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Abstract: The problem of counteracting the effects of adversarial inputs on the operation of an 
asynchronous sequential machine is considered. The objective is to build an automatic state-feedback 
controller that returns an asynchronous sequential machine to its original state, after the machine has 
undergone a state transition caused by an adversarial input. It is shown that the existence of such a 
controller depends on certain reachability and detectability properties of the affected machine. 

 

1. INTRODUCTION 

In modern computing systems, one often encounters 
unauthorized and adversarial input agents that attempt to 
interfere with the proper operation of the system. We address 
the question of how a computing system can be made 
immune to such interferences. Our approach is based on 
automatic control: we deploy feedback controllers that take 
corrective action whenever an adversarial input attempts to 
affect the operation of the underlying computing system. 

Asynchronous sequential machines are important building 
blocks of high-speed digital computer systems. In this note, 
we consider asynchronous sequential machines with two 
inputs: an input for controlling the machine (the control 
input), and an input  used by an adversarial agent (the 
adversarial input). The control diagram is as follows. 

          (1.1) 

Here, Σ  is the asynchronous sequential machine being 
controlled, and  C  is another asynchronous machine serving 
as the controller. The control input of  Σ  is  u  and the 
adversarial input is  w; the closed loop machine is denoted by  
Σc(v,w), with  v  being the external command input.  

Our objective is to design a controller  C  that counteracts 
action at  w, making it possible for the closed loop machine 
to operate without interference. Necessary and sufficient 
conditions for the existence of  C  are presented in section 6, 
which also includes a description of the controller's structure. 
There seem to be no earlier reports of this problem in the 

literature.  

Recall that an asynchronous sequential machine can be in a 
stable state or in a transient state. At a stable state, the 
machine dwells indefinitely until the input character is 
changed. Transient states are traversed by the machine very 
quickly (ideally, in zero time), and are imperceptible by the 
user. Thus, when counteracting the effects of an adversarial 
input, it is only necessary to eliminate the effects on stable 
states. The operation of the controller  C  is, in fact, based on 
this principle: when the adversarial input causes a state 
transition of  Σ, the controller turns the new state into a 
transient state of the closed loop machine, and returns  Σ  to 
the stable state it had before the interference. Thus, Σ  
resumes its original state very quickly (ideally, in zero time), 
and the effect of the adversarial input is eliminated. 

Our discussion is within the framework developed by 
MURPHY, GENG, and HAMMER [2002 and 2003], GENG 
and HAMMER [2004 and 2005], and VENKATRAMAN and 
HAMMER [2006a, b, and c]. Studies dealing with other 
aspects of discrete event systems can be found in 
RAMADGE and WONHAM [1987], HAMMER [1994, 
1995, 1996a, 1996b, 1997], DIBENEDETTO, SALDANHA, 
and SANGIOVANNI–VINCENTELLI [1994], THISTLE 
and WONHAM [1994], BARRETT and LAFORTUNE 
[1998], the references cited in these papers, and others. These 
publications do not address issues peculiar to the operation of 
asynchronous machines, such as the avoidance of critical 
races and the distinction between stable and transient states. 
To the best of our knowledge, the problem considered in this 
paper has not been previously addressed in the literature. 

2. NOTATION AND BASICS 

The machines we consider have a control input and an 
adversarial input, and they provide their state as output. Such 
machines are represented by a triplet  (A×B‚X‚f), where  A  
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is the control input alphabet, B  is the adversarial input 
alphabet,  X  is a set of states, and f : X×A×B → X  is the 
recursion function. The operation is according to 

 xk+1 = f(xk‚uk‚wk);       (2.1) 

here, u0‚ u1‚ u2‚ ...  is the control input sequence; w0, w1, w2, 
...  is the adversarial input sequence; and  x0‚ x1‚ x2‚ ...  is the 
sequence of the machine's states. The step counter  k  
advances by one at a change of the machine's inputs or state. 

