mainly studied. The 
mentioned discrepancy can be overcome by the following 
lemma. 

 

Lemma 1. Conjugate transpose value of left solvent of 
( )M X  is also, at the same time, right solvent of the 

following matrix polynomial 

 ( ) 1
0 1

h T h T
TM X X A X A+= − −  (11) 

Proof. Let R be right solvent of ( )M X . Then it holds 

 
( ) ( ) ( )

( ) ( )

1* * *
0 1

*1 *
0 1           = 0

+

+

= − −

− − = =

h hT T
T

h h

M R R A R A

R R A A F R
 (12) 

 so *R  is right solvent of ( )TM X . Q.E.D 

Conclusion 1. Based on Lemma 1, all characteristics of left 
solvents of ( )M X  can be obtained by the analysis of 

conjugate transpose value of right solvents of ( )TM X .  

The following proposed factorization of the matrix ( )M λ  
will help us to better understand the relationship between 
eigenvalues of left and right solvents and roots of the system.   

Lemma 2. The matrix ( )M λ  can be factorized in the 
following way 

 
( ) ( ) ( )

( ) ( )

1
0

1

1
0

1

          

h
h h i i

n n
i

h
h h i i

n n
i

M I S A S I S

I R I R R A

λ λ λ λ

λ λ λ

− −

=

− −

=

 = + − − 
 

 = − + − 
 

∑

∑
 (13) 

Proof.  

 ( ) ( ) ( )1 1
0

h h h h
n nM M X I X A I Xλ λ λ+ +− = − − −   

( )
1

1
0

0 0
           

h h
h i i h i i

n
i i

X A X I Xλ λ λ
−

− − −

= =

 = − − 
 
∑ ∑  (14) 

If S is a right solvent of ( )M X , from (14) follows (13). 
Similarly, if R is a left solvent of ( )M X , from   

 
( )

( ) ( )1
0

1

( )

    
h

h h i i
n n

i

M F X

I X I X X A

λ

λ λ λ − −

=

−

 = − + − 
 

∑
 (15) 

follows (13). Q.E.D 

Conclusion 2. From (4) and (13) follows ( ) ( ) 0f S f R= = , 

e.g. the characteristic polynomial ( )f λ  is annihilating 
polynomial for right and left solvents of ( )M X . Therefore, 

( )Sλ ⊂ Ω  and ( )Rλ ⊂ Ω  hold. 

Eigenvalues and eigenvectors of the matrix have a crucial 
influence on the existence, enumeration and characterization 
of solvents of the matrix equation (9) (Dennis et al., 1976 and 
Pereira, 2003). 
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Definition 1. (Dennis et al., 1976 and Pereira, 2003) Let 
( )M λ  be a matrix polynomial in λ.  If iλ ∈  is such that 

( )det ( ) 0iM λ = , then we say that λi is a latent root or an 

eigenvalue of ( )M λ . If a nonzero n
iv ∈  is such that 

 ( ) 0i iM vλ =  (16) 

then we say that vi is a (right) latent vector or a (right) 
eigenvector of ( )M λ , corresponding to the eigenvalue λi.  

Eigenvalues of matrix ( )M λ  correspond to the characteristic 
roots of the system, i.e. eigenvalues of its block companion 
matrix Aeq (Dennis et al., 1976). Their number is ( 1)n h + . 

Since ( ) ( )* *
TF Mλ λ=  holds, it is not difficult to show that 

matrices ( )M λ  and  ( )TM λ  have the same spectrum. 

In papers (Dennis et al., 1976, 1978, Kim, 2000, Pereira, 
2003 and Lancaster and Tismenetsky, 1985) some sufficient 
conditions for the existence, enumeration and 
characterization of right solvents of ( )M X were derived. 
They show that the number of solvents can be zero, finite or 
infinite.  

For the needs of system stability (1) only the so called 
maximal solvents are usable, whose spectrums contain 
maximal eigenvalue mλ . A special case of maximal solvent is 
the so called dominant solvent (Dennis et al., 1978 and Kim, 
2000), which, unlike maximal solvents, can be computed in a 
simple way. 

