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Abstract: Inverse flexible dynamics control (IFDC) and fuzzy logic system adaptive 
control (FLSAC) strategies are used to track the end effector of a flexible space robot 
with sensors collocated at the joints, noncollocated at the end effector and 0.5m from the 
elbow joint on link 2. Collocated joint sensors satisfy hyperstability conditions but fail to 
capture nonminimum phase (NMP) response that generates time-delays causing 
asynchronous control action. Noncollocated sensors capture NMP response but require 
time delay compensation to achieve synchronous control action. Results for IFDC are 
insignificant compared to those achieved with FLSAC.  Copyright © 2008 IFAC 
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1. INTRODUCTION 
Long slender flexible multibody space robot 
manipulators present great difficulty in tracking control 
during spacecraft operations. Ideally a sensor located at 
the end effector captures true position data but presents 
NMP response time-delayed feedback signals. Precise 
control requires either synchronization of control action 
to compensate for time-delayed feedback signals or 
suppression of the flexible link vibrations. IFDC and 
FLSAC strategies with NMP time delays and time-
delayed control action are compared in the control of a 
two-link flexible robot with collocated and noncollocated 
sensors tracking a 12.6m x 12.6m square trajectory with 
the shoulder joint at its centre. Abrupt orthogonal 
direction switches generate large amplitude transient 
flexural vibrations to demonstrate the effect of both 
strategies. 
The contribution in this paper is shown by the significant 
reduction in vibration and NMP response and greater 
tracking control precision achieved using a FLSAC 
strategy for a sensor located at the end effector and 0.5m 
from the elbow joint on link 2 where the influence of link 
1 endpoint vibration is severe. In comparison the use of 
an IFDC strategy with time-delayed control action only 
to compensate for NMP response is ineffective.  
Green and Sasiadek (2005a) use a fuzzy logic system 
(FLS) to adapt the control law for a flexible robot. Green 
and Sasiadek (2005b) compare IFDC and FLSAC control 
strategies with NMP time delay and synchronized control 
action for sensors located at the end effector and 2.25m 
from the end effector of a two-link flexible robot. Results 

show stable trajectories for both strategies but a 
significant reduction in vibration amplitude and NMP 
response is achieved with FLSAC. Stieber et al (1997) 
propose an extended hyperstability control concept for a 
flexible robot with conventional hyperstable control 
sensors used in conjunction with performance sensors to 
enable vision-based stable control of large flexible space 
robot manipulators,. The strategy effectively overcomes 
the restrictions of conventional hyperstable control. Liang 
and Balas use a reduced-order model and Popov’s 
hyperstability theory to represent large space structures 
(LSS) with four vibration modes. Direct MRAC 
simulation results for a single-link flexible robot 
manipulator with angular displacement sensors located at 
the hub, midlink and the endpoint show excellent model 
following, flexibility in choice of adaptive laws and 
avoidance of difficulties in using Lyapunov’s stability 
function. Karkoub et al (1995) perform theoretical and 
experimental studies on a single-link flexible manipulator 
using the μ-synthesis control method. Feedback control 
experiments use a collocated hub angle sensor, hub angle 
and endpoint acceleration sensors, and hub and endpoint 
sensors for which the hub angle specification is relaxed to 
reduce hub response overshoot. Results validate the two 
theoretical noncollocated sensor designs as dramatically 
improving control and robustness over the collocated hub 
angle sensor. Ryan, Kwon and Hannaford (2004) propose 
a time-domain passivity-control approach to a single-link 
flexible manipulator with noncollocated sensor feedback.  
Simulation results show time-domain passivity-control to 
be effective for both large and small tip displacements.  
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Nonminimum phase response is an inherent problem with 
flexible robot control. The phenomenon occurs when 
torque actuates a robot joint, induces flexure and 
momentary acceleration of the end effector in a direction 
opposite in sense to that commanded with time-delayed 
position feedback causing asynchronous control action. 
The delay is the length of time for a mechanical wave to 
propagate through the link from joint to end effector. In 
analytical control theory this behaviour occurs when 
transfer function zeros exist in the right half s-plane and 
termed a phase shift or, transport lag, between the 
actuator and end effector. The zero-dynamics must be 
asymptotically stable for a minimum-phase system with 
transfer function zeros occurring in the left half plane. 
Otherwise, NMP response occurs and may become 
unstable. Hence, some form of zero-dynamics control is 
required to stabilize the system. Control strategies 
including; integral manifolds, input-output decoupling, 
observer-based decoupling and inverse dynamics sliding 
mode have resulted in robust closed-loop performance 
and reduced end-effector position tracking errors, but at 
increased control system complexity and computational 
time unsuitable for real-time applications, Slotine and Li 
(1991). Associated with NMP response is the distance 
between sensor and actuator. Noncollocated sensors are 
located at some position on the robot links to measure its 
position. Collocated sensors are mounted at robot joints 
to measure rotation angle displacements and are more 
suited for fixed-base rigid-link robots operating at speeds 
where flexibility is insignificant. Flexible robots exhibit 
significant deformation at the end effector necessitating 
accurate control by adjusting for phase shift between 
actuator and end effector, Alexander (1988). When a 
sensor is collocated with a joint actuator on a flexible 
robot it is a hyperstable system. Hyperstable systems 
require; sensors and actuators equal in number, matching 
types of sensors and actuators and sensor/actuator 
collocation, (Stieber et al 1997, Liang and Balas 1990). 
But, these conditions detract from proper control of 
flexible robots. The flexible robot dynamics in (6) and (7) 
for the dominant mode of vibration and a noncollocated 
sensor are considered stable by the Routh-Hurwitz 
criterion, Stieber et al (1997). 