(2.2) EXAMPLE. An asynchronous machine  Σ  with the 
control input alphabet  A = {a, b}; the adversarial input 
alphabet  B = {α, β}; and the state set  X = {x1, x2, x3}. The 
recursion function  f  is described by the transition table: 

state (a,α) (a,β) (b,α) (b,β) 
x1

 x1 x1 x1 x2 
x2

 x3 x1 x2 x2 
x3 x3

 x3 x1 x2 

A triplet  (x,u,w)  is a stable combination if  x = f(x,u,w), i.e., 
if the state  x  is a fixed point of the function  f. A machine 
lingers at a stable combination until an input changes. A 
triplet  (x,u,w)  that is not a stable combination starts a chain 
of transitions  x1 = f(x‚u,w)‚ x2 = f(x1‚u,w)‚ ... If this chain 
terminates, then there is an integer  q ≥ 1  for which  xq = 
f(xq,u,w); then, (xq,u,w)  is a stable combination and  xq  is 
the next stable state. If this chain of transitions does not 
terminate, then  (x,u,w)  is part of an infinite cycle. In this 
paper, we consider only machines with no infinite cycles; 
thus, every triplet  (x,u,w)  has a next stable state, as follows. 

(2.3) LEMMA. In an asynchronous machine without infinite 
cycles, there is always a next stable state. ♦  

To prevent unpredictable outcomes, it is common to enforce 
a policy where only one variable of an asynchronous machine 
is allowed change value at any instant of time (e.g., KOHAVI 
[1970]). This is referred to as  fundamental mode operation. 
All the machines in this paper operate in fundamental mode. 

(2.4) DEFINITION. An asynchronous machine  Σ  operates 
in fundamental mode if its inputs change value only when  Σ  
is in a stable combination, and then at most one at a time. ♦  

In fundamental mode operation of the configuration (1.1), 
only one of the machines  Σ  or  C  can undergo transitions at 
any instant of time. This leads us to: 

(2.5) PROPOSITION. Configuration (1.1) operates in 
fundamental mode if and only if the following hold: 
(i) C  is in a stable combination while  Σ  undergoes 
transitions, and  Σ  is in a stable combination while  C  
undergoes transitions. 
(ii) The inputs  u, w, and  v  change only while  Σ  and  C  are 
in a stable combination, and then only one at a time. ♦  

Thus, the controller  C  must be designed so that (i) it 
commences transitions only after verifying that  Σ  is in a 
stable combination, and (ii) it adopts a stable combination 

before inducing a change in the input of  Σ. This assures that 
the closed loop system is unambiguous and deterministic. As 
transitions of asynchronous machines are very quick (ideally, 
in zero time), fundamental mode operation is not restrictive. 

3. ADVERSARIAL INPUTS 

In general, the adversarial input character  wk  is not 
specified; it is only known that it belongs to a specified 
subset  ν ⊂ B  called the adversarial uncertainty. To include 
this information, we write Σ = (A×B‚X‚f‚ν). Starting from 
the initial state  x0  and applying the control input character  
u0, the next state of  Σ  can be any member of the set 

 f[x0×u0×ν] := Uw∈ν f(x0,u0,w) ⊂ X. 

To describe stable transitions of the machine  Σ, let  x′  be the 
next stable state of  (x,u,w). The stable recursion function  s  
is defined by setting  s(x,u,w) := x′. Considering adversarial 
uncertainty, all possible next stable states form the set 

 sν(x,u) := s[x,u,ν] = {s(x,u,w) : w ∈ ν} ⊂ X.     (3.1) 

4. DETECTABILITY AND REACHABILITY 

By Proposition 2.5, fundamental mode operation requires the 
controller  C  to remain in a stable combination until  Σ  has 
reached its next stable state. To examine the conditions under 
which such a controller can be implemented, let  w  be an 
adversarial input character. Assume that  Σ  is in a stable 
combination at the state  x, when the control input changes to  
u. Then, Σ  embarks on the string of transitions 

θ(x,u,w) := {x1 := f(x,u,w), x2 := f(x1,u,w), ..., xi(u,w) := 
f(xi(u,w)–1,u,w)},         (4.1) 

where  xi(u,w)  is the next stable state. The set of all transition 
strings consistent with the adversarial uncertainty  ν  is: 

 θ[x,u,ν] := {θ(x,u,w) : w ∈ ν}.      (4.2) 

The next notion characterizes our ability to determine by state 
feedback whether or not  Σ  has reached its next stable state. 