Definition 2. Every solvent mS  of ( )M X , whose spectrum 

( )mSσ  contains maximal eigenvalue mλ  of Ω is a maximal 
solvent. 

Definition 3. (Dennis et al., 1978 and Kim, 2000) Matrix A 
dominates matrix B if all the eigenvalues of A are greater, in 
modulus, then those of B. In particular, if the solvent 1S  of 

( )M X  dominates the solvents 2 , , lS S…  we say it is a 
dominant solvent. (Note that a dominant solvent cannot be 
singular.)  

Conclusion 3. The number of maximal solvents can be 
greater than one. Dominant solvent is at the same time 
maximal solvent too. 

The dominant solvent 1S  of ( )M X , under certain 
conditions, can be determined by the Traub (Dennis et al., 
1978) and Bernoulli iteration (Dennis et al., 1978 and Kim, 
2000). 

3. MAIN RESULTS 

We will further provide improvements for some existing 
sufficient conditions related to nonsingularity of block 
Vandermonde matrix and existence of dominant solvent. 

The following lemma gives sufficient condition for the 
regularity of block Vandermonde matrix and has weaker 

hypothesis than Theorem 6.1 in (Dennis et al., 1976). This 
lemma represents the generalization of the corresponding 
result presented in (Kim, 2000). 

Lemma 3. If 1 1, , hS S +…  are solvents of ( )M X  with 

( ) ( )1 1hS Sσ σ +∩ ∩ = ∅…  then ( )1 1, , hV S S +…  is nonsingu-
lar. 

Proof. It is derived by the generalization of proof given in 
paper (Kim, 2000), for the case 1h = . Q.E.D. 

It is demonstrated by the following lemma that condition of 
nonsingularity of matrix ( )2 1, , hV S S +…  in (Dennis et al., 
1978) is superfluous, since it results directly from 
nonsingularity of matrix ( )1 1, , hV S S +… . 

Lemma 4. If the block Vandermonde matrix ( )1 1, , hV S S +…  

is nonsingular, then ( )2 1, , hV S S +…  is also nonsingular. 

Proof. If the block Vandermonde matrix ( )2 1, , hV S S +…  is 
nonsingular, then  

 

( ) ( )

( )

1 2 1

1 2 1
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 
  
   ⋅ −    
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"
"

# # % #
"

…

" … #

h

h h h
h

nh
h

h h h
h h

h

I I I

S S S

S S S

V S S

I
S S S V S S

S

 (17) 

From ( )1 1det , , 0hV S S + ≠… , follows ( )2 1, , 0hV S S + ≠… , so 

( )2 1, , hV S S +…  is nonsingular, when ( )1 1, , hV S S +…  is 
regular. Q.E.D. 

By combining Lemmas 3-4 one can modify some existing 
conditions for convergence of Traub and Bernoulli 
algorithms presented in (Dennis et al., 1978). These 
conditions have weaker hypothesis than conditions given in 
(Dennis et al., 1978). 

Lemma 5. If ( )M X  is a matrix polynomial of degree 

( )1h +  such that  

(i) it has solvents 1 1, , hS S +…  
(ii) 1S  is a dominant solvent 

(iii) ( ) ( )1 1hS Sσ σ +∩ ∩ = ∅…  

then Traub and Bernoulli algorithms (Dennis et al., 1978) 
converge. 

Proof. The first two conditions of this lemma are identical 
with conditions (i)-(ii) of Theorems 2.1 and 3.2 in (Dennis et 
al., 1978). From Lemmas 3-4 follows that ( )1 1, , hV S S +…  and 

( )2 1, , hV S S +…  are nonsingular, whereby the third condition 
has been fulfilled too of Theorems 2.1 and 3.2 in (Dennis et 
al., 1978). So, Traub and Bernoulli algorithms converge to a 
dominant solvent. Q.E.D. 
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Similar to the definition of right solvents Sm and S1 of 
( )M X , the definitions of both maximal left solvent, Rm, and 

dominant left solvent, R1, of ( )M X can be provided. These 

left solvents of ( )M X  are used in a number of theorems to 
follow. Owing to Lemma 1, they can be determined by proper 
right solvents of ( )TM X . Generally, all aforementioned 
about the existence, enumeration and characterization of right 
solvents of ( )M X , holds also for right solvents of ( )TM X , 

therefore for left solvents of ( )M X too.  

