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Abstract: The Immersion and Invariance control technique (I&I), is a method to design
asymptotically stabilizing control laws for nonlinear systems, proposed in Astolfi and Ortega
[2003]. The three design steps of I&I are: the definition of a target dynamics; the construction of
an invariant manifold; and the design of a control law. The second step requires the solution of a
partial differential equation (PDE) that may be difficult to obtain. Here we show a constructive
procedure to obviate the solution of the PDE, through the well–known cart and pendulum
system. The procedure follows interlacing the first and second steps and invoking physical
considerations.
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1. INTRODUCTION TO IMMERSION AND
INVARIANCE

The method of I&I for stabilization of nonlinear systems
originated in Astolfi and Ortega [2003] and was further de-
veloped in a series of publications that have been recently
summarized in Astolfi et al. [2007], see also Karagiannis
et al. [2004]. The major result of Astolfi and Ortega
[2003], that constitutes the basis of the present note, is
the following theorem.
Theorem 1. Consider the system 1

ẋ = f(x) + g(x)u, (1)
with state x ∈ R

n and control u ∈ R
m, with an equilibrium

point x∗ ∈ R
n to be stabilized. Let p < n and assume we

can find mappings

α(·) : R
p → R

p, π(·) : R
p → R

n, c(·) : R
p → R

m,

φ(·) : R
n → R

n−p, ψ(·, ·) : R
n×(n−p) → R

m,

such that the following hold.

(H1) (Target system) The system

ξ̇ = α(ξ), (2)
� The work of J.Á. Acosta was supported by MEC-FEDER grant
DPI2006-07338 and by The Consejeŕıa de Innovación Ciencia y
Empresa of The Junta de Andalućıa under IAC programme. I.
Sarras acknowledges the financial support of the Greek Scholarships
Foundation. This work was partially supported by HYCON.
1 Throughout the paper it is assumed that all functions and map-
pings are C∞.

with state ξ ∈ R
p, has an asymptotically stable equili-

brium at ξ∗ ∈ R
p and x∗ = π(ξ∗).

(H2) (Immersion condition) For all ξ ∈ R
p

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π

∂ξ
α(ξ). (3)

(H3) (Implicit manifold) The set identity

{x ∈ R
n | φ(x) = 0} =

{x ∈ R
n | x = π(ξ) for some ξ ∈ R

p}. (4)
holds.

(H4) (Manifold attractivity and trajectory boundedness)
All trajectories of the system

ż =
∂φ

∂x
[f(x) + g(x)ψ(x, z)] (5)

ẋ = f(x) + g(x)ψ(x, z) (6)
are bounded and satisfy

lim
t→∞ z(t) = 0. (7)

Then x∗ is an asymptotically stable equilibrium of the
closed loop system

ẋ = f(x) + g(x)ψ(x, φ(x))

Theorem 1 lends itself to the following interpretation.
Given the system (1) and the target dynamical system
(2) find, if possible, a manifold M, described implicitly
by {x ∈ R

n | φ(x) = 0}, and in parameterized form by
{x ∈ R

n | x = π(ξ), ξ ∈ R
p}, which can be rendered

invariant and attractive, and such that the restriction of
the closed loop system to M is described by ξ̇ = α(ξ).
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Notice, however, that we do not propose to apply the
control u = c(π(ξ)) that renders the manifold invariant,
instead we design a control law u = ψ(x, z) that drives
to zero the coordinate z and keeps the system trajectories
bounded. Notice from (5) that z, called off–the–manifold
coordinate, is a measure of the distance of the system
trajectories to the manifold M.

In standard applications of I&I the target system is a priori
defined, hence condition (H1) is automatically satisfied.
Given the target system, the equation (3) of condition
(H2) defines a PDE in the unknown π, where c is a
free parameter. Note that, if the linearization of (1) (at
x = x∗) is controllable (and all functions are locally
analytic), it has been shown in Kravaris and Kravaris
[2000], using Lyapunov Auxiliary theorem and under some
non-resonance conditions, that we can always find c such
that the solution exists locally. Nevertheless, finding the
explicit analytic solution of this equation is—in general—
a difficult task.