(4.3) DEFINITION. Let  Σ  be in a stable combination with 
the state  x, when the control input character changes to  u. 
The pair  (x,u)  is detectable if it is possible to determine by 
state feedback whether  Σ  has reached its next stable state. ♦  

Here is a test to determine whether a pair is detectable. 

(4.4) THEOREM. Let  Σ  be in a stable combination with the 
state  x, when the control input character changes to  u. Then, 
(i) and (ii) are equivalent for adversarial uncertainty  ε: 
(i) The pair  (x,u)  is detectable. 
(ii) States of the set  sε(x,u)  appear only at the end of strings 
belonging to  θ[x,u,ε]. 

Proof (sketch). Consider a string  θ(x,u,w) = {x0, x1, x2, ..., 
xi(u,w)}, where  w ∈ ε, and assume, by contradiction, that (ii) 
is not valid. Then, xj ∈ sε(x,u)  for an integer  0 ≤ j < i(u,w), 
so that  (xj,u,w)  is a transient combination, since  j < i(u,w). 
The inclusion  xj ∈ sε(x,u)  implies that there is an adversarial 

♦ 
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input character  w′ ∈ ε  for which  (xj,u,w′)  is a stable 
combination. Thus, xj  is a transient state in  (xj,u,w)  while 
being a stable state in  (xj,u,w′), so that, at the state  xj, one 
cannot tell whether  Σ  is in a stable state. Whence, (i) implies 
(ii). Conversely, if every state  x′ ∈ sε(x,u)  appears only at 
the end of a string in  θ[x,u,ε], then  x′  is always a stable 
state of  Σ, and (ii) implies (i). ♦  

Thus, we can determine whether  Σ  has reached its next 
stable state by checking if the current state of  Σ  is in  sε(x,u). 
Next, we adapt to our present setting the following notion 
from MURPHY, GENG, and HAMMER [2002] and [2003]. 

(4.5) DEFINITION. Let  Σ  be an asynchronous machine 
with the state set  X = {x1, x2, ..., xn}  and the stable transition 
function  s. Let  w ∈ B  be an adversarial input character. The  
one-step matrix of stable transitions  ρ(Σ,w)  of  Σ  is an  n×n  
matrix whose  (i,j)  entry  ρij(Σ,w)  consists of all pairs  w|u, 
where  u  is a control input character satisfying  xj = s(xi,u,w); 
if there is no such u, then  ρij(Σ,w) := w|N, where  N  is a 
character not in  A  or in  B: 

ρij(Σ,w) = 

w|N  if  {u ∈ A : xj = s(xi,u,w)} = ∅‚
{w|u : u ∈ A  and  xj = s(xi,u,w)}  otherwise. ♦ 

(4.6) EXAMPLE. For the machine  Σ  of Example 2.2, 

 ρ(Σ,α) = 






{α|a,α|b}{α|N}{α|N}

{α|N} {α|b} {α|a}
{α|b} {α|N} {α|a}

♦ 

To work with  ρ(Σ,w), we use the following projections: (A+  
is the set of all non-empty strings of characters of  A.) 

Πa w|u := 

w  if  u ≠ N‚
∅  else‚  (onto adversarial value), and 

Πc w|u := u  for all  w|u ∈ B|(A+ U N) (onto control value). 

For two sets of strings  s1, s2 ⊂ B|(A+ U N), we define an 
operation  s1 ∨ s2  akin to union by using the difference set 

 s1 ∨ s2 := [s1 U s2] \ sN, 

where  sN  is the set of all elements  w|N ∈ s1 U s2  for which  
[w|A+] I [s1 U s2] ≠ ∅, i.e., all elements that appear both with  
N  and  non-N  control input strings. Next, concatenation of 
strings  w1|u1, w2|u2 ∈ B|(A+ U N)  is given by 

conc(w1|u1,w2|u2) := 
w1|u1u2  if  w1 = w2  and  u1‚ u2 ≠ N‚
w1|N‚ w2|N  otherwise.  

For subsets of strings  σ1, σ2 ⊂ B|(A+ U N): 

 conc(σ1,σ2) := ∨s1∈σ1‚s2∈σ2
 conc(s1,s2). 

Now, define an operation similar to matrix multiplication for 
two  n×n  matrices  P, Q  with entries in   B|(A+ U N): 

 (PQ)ij := ∨k=1,...,n conc(Pik,Qkj), i, j = 1, 2, ..., n. 