Necessary and sufficient conditions for asymptotic stability 
of linear discrete time-delay systems (1) are to follow.  

Theorem 1. Suppose that there exists at least one left solvent 
of ( )M X and let mR  denote one of them. Then, linear 
discrete time delay system (1) is asymptotically stable if and 
only if for any matrix * 0Q Q= >  there exists Hermitian 
matrix * 0P P= >  such that  

 *
m mR PR P Q− = −  (18) 

Proof. Define the following vector discrete functions 

 ( ) { }, , 1, ... , 0kx x k h hθ θ= + ∈ − − +  (19) 

 ( ) ( ) ( ) ( )
1

h

k
j

z x x k T j x k j
=

= + −∑  (20) 

where, ( ) n nT k ×∈  is, in general, some time varying discrete 
matrix function. The conclusion of the theorem follows 
immediately by defining Lyapunov functional for the system 
(1) as 

 ( ) ( ) ( )* *, 0k k kV x z x P z x P P= = >  (21) 

It is obvious that ( ) 0kz x =  if and only if 0kx = , so it 

follows that ( ) 0kV x >  for 0kx∀ ≠ . The forward difference 
of (21), along the solutions of system (1) is  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

k k

k k k k

V x z x Pz k

z x P z x z x P z x

∆ = ∆

+ ∆ + ∆ ∆
 (22) 

A difference of ( )kz x∆ can be determined in the following 
manner 

 ( ) ( ) ( ) ( )
1

h

k
j

z x x k T j x k j
=

∆ = ∆ + ∆ −∑  (23) 

with 
 ( ) ( ) ( ) ( )0 1nx k A I x k A x k h∆ = − + −  (24) 

and 

   
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

1 1

               1

h

j
T j x k j T x k x k

T h x k h x k h
=

∆ − = − − +  

+ − + − −  

∑ "
 (25) 

Then simple manipulations lead to 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( )

1
1

                           2 1 1

                          1 1

h

j
T j x k j T x k T h x k h

T T x k

T h T h x k h

=

∆ − = − −

+ − − +

+ − − − +

∑
"  (26) 

Define a new matrix R by  

 ( )0 1R A T= +  (27) 

If 

 ( ) ( )1T h A T h∆ = −  (28) 

then ( )kz x∆ has a form 

 ( ) ( ) ( ) ( ) ( ){ }
1

h

k n
j

z x R I x k T j x k j
=

∆ = − + ∆ ⋅ −∑  (29) 

If one adopts 

 ( ) ( ) ( ) , 1,2, ... ,nT j R I T j j h∆ = − =  (30) 

then ( )kz x∆  becomes  

 ( ) ( ) ( )k n kz x R I z x∆ = −  (31) 

Therefore, (22) becomes 

 ( ) ( )( ) ( )* *
k k kV x z x R PR P z x∆ = −  (32) 

It is obvious that if the following equation is satisfied  

 * *, 0R PR P Q Q Q− = − = >  (33) 

then ( ) 0, 0k kV x x∆ < ≠ . In the Lyapunov matrix equation 

(33), of all possible solvents R of ( )M X , only one of 
maximal solvents is of importance, for it is the only one that 
contains maximal eigenvalue mλ ∈ Ω  (Conclusion 2), which 
has dominant influence on the stability of the system. So, 
(18) represent stability sufficient condition for system given 
by  (1). Matrix ( )1T  can be determined in the following way. 
From (30) follows 

 ( ) ( )1 1hT h R T+ =  (34) 

and using (27)-(28) one can get (10), and for the sake of 
brevity, instead of matrix ( )1T , one introduces simple 
notation T. 

If solvent which is not maximal is integrated into Lyapunov 
equation, it may happen that there will exist positive definite 
solution of Lyapunov matrix equation (18), although  the 
system is not stable (see Example 4). Conversely, if the 
system (1) is asymptotically stable then all roots iλ ∈ Ω  are 
located within unit circle. Since ( )mRσ ⊂ Ω , follows 

( ) 1mRρ < , so the positive definite solution of Lyapunov 
matrix equation (18) exists (necessary condition). Q.E.D. 
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Corollary 2. Suppose that there exists at least one maximal 
left solvent of ( )M X  and let mR  denote one of them. Then, 

system (1) is asymptotically stable if and only if ( ) 1mRρ < . 