The main objective of this note is to propose a procedure
to obviate the solution of the PDE. Towards this end, we
propose to interlace the steps of definition of the target
dynamics (H1) and generation of the manifold (H2). More
specifically, we propose to leave α as a free parameter and
to view the PDE (3) as an algebraic equation relating
α with π (and its partial derivatives). We then select
suitable expressions for π that ensures the desired stability
of the target dynamics. We illustrate this idea with the
classical cart and pendulum system for which we propose
to select the target dynamics as a simple pendulum whose
potential energy and dissipation functions are viewed as
functions of π. We then select suitable expressions for π
that ensure that the potential energy has a minimum at
the upward position of the pendulum and the damping
function is non–negative around this point. The design is
completed selecting a control law that ensures condition
(H4) of Theorem 1, which in this example turns out to be
a trivial task.

2. UPWARD STABILIZATION OF THE CART AND
PENDULUM SYSTEM

2.1 Model

Rad

XX

x1

x1

x2

x3

x3

ξ1

ξ2
π

ξ1

Fig. 1. Pendulum on a cart and target dynamics.

We consider the classical cart–pendulum system depicted
in Fig. 1, and assume that a partial feedback linearization
stage has been applied 2 . After normalization this yields

Σ :

{
ẋ1 = x2,
ẋ2 = a sinx1 − u b cosx1,
ẋ3 = u,

(8)

where (x1, x2) ∈ S1 × R are the pendulum angle with
respect to the upright vertical and its velocity, respectively,
and x3 ∈ R is the velocity of the cart, u ∈ R is the
input, and a > 0 and b > 0 are physical parameters. The
equilibrium to be stabilized is the upward position of the
pendulum with the cart stopped, which corresponds to
x� = 0.

2.2 Controller design

We proceed to verify the hypothesis H1–H4 of Theorem 1.

(H1) (Target system) The key idea is to immerse a
two dimensional system—which describes a pendulum
dynamics whose potential energy and damping functions
are left to be designed (see Fig. 1 (right))—into a three
dimensional one. Thus, we define the target dynamics as

ΣT :
{
ξ̇1 = ξ2,

ξ̇2 = −V ′(ξ1) −R(ξ1, ξ2)ξ2,
(9)

which are the dynamical equations of a single pendulum
with energy function H(ξ1, ξ2) = 1

2ξ
2
2+V (ξ1) and, possibly

nonlinear, damping function R—that, for generality, we
have defined as a function of ξ1 and ξ2.

To ensure that the target dynamics have an asymptotically
stable equilibrium at the origin we introduce the following
assumption.

Assumption A.1

(i) The potential energy function V (ξ1), satisfies
V ′(0) = 0 and V ′′(0) > 0.

(ii) The damping function is such that R(0, 0) > 0.

(H2) (Immersion condition) Given the control objectives
and our choice of target dynamics a natural selection of the
mapping π is

π(ξ) =

[
ξ1
ξ2

π3(ξ1, ξ2)

]
, (10)

where π3 is a function to be defined. With this choice of π
and the target dynamics above (3) reduces to

a sin ξ1 − b cos ξ1c(π(ξ)) = −V ′(ξ1) −R(ξ1, ξ2)ξ2 (11)

c(π(ξ)) =
∂π3

∂ξ1
ξ2 − ∂π3

∂ξ2
[V ′(ξ1) +R(ξ1, ξ2)ξ2], (12)

where we recall that c is the controller that renders the
manifold invariant. Replacing c from (12) in (11), and after
doing some rearrangements, yields the PDE to be solved,
namely

b cos ξ1

(
ξ2
∂π3

∂ξ1
− [V ′(ξ1) +R(ξ1, ξ2)ξ2]

∂π3

∂ξ2

)
=

a sin ξ1 − V ′(ξ1) −R(ξ1, ξ2)ξ2. (13)
In the standard application of I&I, V ′ and R would be
fixed and then we would need to solve the PDE (13) for
2 See Acosta et al. [2005], Teel [1996] for further details.
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the unknown π3. Here, we let V ′ and R free—viewed as
functions of π3 and its derivatives—and introduce two
conditions on π3 so that (13) can be trivially solved.
Towards this end, we find convenient to rewrite (13) in
the form(
b cos ξ1

∂π3

∂ξ1
−R(ξ1, ξ2)∆(ξ)

)
ξ2 = a sin ξ1 + ∆(ξ)V ′(ξ1),

(14)
where we have defined the “key” function ∆ as

∆(ξ) � 1 +
∂π3

∂ξ2
b cos ξ1. (15)

We will see below that this function also plays a funda-
mental role on the stabilization step, (H4), of the I&I
procedure. Consider now the following assumptions
Assumption A.2 There exists an ε > 0 such that

|∆(0)| =
∣∣∣∣1 + b

∂π3

∂ξ2
(0)

∣∣∣∣ ≥ ε > 0.