We can use the powers  ρk(Σ,w) = ρk–1(Σ,w)ρ(Σ,w), k = 1, 2, 
... The  i, j entry of  ρk(Σ,w)  consists of all strings  w|u  that 
take  Σ  from a stable combination with the state  xi  to a 
stable combination with the state  xj  in exactly  k  steps; if 

there is no such string, then  u = N. 

(4.7) EXAMPLE. Continuing Example 4.6: 

ρ2(Σ,α) = 






{α|aa,α|ab,α|ba,α|bb} {α|N} {α|N}

{α|ab} {α|bb}{α|ba,α|aa}
{α|ab,α|ba,α|bb} {α|N} {α|aa}

♦ 

The matrix of  m  stable transitions of  Σ  is defined by 

 R(m,Σ,w) := ∨i=1,...,m ρi(Σ,w);      (4.8) 

it characterizes all the transitions that can be accomplished in  
m  or fewer stable steps. Allowing  m  to grow indefinitely 
yields the extended matrix of stable transitions  R*(Σ,w) :=  
∨i ≥ 1 ρi(Σ,w)  that characterizes all stable transitions of  Σ. 
The next statement resembles MURPHY, GENG, and 
HAMMER [2003, Proposition 3.9]. 

(4.9) LEMMA. The following are equivalent for all integers  
m ≥ n–1  and all  i, j = 1, 2, ..., n. 
(i) The entry  Rij(m,Σ,w)  includes a string  w|u  with  u ≠ N. 
(ii) The entry  R*

ij(Σ,w)  includes a string  w|u  with  u ≠ N. ♦  

Thus, when  m ≥ n–1, the matrix  R(m,Σ,w)  characterizes all 
stable transitions of  Σ  for the adversarial input character  w. 

(4.10) DEFINITION. For the adversarial input uncertainty  ν, 
the one-step stable transitions matrix  ρ(Σ,ν)  is an  n×n  
matrix with entries  ρij(Σ,ν) := ∨w∈ν ρ(Σ,w), i, j = 1, 2, ..., n. ♦  

The matrix  ρ(Σ,ν)  includes all one-step stable transitions 
that are compatible with an adversarial input character in  ν. 

5. COMPLETE SETS OF STRINGS 

The next notion is critical for feedback control (compare to 
VENKATRAMAN and HAMMER [2006a, b, c]). 

(5.1) DEFINITION. Let  Σ  be an asynchronous machine 
with the adversarial uncertainty  ν, and let  xi, xj  be states of  
Σ. There is a feedback path from  xi  to  xj  if there is a state 
feedback controller that takes  Σ  from a stable combination 
with  xi  to a stable combination with  xj  in fundamental 
mode, given only that the adversarial input is within  ν. ♦  

Below, we develop a test to determine whether there is a 
feedback path from  xi  to  xj. If a feedback path exists, then 
an automatic controller can undo undesirable transitions from  
xj  to  xi. Note that, due to fundamental mode operation, the 
adversarial input remains constant along a feedback path. 

Adversarial uncertainty may decline along a feedback path, 
since the machine's response provides information about the 
adversarial input. For example, let the adversarial uncertainty 
be  ν = {w1, w2}, and let  s  be the stable recursion function 
of  Σ. Assume that  Σ  is at a stable combination with the state  
x  and the control input character  u, when the control input 
changes to  u′. We have two options for the next stable state: 

x′ := s(x,u′,w1)  when the adversarial input character is  w1;  
x″:= s(x,u′,w2)  when the adversarial input character is  w2. 

Clearly, if  x′ ≠ x″, then we can determine the adversarial 
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input character from the next stable state, resolving the 
uncertainty. Thus, the adversarial uncertainty may decline 
along a feedback path. To discuss the general case, we need 
some notation. Let  S ⊂ B|A+  be the set of all strings that 
take  Σ  from a stable combination with the state  x  to a 
stable combination with the state  x′, i.e., all strings  w|u = 
w|u0u1... ∈ B|A+  for which  s(x,u,w) = x′. For a string  σ = 
w|u0u1...uk ∈ S  and an integer  q ≥ 0, denote 

 σ|q := 
w|u0u1...uq  if  q ≤ k‚
w|u0u1...uk  if  q > k.  