2. FLEXIBLE ROBOT 
The flexible robot shown in Fig. 1 has planar motion and 
vibration modes. Gravity and friction are omitted. 
Lengths of each flexible link L1 = L2 = 4.5m; flexural 
rigidity EI = 1676 N-m2 and link mass density ρ = 0.335 
kg/m. 

Flexible Dynamics 
Closed-form Euler-Lagrange flexible dynamics equations 
model the robot in terms of its kinetic and potential 
energies and include link flexibility based on the 
dominant assumed mode for an Euler-Bernoulli 
cantilever beam coupled with rotating rigid-link 
dynamics. Given an independent set of generalized 
coordinates, q = q1, q2, the total kinetic energy T and  
potential energy U of the system is defined by the  
Lagrangian (De Luca and Siciliano 1991): 

 

( )q , q = T - Ui iL ,      i = 1, 2                (1) 

 
 

       
 

Fig. 1.  Flexible robot. 
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When a generalized force vector F acts on generalized 
coordinates q the dynamic equations of motion are given 
by: 

d - =dt
∂ ∂
∂ ∂

Fq q
L L                        (2) 

Achieving accurate tracking control of a two-link robot is 
compounded by distributed flexibility of its links, 
flexural vibrations and NMP response. For precision 
control the residual vibrations must be suppressed while 
compensating for NMP response (Moallem et al 2000, 
Slotine and Li 1991). Assumed modal expansions are 
used in the derivation of the Euler-Lagrange equations to 
model each link as an Euler-Bernoulli cantilever beam. 
Assumed modes accommodate changes in configuration 
during operation, whereas natural modes must be 
continually recomputed. Elastic deformations of the robot 
links are modeled by a finite series of space-dependent, 
admissible functions, multiplied by a specific set of time-
dependent amplitude functions, resulting in a deformation 
function. A chosen set of admissible functions should 
satisfy, at least, the flexible robot geometric boundary 
conditions and form basis functions applying throughout 
its operational workspace, provided the boundary 
conditions are consistent. An approximate deformation of 
the robot links subjected to transverse vibrations is given 
by, Thomson (1981): 
 

                     
n

u(x, t) = (x)q (t)i ii=1
ϕ∑                         (3) 

 
where;  ϕi(x) are assumed mode shapes. 
From transverse beam vibration theory, cantilever mode 
shapes are given by: 

ci ci ci ci ci ci(x) = A [coshλ x - cosλ x - k (sinhλ x - sinλ x)]ϕ   
(4) 

where; A = 0.1 is an arbitrary constant, ciλ L = (i - 0.5)π ,  
i = 1,……,n are numerically approximated roots of the  
characteristic equation cos(λciL)cosh(λciL) + 1 =  0 and  

ci ci ci cicik = cosλ L+coshλ L sinλ L+sinhλ L . 
Modal frequencies are given by: 
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                       2 4
ci ci ρLω = (λ L) EI                         (5) 