Proof. Follows directly from Theorem 1.  Q.E.D. 

Conclusion 4. Corollary 2 may be proved in the following 
way. From Conclusion 2 follows ( ) ( )eqR Aσ λ⊂ Ω =  and 
based on properties of maximal solvent Rm follows 

( ) ( )m eqR Aρ ρ= . So, if the maximal solvent is discrete 
stable then Aeq will be also discrete stable matrix and vice 
versa. 

Corollary 3. Suppose that there exists dominant left solvent 
1R  of ( )M X . Then, system (1) is asymptotically stable if 

and only if ( )1 1Rρ < .  

Proof. Follows directly from Corollary 2, since dominant 
solution is, at the same time, maximal solvent. Q.E.D. 

Conclusion 5. In the case when dominant solvent 1R  may be 
deduced by Traub or Bernoulli algorithm, Corollary 3 
represents a quite simple method. If aforementioned 
algorithms are not convergent but still there exists at least one 
of maximal solvents Rm, then one should use Corollary 2. 
The maximal solvents may be found, for example, using the 
concept of eigenpair (Pereira, 2003). If there exists no 
maximal solvent Rm, then proposed necessary and sufficient 
conditions can not be used for system stability investigation. 

Conclusion 6. In great time delay of the system it holds 

( ) ( ) ( ) ( )1dim dim dim dim ( 1)m i eqR R A n A n h= = = = +  

For example, if time delay amounts to 100h = , and the row 
of matrices of the system is 2n = , then: 2 2

1, mR R ×∈  and 
202 202

eqA ×∈ . To check the stability by eigenvalues of matrix 
Aeq, it is necessary to determine 202 eigenvalues, which is not 
numerically simple. On the other hand, if dominant solvent 
can be computed by Traub or Bernoulli algorithm, Corollary 
3 requires a relatively small number of additions, 
subtractions, multiplications and inversions of the matrix 
format of only 2×2. 

So, in the case of great time delay in the system, by applying 
Corollary 3, a smaller number of computations are to be 
expected compared with a traditional procedure of examining 
the stability by eigenvalues of companion matrix Aeq. 

An accurate number of computations for each of the 
mentioned method requires additional analysis, which is not 
the subject-matter of our considerations herein. 

4. NUMERICAL EXAMPLES  

Example 1. Let us consider linear discrete system with 
delayed state (1) with 

 0
0.1 0.3
0.1 0.15

A
−

 =   
, 1

0.3 0.4
0.2 0.25

A  =   
, 1h =  

and let us check stability properties of the system under 
consideration, based on the application of Theorem 1, 
Corollaries 2 and 3. 

Application of Theorem 1. By the left solvents Si  of  
( )TM X , applying the concept of eigenpair (Pereira, 2003), 

left solvents Ri of ( )M X are calculated: 

*
1 1

3.548     4.759

-2.408   -3.391

 
R S  

= =  
 

, *
2 2

-1.812    2.490

-1.171    1.604
R S  

= =  
 

, 

*
3 3

0.453    0.576

0.342    0.326
R S

 
= =  

 
, *

4 4

0.402    0.620

0.388    0.287
R S

 
= =  

 
,  

*
5 5

-0.345   -0.502

-0.191   -0.394
R S  

= =  
 

, *
6 6

-0.386   -0.417

-0.167  -0.443
R S  

= =  
 

  

The solvents R1, R3 and R4 are maximal solvents, since they 
contain eigenvalue 0.838mλ = ∈ Ω . From solved Lyapunov 
equation (18), for example, 1mR R=  and 2Q I= , we can 
conclude  that system under consideration is asymptotically 
stable. 

Application of Corollary 2. By adopting, for example, 
3mR R=  as a maximal solvent, we conclude that inequality 

( ) 0.838 < 1mRρ =  is satisfied, therefore the observed system 
is asymptotically stable. 