The string  σ|q  takes  Σ  to a stable combination with the state  
xq := s(x,σ|q) := s(x,u0u1...uq,w), passing through the stable 
states  x0(σ) := s(x,σ|0), x1(σ) := s(x,σ|1), ..., xq(σ) := s(x,σ|q), 
where  x0(σ) = x  and  xk(σ) = x′. 

For a string  σ = w|u0u1...uk ∈ S, denote 

 Πp σ := 
up  for  p = 0‚ 1‚ ...‚ k‚
uk  for all  p > k.  

Now, let  Σ  be in a stable combination with the state  z  when 
the control input value changes to  u, and  let  z″  be the next 
stable state of  Σ. The set of all adversarial input characters  
w ∈ ν  compatible with the transition  s(z,u,w) = z″  is 

 sa(z,u,z″) := {w ∈ ν : s(z,u,w) = z″}.     (5.2) 

In particular, when  Σ  is at a stable combination with the 
initial state  x0 := x  and the control input character  u0, the 
adversarial input character  w  must satisfy 

 w ∈ ν(x0,u0) := sa(x0,u0,x0) I ν ⊂ ν      (5.3) 

Thus, ν(x0,u0)  is the true initial adversarial uncertainty. For 
the transition from  x0  to  x′  to be possible, S  must contain a 
path for each adversarial input character  w ∈ ν(x0,u0), i.e., 
we must have  ν(x0,u0) ⊂ Πa S. Otherwise, S  would be 
incompatible with potential adversarial inputs. Further, let  u1  
be a control input character, and define the set 

S(x0,u0u1) = {σ ∈ S : σ|1 = w|u0u1  for some  w ∈ B} 

of all strings of  S  whose control input starts with  u0u1. 
Clearly, u1  can be a next control character only if it is 
compatible with all possible adversarial inputs, i.e., only if 

 ν(x0,u0) ⊂ Πa S(x0,u0u1). 

Also, the pair  (x0,u1)  must be detectable to facilitate 
fundamental mode operation of the closed loop machine, 
since the controller must react at the next stable state. 

Now, let  x1  be the next stable state reached with the control 
input character  u1; the state  x1  can be read by the state 
feedback controller. The fact that  Σ  reached  x1  implies that 
the adversarial input value  w  must be within the set 

 ν(x0x1,u0u1) := sa(x0,u1,x1) I ν(x0,u0). 

Continuing in this way, suppose that we are at step  p  of the 
path. Let  u0u1...up  be the control input characters applied so 
far, and let  x0x1...xp  be the stable states  Σ  has passed as a 

result. The current uncertainty  ν(x0...xp,u0...up) ⊂ B  about 
the adversarial input value is called the residual adversarial 
uncertainty. By iterating the earlier steps, we get 

ν(x0...xp,u0...up) := sa(xp–1,up,xp) I ν(x0...xp–1,u0...up–1).     (5.4) 

Now, let  S(x0x1...xp,u0u1...up)  be the set of all strings  σ ∈ S  
having the control inputs  u0u1...up  and taking  Σ  through the 
stable states  x0, x1, ..., xp. For a control input character  d, 
denote by  S(x0x1...xp,u0u1...upd)  the set of all strings  σ ∈ 
S(x0x1...xp,u0u1...up)  that have the character  d  as their next 
control input character. Then, the set of all adversarial input 
characters compatible with  d  is  ΠaS(x0x1...xp,u0u1...upd). 
This set must be compatible with the residual adversarial 
uncertainty, namely, 

(5.5) LEMMA. The character  d ∈ A  can be used as the next 
control input character of the machine  Σ  only if  
ν(x0x1...xp,u0u1...up) ⊂ Πa S(x0x1...xp,u0u1...upd). ♦  

We show later that the condition of Lemma 5.5 is critical for 
the existence of a controller that automatically counteracts 
adversarial transitions. This leads us to the following. 