 
Using the deformation function u(x, t) given in (3) for an  
Euler-Bernoulli cantilever beam the Euler-Lagrange 
flexible robot dynamics matrix equations are given by: 
  

             ( ) ( )    += + Kτ M q q C q , q q               (6) 
 
M is a matrix of rigid and flexible-link inertia elements, 
C is a matrix of rigid Coriolis and centrifugal forces, K is 
a stiffness matrix and q is a generalized coordinate vector 
of joint angles and elastic deformations. Because of the 
orthogonality properties of assumed modes second-order 
terms of interacting elastic modes can be neglected and 
elastic components may be omitted in ( ),C q  q  that 

simplifies to  for rigid dynamics. Alternatively, 
(6) may be expressed as: 

(r ,C θ  θ)

 

( ) ( )r ,
,    

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
= + +

C θ  θτ θ 0 0 θ
M θ δ

0 0 δδ 0 K

2

y

       (7) 

 
Where; the zero-dynamics are system internal dynamics 
for which the input and output of the system is identically 
zero. The internal dynamics of the flexible robot include 
elastic deformations of the links δi, Moallem et al (2000).  

3. CONTROL STRATEGIES 
Inverse flexible dynamics control (IFDC) 
The IFDC strategy is shown in Fig. 3. Torque feeds into 
the flexible dynamics equations and actuates each robot 
joint for acceleration output. Slew angles θ1 and θ2 and 
flexural deformations δi, i = 1, 2, feed back into the 
flexible dynamics equations and θ1 and θ2 also transform 
into x and y end effector positions in (8) and (9). Slew 
angles θ1 and θ2 and slew rates  feed back to form 

position errors ex and ey, and velocity errors . 

Rigid-link robot kinematics equations relating end- 
effector positions x and y to joint angles θ1 and θ2 are 
given by:  

1
θ , θ

x
 ande e

( ) ( )1 1 2 1 2
x = L cos θ + L cos θ + θ                (8) 

( ) ( )1 1 2 1 2
y = L sin θ + L sin θ + θ                 (9) 

Position and velocity errors are multiplied by 
proportional and derivative (PD) gains, Kp and Kd to 
compute a Jacobian transpose control law given by.  

                 (10) ( )T x +p dy y
=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

e e
τ J θ K K

e e
x

Proportional and derivative gains for the dominant 
cantilever assumed mode frequency ωc1 are given by. 

Kp = 2 2
c1 c1

diag ω ω⎡ ⎤
⎣ ⎦  = [ ]diag 150 79,150.79.          (11)   

   Kd = c1 c1
diag 2ζω 2ζω⎡ ⎤⎣ ⎦ = [ ]diag 17 364,17.364.    (12) 

Where, ωc1 = 12.28 Hz and damping ratio ζ  = 0.707. 
Using (8) and (9) the Jacobian J is derived as: 

  

1 2

1 2

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2+ cos cos

x x

θ θ
=

y y

θ θ

-L sinθ - L sin(θ + θ ) - L sin(θ + θ )
=

L sinθ L (θ + θ ) L (θ + θ )

∂ ∂

∂ ∂

∂ ∂

∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

J
   (13) 

Fuzzy logic system adaptive control (FLSAC) 
The Mamdani FLS shown in Fig. 4 is developed 
intuitively with three membership functions (MF), i.e. 9 
rules for input and output variables shown in Fig. 2 (a) 
and (b). 

 
                      (a)                                          (b) 
Fig.  2.  Fuzzy membership functions: (a) δi, i = 1, 2, 
        (b) Output variableλ. 
 