Application of Corollary 3. If for a set of 1 2h + =  solvents, 
we choose R1 and R2, the conclusion is that R1 is a dominant 
solvent, whereby the condition has been 
fulfilled ( )( )1 2det , 0V R R ≠ . Therefore, the Traub  or 
Bernoulli algorithm can be used for the determination of 
dominant solvent. By Traub algorithm (Dennis et al., 1978), 
after only three iterations upon Gi and three iterations upon Xi 
(3+3), identical value, as above calculated, was obtained for 
dominant solvent 1R . Similarly, by applying Bernoulli 
algorithm (Dennis et al., 1978), after 12 iterations upon Xi, 
identical value, as above calculated, was obtained for 
dominant solvent 1R . Since ( )1 0.838 1Rρ = < , based on 
Corollary 3, it follows that the system under consideration is 
asymptotically stable. 

Example 2. Let us consider linear discrete systems with 
delayed state (1) with 

0
0 1
0 0

A − =   
, 1

1 1
0 0

A  =   
, 1h = . 

and let us check stability properties of the system under 
consideration. 

Application of Corollary 2. The left solvents Ri of ( )M X  
are 

1
1 0
1 1

R
− −

 =   
, 2

1 2
0 0

R − − =   
, 3

1 0
0 0

R  =   
. 

Since ( ) { }1 1,1Rλ −= , ( ) { }2 1,0Rλ −=  and ( ) { }3 1,0Rλ =   
there exists no dominant solvent, but all the three solvents are 
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maximal solvents. Because ( ) 1iRρ = , 1 3i≤ ≤ , based on 
Corollary 2, the system is not asymptotically stable. 

Example 3. Let us consider linear discrete systems with 
delayed state (1) with 

 0
7 /10 1/ 2
1/ 2 17 /10

A  =   
, 1

1/ 75 1/3
1/3 49/ 75

A − − =   
 

There are two left solvents of matrix polynomial equation 
(10) 

 1
19/30 1/ 6

1/ 6 29/30
R

−
 =   

, 2
1/15 1/3

1/3 11/15
R

−
 =   

 

Since ( ) { }1
4 4,
5 5

Rλ = , ( ) { }2
2 2,
5 5

Rλ = , dominant solvent is 

1R . As we have  ( )1 2,V R R  nonsingular, Traub  or  Bernoulli 
algorithm may be used.  

Application of Corollary 3. Only after ( )4 3+  iterations for 
Traub and 17 iterations for Bernoulli algorithm, dominant 
solvent can be found  with accuracy of 410− . Since 

( )1
4
5

1Rρ = < , based on Corollary 3, it follows that the 

system under consideration is asymptotically stable. 

Example 4. Let us consider linear discrete systems with 
delayed state (1) with 

 0
17 / 6 11/ 6
1/3 2/3

A − =   
, 1

5/3 17 /12
2/3 5/12

A −
−

 =   
 , 1h = . 

The eigenvalues of matrices ( )M X  are given with 
{ }0.5, 0.5, 0.5, 2 = Ω . There is only one solvent of matrix 
polynomial equation (10): 

 12 / 7 1/ 7
4 / 7 16 / 7

R
−

 =   
 

with ( ) { }0.5, 0.5Rλ = . It can be seen that there exist no 
dominant and maximal solvents of (10), so the proposed  
stability  conditions can not be applied. If we, disregarding 
the assumption on the existence of maximal solvent Rm, apply 
Corollary 2, based on ( ) 0.5 1Rρ = < , we would arrive at the 
wrong conclusion that the system is asymptotically stable. 
But, the system is unstable since it possesses characteristic 
root 2 1mλ = > . 

 

 

 

5. CONCLUSION 

In this paper, we have established new, necessary and 
sufficient, conditions for the asymptotic stability of a 
particular class of linear discrete time delay systems. The 
time-dependent criteria are derived by Lyapunov’s direct 
method and are exclusively based on the maximal and 
dominant solvents of particular matrix polynomial equation. 
It has been demonstrated that with great time delay of the 
system, if dominant solvent can be computed by Traub or 
Bernoulli algorithm, a decrease in the number of 
computations is to be expected in favour of derived stability 
criteria compared with the existing ones.  
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