(5.6) DEFINITION. Let  S ⊂ B|A+  be a set of strings taking  
Σ  from a stable combination with the state  x0  to a stable 
combination with the state  x′. Then, S  is a complete set if 
the following hold for all  p = 0, 1, ... and for all control input 
characters  d ∈ Πp+1 S(x0x1...xp,u0u1...up): 
(i)  ν(x0x1...xp,u0u1...up) ⊂ Πa S(x0x1...xp,u0u1...upd), and 
(ii)  The pair  (xp,d)  is detectable with respect to the residual 
adversarial uncertainty  ν(x0x1...xp,u0u1...up). ♦  

A complete set of strings can be replaced by one of bounded 
length, as follows. (For a set of strings  S ⊂ B|A+, denote by  
|S|  the maximal length of a control input string in  S. For a 
finite set  Z, denote by  #Z  the number of elements in  Z.) 

(5.7) LEMMA. Let  Σ  be in a stable combination at the state  
x0  and the control input value  u0. If there is a complete set of 
strings from  x0  to  x′, then there also is such a complete set  
S  satisfying  |S| ≤ [#ν(x0,u0)](n – 1). 

Proof (sketch). Consider a string  σ = w|u = w|u0u1...uk ∈ S  
and let  x0x1...xk  be the stable states through which  Σ  passes 
as a result of receiving the control input string  u. Let  νi  be 
the residual uncertainty at step  i  of the path, where  ν0 := 
ν(x0,u0). Then, νi  is a monotone declining function of  i, and 
its minimal value is not less than  1. Divide the interval  [0, k]  
into segments of constant residual uncertainty  [0, i1], [i1+1, 
i2], ..., [im+1, k], where  νi  is constant over each one of these 
subintervals. Since  νi  is monotonously declining and its 
minimum cannot be less than  1, we get  m + 1 ≤ ν(x0,u0), or  
m ≤ ν(x0,u0) – 1. 

Now, if any of these subintervals  [i, i′]  has length  l ≥ n, 
then the string of states  xixi+1...xi′  must contain a repeating 
state, say  x := xp = xr, where  i ≤ p < r ≤ i+l. Since νp = νr  by 
construction, the control input value  up  can be replaced by 
the control value  ur  without disturbing the stable 
combination at step  p. Then, steps  p+1, p+2, ..., r  can be 
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eliminated from the string, yielding a new segment with the 
length of  l – (r – p). This process can be repeated again and 
again, until the length of the resulting segment is less than  n. 
Applying the same procedure to each one of the segments, we 
obtain a new path of length not exceeding  (m+1)(n–1) = 
[#ν(x0,u0)](n – 1). ♦  

This brings us to the main result of this section.  

(5.8) THEOREM. Let  Σ =  (A×B,X,f,ν)  be an asynchronous 
machine and let  x  and  x′  be two states of  Σ. Then, the 
following two statements are equivalent. 
(i) There is a state feedback controller  C  that drives  Σ  from 
a stable combination with  x  to a stable combination with  x′  
in fundamental mode operation. 
(ii) There is a complete set of strings  S ⊂ B|A+  taking  Σ  
from a stable combination with  x  to a stable combination 
with  x′. 

Proof (sketch). Assume that (ii) is valid. We use  S  to build a 
state feedback controller  F(x,x′,v)  which, upon receiving the 
external input character  v ∈ A, generates a string of control 
input characters that takes  Σ  from a stable combination with  
x0 := x  to a stable combination with  x′  in fundamental mode 
operation. To this end, let  Σ  be in a stable combination with  
x0, and pick a control input character  u1 ∈ Π1 S. Since  S  is 
a complete set of strings, (x0,u1)  is detectable with respect  
ν(x0,u0). Also, ν(x0,u0) ⊂ Πa S(x0,u0u1), so  u1  is compatible 
with all possible adversarial inputs. Denote by  Ξ  the state 
set of  F(x,x′,v), by  φ  the recursion function of  F(x,x′,v), 
and by  η  the output function of  F(x,x′,v); let  ξ0  be the 
initial state of  F(x,x′,v). We construct now  φ  and  η. 

Upon a detectable transition of  Σ  to  x0  with the control 
input character  u0, the controller moves to a stable 
combination with its state  ξ1, readying for controller action 
at the command  v. To this end, set 

 φ(ξ0,(z,t)) := ξ0  for all  (z,t) ≠ (x0,u0), 
 φ(ξ0,(x0,u0)) := ξ1, φ(ξ1,(x0,u0)) := ξ1. 