Assumption A.3 ∂π3
∂ξ2

is a function of ξ1 only, and
consequently ∆ does not depend on ξ2.

If Assumptions A.2 and A.3 hold, the PDE (14) is solved
selecting 3

V ′(ξ1) = −a sin ξ1
∆(ξ)

, R(ξ1, ξ2) =
b cos ξ1
∆(ξ)

∂π3

∂ξ1
. (16)

The equations above provide a parametrization of V and R
in term of the (free) manifold function π3. We can proceed
at this stage with the selection of functions π3 such that
Assumptions A.1–A.3 hold, but let us first investigate the
remaining conditions of Theorem 1.

(H3) (Implicit manifold) It is easy to verify that The
manifold M can be implicitly described by M = {x ∈
R

3 | φ(x) = 0}, with

φ(x) = x3 − π3(x1, x2).

(H4) (Manifold attractivity and trajectory boundedness)
The off–the–manifold coordinates are z = φ(x) and
straightforward calculations show that

ż = ẋ3 − π̇3(x1, x2)

= ψ(x, z) − ∂π3

∂x1
x2 − ∂π3

∂x2
(a sinx1 − b cosx1ψ(x, z))

=−∂π3

∂x1
x2 − ∂π3

∂x2
a sinx1 + ∆(x1, x2) ψ(x, z), (17)

where we recall that ψ(x, φ(x)) is the actual controller
that we apply. From the last equation we note that, under
Assumption A.2, the task of driving z to zero is trivialized.
Indeed, dividing by ∆ we can assign arbitrarily the off–
the–manifold dynamics, for instance, fix it to ż = −γz,
with γ a positive constant. This yields

ψ(x, z) =
1

∆(x1, x2)

(
−γz +

∂π3

∂x1
x2 +

∂π3

∂x2
a sinx1

)
,

that, upon evaluation on the manifold, defines the contro-
ller

3 Assumption A.3 is needed to ensure that V ′ is a function of ξ1 only.
Remark that if ∂π3

∂ξ1
is a independent of ξ2 then also R depends only

on ξ1—but this is not necessary for stability of the target dynamics.

ψ(x, φ(x)) =
1

∆(x1, x2)

(
− γ(x3 − π3(x1, x2))

+
∂π3

∂x1
x2 +

∂π3

∂x2
a sinx1

)
. (18)

To complete our design it remains to propose functions
π3 that verify Assumptions A.2 and A.3 and such that
Assumption A.1 with V and R as in (16) holds. In
Table 1 we provide three possibilities, which are naturally
suggested by Assumptions A.1–A.3 4 . For the sake of
comparison we also give the expressions of ∆ and the
potential energy V .

To enforce a particular behavior to the target dynamics,
we can also proceed dually, that is, fix the desired potential
energy V and then work backwards to compute π3,∆ and
R. A particularly interesting choice is V (x1) = k1

2 tan2 x1,
with k1 > 0, which has a unique minimum at zero and is
radially unbounded on the interval (−π

2 ,
π
2 ). Replacing in

(16) yields
∆(x1) = − a

k1
cos3 x1,

which clearly satisfies Assumption A.2. From (15), and
after some simple calculations we obtain

π3(x1, x2) = −1
b

(
1

cosx1
+

a

k1
cos2 x1

)
x2 + Φ(x1), (19)

where Φ is a free function. As it can be easily shown
R(0, 0) = −βb

a Φ′(0), hence Φ′(0) < 0 to ensure the
damping is positive — e.g., Φ(x1) = −k2x1, with k2 > 0.

2.3 Stability result

Following Theorem 1 the stability analysis is comple-
ted proving that there exists a set of initial conditions
(x(0), z(0)) such that the corresponding trajectories x(t)
of (6) are bounded.
Proposition 1. For any function π3 verifying Assumptions
A.2 and A.3, and such that Assumption A.1 holds for
the functions V and R given in (15) and (16), the zero
equilibrium of the cart–pendulum system (8) in closed
loop with the I&I controller (18) with γ > 0, is locally
asymptotically stable.

Proof. We prove that, for some suitable set of initial
conditions, the trajectories of the system (6), which in our
example has the form,

ẋ1 = x2

ẋ2 = a sinx1 − b cosx1 ψ(x, z)

ẋ3 = ψ(x, z), (20)
with ψ given by (18), are bounded. Towards this end,
define a set

D :=
{
x ∈ S1 × R

2 | |1 + b cos(x1)
∂π3

∂x2
(x1)| > 0

}
.