Universes of discourse range from -5m to 5m for δ1 and 
δ2 and from 0 to 1 for λ. Verbal descriptors for positive 
maximum (PMAX), positive very very high (PVVH), 
positive very high PVH), positive high (PH), positive 
medium (PM), positive low (PL), positive very low 
(PVL), positive very very low (PVVL), positive (P), zero 
(ZERO), negative very high (NVH), negative high (NH), 
negative medium (NM), negative low (NL), negative 
very low (NVL) and negative (N) are used to generate 
fuzzy rules typically of the form. ‘IF δ1 is NL AND δ2 is 
PL THEN λ is PM’. The FLS uses antecedent 
composition (MIN), implication (MIN), aggregation 
(MAX) and defuzzification (CENTROID). Elastic link 
deformations δ1 and δ2 vary positively or negatively and 
either complement or counter deformation of the other 
link to produce a resultant deformation within a range 
from ZERO for zero deformation to PMAX for the 
largest deformation. 
  

Table 1 Fuzzy logic system rule matrix for three 
triangular membership functions (9 rules). 

 
   δ2  
  

λ
N ZERO P 

 N PMAX PM PMAX 
        δ1   ZERO PM ZERO PM 
 P PMAX PM PMAX 
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These link interactions enable formation of the symmetric 
fuzzy rule matrix given in Table 1.  
The value of λ is determined by the fuzzy rules according 
to the values of δ1 and δ2 whose MF base widths are 
adjusted by Ks to adapt the Jacobian transpose control 
law. For example, as link 1 rotates it experiences 
acceleration and deceleration, interacts with link 2 and 
excites vibration and variation of δ1 through N, ZERO 
and P. Link 2 rotates and also excites vibration and 
variation of δ2 through N, ZERO and P. The fuzzy rule 
matrix in Table 1 is designed such that when δ1 and δ2 
fall into either P or N the value of λ is always PMAX, i.e. 
λ = 1, and adapts the control law to the maximum for 
each joint. Fuzzy rules with either δ1 or δ2 being ZERO 
produce a value of λ < 1, i.e. PM, to adapt the control law 
by a value between ZERO and PMAX for each joint 
actuator. For both δ1 and δ2 at ZERO the control law 
adaptation is minimal or zero. Values of δ1 and δ2 are 
normalized by gain Kn = 5 before entering the FLS [2]. 
The adaptive form of τr in (14) is given by [2]. 

        ( )T x x
s p dr y y

+= λK
⎧ ⎡ ⎛ ⎞ ⎛ ⎞⎪
⎨ ⎢ ⎜ ⎟ ⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠⎣⎩

e e
J θ K Ke eτ

⎫⎤⎪
⎬⎥
⎪⎦⎭

          (14) 

The control strategy shown in Figs. 3 and 4 is used to 
demonstrate control with a noncollocated sensor as joint 
angles and rates are transformed into end-effector 
positions and velocities for control law computation. 
Time delays are implemented in the feedback loop to 
model the effect of NMP because there is no provision 
for traveling wave velocity and associated time delays in 
the robot dynamics equations and the system output 
variables are joint rotation angles and link deformations. 
Therefore, it is necessary to model sensors located at 
points on the links by including direct kinematics 
equations with link lengths, L1 and L2, as the distance 
between joint and sensor to feedback x and y coordinate 
measurements of the sensor. Direct kinematics equations 
for the end effector are also included to track the end 
effector trajectory. Transport delay blocks (not shown) 
are implemented in Matlab/Simulink™ models. NMP 
response is corrected by time delays for command signals 
input to the control law. Time delays are calculated using 
the transverse beam vibration traveling wave velocity c 
given by. 

          
E

c =
ρ

   =  
1745833

288.33
21

=  m/s       (15) 

Delay time from joint 1 to end effector for two link 
lengths, i.e. 9m, is given by: 

                      
1d

9
t 0.0312s

288.33
= =                       (16) 

Average trajectory simulation time is 402s for 16000  
simulation steps (ss) at 0.001step size, i.e. 0.0252s per 
step. 
 
∴  Simulation delay time from joint 1 to end effector: 

                     
1

0.0312
d 1.