While in the states  ξ0  or  ξ1, the controller applies to the 
control input of  Σ  the external input it receives, namely 

 η(ξ0,(z,t)) := t, η(ξ1,(z,t)) := t  for all  (z,t) ∈ X×A, 

If, while at  ξ1, the controller  F(x,x′,v)  receives the external 
input character  v  (the command to start controller action), it 
moves to a stable combination with its state  ξ2: 

 φ(ξ1,(z,t)) := ξ1  for all  (z,t) ≠ (x0,v), 
 φ(ξ1,(x0,v)) := ξ2, φ(ξ2,(x0,v)) := ξ2. 

At  ξ2, the  F(x,x′,v)  applies the first character  u1  of the 
control input string that takes  Σ  to the state  x′, so we set 

 η(ξ2,(x0,t)) := u1  for all  t ∈ A. 

Since  S  is a complete set, u1  makes  Σ  move to the state  x1  
through a detectable transition. Whence, Σ  is in a stable 
combination when it reaches  x1. Upon detecting  x1, the 
controller moves to a stable combination with its state  ξ3: 

 φ(ξ2,(z,t)) := ξ2  for all  (z,t) ≠ (x1,u1), 
 φ(ξ2,(x1,v)) := ξ3, φ(ξ3,(x1,v)) := ξ3. 

At  ξ3, the controller applies the next control input value  u2 ∈ 
Π2 S(x0x1,u0u1): η(ξ3,(x1,t)) := u2  for all  t ∈ A. Since  S  is a 
complete set of strings, the pair  (x1,u2)  is detectable for the 
current adversarial uncertainty  ν(x0x1,u0u1)  and  ν(x0x1,u0u1) 
⊂ Πa S(x0x1,u0u1u2). We continue in this way until the 
controller  F(x,x′,v)  generates the last input character of the 
string, bringing  Σ  to  x′. By Lemma (5.7), the state  x′  can 
be reached in at most  (n – 1)[#ν(x0,u0)]  steps. 

Conversely, assume that (i) is valid, and let  F(x,x′,v)  be the 
corresponding controller. Let  S ⊂ B|A+  be the set of strings 
that  F(x,x′,v)  may generate for the various possible 
adversarial input characters. To show that  S  is a complete 
set, consider a control input string  u0u1...up  that  F(x,x′,v)  
applies to  Σ, and let  x0x1...xp  be the stable states through 
which  Σ  passes as a result. By (5.4), the adversarial 
uncertainty at step  p ≥ 0  is  ν(x0x1...xp,u0u1...up). By 
fundamental mode operation of the closed loop machine, the 
pair  (xp,up+1)  is detectable with respect to  
ν(x0x1...xp,u0u1...up). By Lemma 5.5, ν(x0x1...xp,u0u1...up) ⊂ 
Πa S(x0x1...xp,u0u1...upd). Hence, S  is a complete set. ♦  

An algorithm for finding complete sets of strings is described 
in YANG and HAMMER [2007]. We turn now to an 
important definition. By (5.3), we have  ν(x0,u0) ⊂ ν, so that  
#ν(x0,u0) ≤ #ν. Invoking Lemma 5.7, we conclude that a 
complete set of strings  S  can always be selected so that 

 |S| ≤ (n – 1)(#ν).          (5.9) 

Recalling the matrix  R(m,Σ,w), taking  m = (n – 1)(#ν),  and 
including all adversarial characters of  ν, we arrive at the 
following. 

(5.10) DEFINITION. The  n×n  matrix 
R(Σ,ν) := ∨w∈ν R((n–1)(#ν),Σ,w) 

is the combined matrix of stable transitions of an 
asynchronous machine  Σ  with adversarial uncertainty  ν. ♦ 

Considering (5.9), Lemma 5.7, and Theorem 5.8, we reach 
the following conclusion. 