From (15) and (16) we see that there exist ε1, ε2 > 0 such
that, for all x ∈ D, we have

|∆(x1)| ≥ ε1, R(x1, x2) ≥ ε2. (21)
Now, we use the functions V ′ and R, defined in (16), to
rewrite the first two equations of (20) in the form
4 To guide on the selection we note that Assumptions A.1–A.3
impose that ∂π3

∂x1
(0) < 0 and ∂π3

∂x2
(0) < 0.
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π3(x1, x2) ∆(x1) V (ξ1)

−k1x1 − k2x2 1 − k2b cos x1 −a(ln |1 − k2b cos ξ1| − ln |1 − k2b|)/(k2b)

−k1x1 − k2x2 cos x1 1 − k2b cos2 x1 a(− tanh−1(k2b/
√

k2b) + tanh−1(k2b cos ξ1/
√

k2b))/
√

k2b

−k1x1 − k2
x2

cos x1
1 − k2b −a(−1 + cos ξ1)/(k2b − 1)

Table 1. Proposed candidates for π3 and corresponding ∆ and V , where k1 and k2 are positive
gains.

ẋ1 = x2

ẋ2 =−V ′(x1) −R(x1, x2)x2 +
γb cosx1

∆(x1)
z(t), (22)

which, in view of Assumption A.1, is a system with an
asymptotically stable equilibrium perturbed by an addi-
tive term containing an exponentially decaying function
z(t) = z(0) exp−γt (recall that ż = −γz). Consider the
function H(x1, x2) = 1

2x
2
2 + V (x1), which is positive defi-

nite in D−{0} and whose derivative along the trajectories
of (22), for all x ∈ D, satisfies

Ḣ =−R(x1, x2)x2
2 +

γb

∆(x1)
x2 cosx1z(0) exp−γt

≤−ε2x2
2 +

γb

ε1
|x2||z(0)| exp−γt

≤−ε2
2
x2

2 +
γ2b2

2ε21ε2
z2(0) exp−2γt

where the first inequality is obtained using (21) and
the second follows from Young’s inequality, i.e. 2de ≤
kd2 + 1

ke
2, selecting k = ε2 and d = x2. From the

last inequality above we conclude that, there exists a
time tf such that Ḣ ≤ − ε2

4 x
2
2, for all t ≥ tf . Hence,

there exists a ball around zero, strictly contained in
D, such that all trajectories starting in this set satisfy
H(x1(t), x2(t)) ≤ H(x1(0), x2(0))—ensuring boundedness
of (x1, x2). Finally, boundedness of x3 follows from the fact
that x3 = z + π3(x1, x2) and both terms are bounded. 	

3. SIMULATIONS

Extensive simulations have been carried out for the four
selections of π3 (the three on Table 1 and the one on
equation (19)) described above with different values of
k1, k2 and γ. The largest domain of attraction among these
controllers was achieved by the one calculated from the
third line of Table 1. This gives the control law

u = − 1
1 − k2b

(
γk1 + k1x2 + γx3 +

γk2

cosx1
x2 +

k2 tanx1(
x2

2

cosx1
+ a sinx1)

)
,

with k1 > 0, k2 > 1
b and γ > 0. Notice that V has an

isolated global minimum at zero and ∆ is a constant.
The controller is not globally defined because π3 has
a singularity at π

2 . Simulations for this controller have
bee carried out with the normalized values a = b = 1,
the controller gains k1 = 3, k2 = 4 and γ = 1, 10
and the initial conditions x(0) = (π

2 − 0.1, 0, 0)—that
is, we start with zero velocities and with the pendulum
practically horizontal. The results are shown in Fig. 2,
which clearly exhibit the desired closed–loop behavior:
first, convergence towards the manifold, i.e., z(t) → 0

at a speed determined by γ, and then, once close to the
manifold where the cart–pendulum system behaves like
a simple pendulum, convergence towards the equilibrium.
We note from Fig. 2 (left) that, increasing the speed of
convergence to the manifold does not necessarily leads
to a faster overall transient response. This is due to the
fact that, even though the closed–loop system (22) is
the cascade connection of an exponentially stable and an
asymptotically stable system, the peaking phenomenon
appears when we increase the rate of convergence of the
former—in this simple example this is revealed by the
presence of the multiplying coefficient γ in (22) (or in the
bound of Ḣ).