0.0252
= = 238ss                          (17) 

Delay time from joint 2 to end effector for one link length 
of 4.5m is given by: 

                     
2d

4.5
t 0.0156s

288.33
= =                      (18) 

∴  Simulation delay time from joint 2 to end effector: 

                     
2

0.0156
d 0.619ss

0.0252
= =                        (19) 

Similarly, delay times and simulation delay times for 
position sensor locations 5.0m from joint 1 (0.5m from 
joint 2) are; 0.01734s, 0.688ss (0.001734s, 0.0688ss).  

 4. SIMULATION RESULTS 
Tracking results for a collocated sensor, a noncollocated 
sensor at the end effector and NMP correction are shown 
superposed in Fig. 5 (a) for IFDC and Fig. 5 (b) for 
FLSAC. Tracking starts at the lower left corner and 
proceeds clockwise. The IFDC strategy produces 
pronounced overshoots at each direction, whereas the 
FLSAC strategy improves tracking for both collocated 
and noncollocated sensors. The overshoot at the second 
(top right) direction in Fig. 5 (a) switch shows a distinct 
rightward shift attributable to the asynchronous control 
action in response to time-delayed end-effector positions. 
The remainder of the trajectory exhibits minimal 
difference between collocated, noncollocated (NMP) and 
NMP corrected case. Trajectories zoomed at the first (top 
left) direction switch of Figs. 5 (a) and (b) are presented 
in Figs. 6 (a) and (b) to show the differences between the 
three cases for IFDC and FLSAC strategies. The 
trajectory for the IFDC noncollocated (NMP) case has a 
greater amplitude than for the collocated case. But, the 
amplitude for the NMP corrected case is even greater 
thereby demonstrating a true representation of NMP 
response to control action. 
In contrast, results shown in Fig. 5 (b) for the FLSAC 
strategy demonstrate minimal difference between 
noncollocated (NMP) and NMP corrected amplitudes but 
a large difference between them and the amplitude for the 
collocated case. However, the FLSAC strategy 
significantly reduces the amplitudes for all three cases. 
Hence, flexural vibrations are suppressed for greater 
tracking precision while stability is maintained.  
Sensor locations on link 2 are modeled by different 
values of L2 substituted into (8) and (9). For the sensor 
located 0.5m from the elbow joint a circular trajectory is 
obtained as shown in Figs. 7 (a) and (b). For IFDC the 
trajectory exhibits erratic vibratory tracking behavior 
shown in Fig. 7 (a), whereas FLSAC produces a smooth 
circular trajectory shown in Fig. 7 (b). The difference 
between noncollocated (NMP) and NMP corrected 
results is minimal for both control strategies. All 
trajectories shown in Figs. 5 (a), (b), 6 (a), (b) and 7 (a), 
(b) are stable. Results confirm the FLSAC strategy is 
effective in suppressing link vibration, provides enhanced  
tracking control and maintains stability for noncollocated 
sensors especially located at the end effector which is of 
primary interest. Hyperstability conditions are 
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circumvented. Simulation clock times are 1 min 17 sec 
for IFDC and 1 min 40 sec for FLSAC. 

  5. CONCLUSION 
IFDC with NMP time-delay synchronized control action 
has a minimal effect in compensating for NMP response 
or reducing vibration amplitude. In contrast, FLSAC 
effectively suppresses link flexural vibrations and 
enhances tracking control with noncollocated sensors. 
Tracking stability is maintained while hyperstability 
constraints are circumvented.  
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Fig. 3.  IFDC strategy. 
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(a) (b) 
 
Fig. 5. (a) IFDC with collocated sensor, sensor at end effector and NMP corrected, (b) FLSAC with collocated sensor,      
        sensor at end effector and NMP corrected. 
 
 
 

                                       
 

(a) (b) 
 
Fig. 6. (a) IFDC with collocated sensor, sensor at end effector and NMP corrected (zoomed at first direction switch),  
        (b) FLSAC with a collocated sensor, sensor at end effector and NMP corrected (zoomed at first direction switch). 

 
 
 

 
 

                       
 

                                       (a)                                                                               (b) 
 
Fig. 7. (a) IFDC with collocated sensor, sensor at 0.5m from elbow joint and NMP corrected, (b) FLSAC with a     
         collocated sensor, sensor at 0.5m from elbow joint and NMP corrected. 
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