(5.11) CORROLARY. Let  Σ  be an asynchronous machine 
with adversarial uncertainty  ν  and state set  X = {x1, ..., xn}. 
The statements below are equivalent for all  i, j = 1, 2, ..., n: 
(i) There is a state feedback controller that takes  Σ  from a 
stable combination with  xi  to a stable combination with  xj  
in fundamental mode operation. 
(ii) The  i, j  entry of  R(Σ,ν)  includes a complete set of 
strings. ♦  

6. COUNTERACTING ADVERSARIAL TRANSITIONS 

Let  Σ  be an asynchronous machine at a stable combination  
(x,u,w), when the adversarial input character switches to  w′. 
An adversarial transition occurs if this switch causes  Σ  to 
move to a new stable state  x′ ≠ x. In this section, we discuss 
state feedback controllers that automatically counteract 
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adversarial transitions. In order to operate in fundamental 
mode, it must be possible for the controller to determine from 
the state of  Σ  whether or not it has reached the next stable 
state. The following is analogous to Definition 4.3. 

(6.1) DEFINITION. Let  Σ  be at a stable combination with 
the state  x  and the control input character  u. The pair  (x,u)  
is adversarially detectable if, after an adversarial transition, it 
can be determined from the current state of  Σ  whether or not  
Σ  has reached its next stable state. ♦  

Assume then that  Σ  is at a stable combination  (x,u,w), when 
the adversarial input character changes to  w′, causing  Σ  to 
move to a stable combination with the state  x′ ≠ x. This 
transition may consist of a number of intermediate steps, say  
x0 := x, x1 := f(x0,u,w′), x2 = f(x1,u,w′), ..., xq := f(xq–1,u,w′) = 
x′, xq := f(xq,u,w′). Similarly to (4.1) and (4.2), we denote 

 

θ(x‚u‚w′) := x1...xq‚
θ[x‚u‚ε] := {θ(x‚u‚w′) : w′ ∈ ε}.      (6.2) 

The following has a proof similar to that of Theorem 4.4. 

(6.3) THEOREM. The two statements are equivalent: 

(i) The pair  (x,u)  is adversarially detectable with respect to 
the adversarial uncertainty  ν. 
(ii) States of the set  sν(x,u)  appear only at the end of strings 
belonging to  θ[x,u,ν]. ♦  

To guarantee fundamental mode operation of the closed loop 
machine, the use of the machine  Σ  must be restricted to 
adversarially detectable pairs. This leads us to the following 
notion. (For a string  σ = w|u1u2...uq ∈ B×A+, denote by  Π+

c σ 
:= uq  the last control input character of the string.) 

(6.4) DEFINITION. Let  Σ  be an asynchronous machine 
with  n  states, adversarial uncertainty  ν, and combined 
matrix of stable transitions  R(Σ,ν). The reduced matrix of 
stable transitions  Rr(Σ,ν)  is obtained by removing from each 
column  j = 1, 2, ..., n  of  R(Σ,ν)  all strings  σ  for which the 
pair  (xj,Π+

c σ)  is not adversarially detectable. ♦  

(6.5) EXAMPLE. In Example 2.2, Σ  has only one 
adversarial transition: (x1,b,α) → (x1,b,β) → (x2,b,β). Then, 
θ[x1,b,α] = x1  and  θ[x1,b,β] = x2, so θ[x1,b,ν] = {x1, x2}. 
Also, sν(x1,u) ={x1, x2}  here. Thus  (x1,b) is adversarially 
detectable by Theorem a381, and  Rr(Σ,ν) = R(Σ,ν). ♦  

The set of adversarial input characters that give rise to an 
adversarial transition from a stable combination with the pair  
(xs,u)  to a stable combination with the pair  (xt,u)  is  

 ν(xs,xt,u) := sa(xs,u,xt) I ν.       (6.6) 
Here, a transition occurs if and only if  ν(xs,xt,u) ≠ ∅. We can 
state now the main result of this section; the proof is similar 
to that of Theorem 5.8. 

(6.7) THEOREM. Let  Σ  be an asynchronous machine with 
the state set  {x1, x2, ..., xn}  and the reduced matrix of stable 
transitions  Rr(Σ,ν), and let  xs  and  xt  be states for which  
ν(xs,xt,u) ≠ ∅. Then, the following are equivalent: 

(i) There is a state feedback controller that automatically 
reverses an adversarial transition from the state  xs  to the 
state  xt  in fundamental mode operation. 
(ii) The entry  Rr

ts(Σ,ν)  includes a complete set of strings 
with respect to the adversarial uncertainty  ν(xs‚xt‚u). ♦  
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