We should underscore the simplicity of the control laws
that should be contrasted with other schemes proposed in
the literature, e.g., Bloch et al. [2000], Acosta et al. [2005].
Also, we would like to bring to the readers attention the
excellent transient performance depicted in Fig. 2 (right),
and in particular the nice shape of the control action,
which is a smooth low amplitude signal that moves the
cart at the right time instants in the right direction. Again,
this should be compared with other controllers, e.g., those
stabilizing the homoclinic orbit, where the control action
is essentially bang–bang—even when the initial conditions
of the pendulum are in the upper half plane.

4. CONCLUDING REMARKS

The main stumbling block for application of the I&I
methodology of Astolfi and Ortega [2003] is the need
to solve the PDE of the immersion condition—i.e., the
computation of the function π that defines the manifold
M. 5 To overcome this problem we have proposed in this
paper to transform this PDE into an algebraic equation
where the target dynamics is viewed as a function of π
(and its partial derivatives), and then propose functions π
that ensure the target dynamics has the desired stability
property. The procedure has shown to be easily applicable
for the upward stabilization of the cart and pendulum
system, where physical considerations can be invoked to
select the target dynamics. We are currently investigating
the application of this construction to general underac-
tuated mechanical systems and, in particular, to pendular
systems.

There is a nice interpretation, in terms of passivity–based
control, of the construction proposed in this paper. In
I&I a stabilising control law is derived starting from the
selection of a target (asymptotically stable) dynamical
system. As explained in Astolfi and Ortega [2003] a
different perspective can be taken: given the mapping
x = π(ξ), hence the mapping z = φ(x), find a control
5 Solving PDEs is the stumbling block of all constructive procedures
to stabilize nonlinear systems including forwarding, backstepping,
feedback linearization, output regulation, energy–shaping, etc.
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Fig. 2. Top: Attractivity of the invariant manifold. Botom:
Transient performance for γ = 1, k1 = 3, k2 = 4.

law which renders the manifold z = 0 invariant and
asymptotically stable, and an asymptotically stable vector
field ξ̇ = α(ξ) such that equation (3) holds. If this goal
is achieved then the system (1) with output z = φ(x) is
minimum-phase and its zero dynamics are given by (2). In
this respect, the result in Theorem 1 can be regarded as
a dual of the classical stabilisation methods based on the
construction of passive or minimum-phase outputs. In the
cart and pendulum example we consider the output x3 −
π3(x1, x2). Assumption A.2 ensures that its relative degree
is 1. Then, the selection (16) imposes as zero dynamics
precisely the target system (2). Finally, Assumption A.1
guarantees that the zero dynamics are stable. We have in
this way verified the conditions for feedback equivalence
to a passive system of Byrnes et al. [1991] and passivity–
based techniques can be applied for stabilization.

Many controller designs that have been reported for the
cart and pendulum system proceed in two steps, first
swing the cart to lift up the pendulum, and then regulate
the cart position. An imprecisely formulated “two–time
scale behavior” is often invoked to justify this widespread
practice. Although we do not address in this note the
problem of swinging up the pendulum (see below) and
restrict ourselves to the stabilization on the upper half
plane. Indeed, I&I ensures that all trajectories of the cart
and pendulum system are asymptotically mapped into the

trajectories of a single pendulum via x = π(ξ)—or in
other words, it generates the manifold, M, such that the
restriction of the cart–pendulum system to M is a simple
pendulum with suitable potential energy and dissipation
functions.

We wrap–up the paper indicating a fundamental obstacle
that hampers the application of the proposed construction
to swing–up the pendulum. Indeed, from (16) we have that

V ′′(ξ1) = − a

∆2(ξ1)
[∆(ξ1) cos ξ1 − ∆′(ξ1) sin ξ1],

which yields V ′′(0) = − a
∆(0) . To satisfy Assumption A.1,

we must then have ∆(0) < 0. On the other hand, if ∂π3
∂ξ2

is finite, from (15) we have that ∆(π
2 ) = 1, which means

that ∆ has to cross to zero in the interval [0, π
2 ], inducing

a singularity in the control law (18). This situation can be
avoided, as done in the third option of Table 1, making
∂π3
∂ξ2

(π
2 ) = ∞, but this transfers the singularity to π3.

In Acosta et al. [2008] we extend the result to a broader
class of systems. Current research is under way to extend,
further, this “constructive” result to different classes of
well–known systems.
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