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Abstract: The parameter identification for problems where losses arising from overestimation and 

underestimation are different and can be described by an asymmetrical and polynomial function, is 

investigated here. The Bayes decision rule allowing to minimize potential losses is used. Calculation 

algorithms are based on the nonparametric methodology of statistical kernel estimators, which frees the 

method from distribution type. Three basic cases are considered in detail: a linear, a quadratic, and finally 

a general concept for a higher order polynomial – here the cube-case is described in detail as an example. 

For each of them the final result constitutes a numerical procedure enabling to effectively calculate the 

optimal value of a parameter in question.  

 

1. INTRODUCTION  

Besides classic or trivial cases, the creation of an ideal model 

for an object under automatic control is neither possible, nor 

even required, as it would be far too complicated for effective 

use (Morrison, 1991; Nusse and Yorke, 1997; Soderstrom 

and Stoica, 1994). Consequently, absolutely precise 

determination of the values of parameters contained within is 

impossible, not only from a metrological point of view, but 

also due to the fact that such a value does not even exist, 

while a considered parameter represents an entire range of 

phenomena impossible to describe in a form of a single 

number. As identification is in practice always subject to a 

higher goal (usually conditioned by the control algorithm), 

then more suitable results can be obtained thanks to the 

consideration, in the estimation of the parameters’ values, of 

the losses implied through errors encountered here. Often 

such losses can be described by the function assuming the 

following asymmetrical and polynomial form:  
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with }0{\N∈k , where the coefficients a  and b  are 

positive, and may differ, while x  and x̂  denote the 

parameter under consideration and its estimator, respectively. 

Consider therefore the typical situation when one has m  

values of the investigated parameter 1x , mxx ,...,2 , obtained 

by measuring or directly with the aid of auxiliary quantities. 

In this paper, the uncertainty of the examined parameter is 

considered with a probabilistic approach. The nonparametric 

methodology of statistical kernel estimators will be applied to 

identify the distribution of probability measure, which makes 

the result independent of arbitrary assumptions concerning 

the type of this distribution. An algorithm based on the Bayes 

decision rule is investigated, which allows to obtain minimal 

expectation value for potential losses. The proposed 

procedure is universal and can be applied in a wide range of 

tasks, not only in the field of engineering. Furthermore the 

worked out method can be used for other uncertainty 

approaches apart from that of probability, e.g. fuzzy logic. 

Three basic cases will be investigated in the following: linear 

(Section 3.1), quadratic (Section 3.2), and higher order 

polynomial (Section 3.3) – here the cube-case will be 

described in detail. In every case the final result will be an 

algorithm for the calculation of values for an optimal 

estimator, ensuring that its practical implementation does not 

demand of the user detailed knowledge of the theoretical 

aspects, or laborious research and calculations.  

2. MATHEMATICAL PRELIMINARIES  

2.1. Bayes Decision Rule  

The main aim of decision theory is the selection of a concrete 

decision based only on a representation of measure 

characterizing the imprecision of states of nature. The one-

dimensional case will be considered in the following. Let 

there be given the nonempty set of states of nature R=Z , 

and the nonempty set of possible decisions R⊂D . Assume 

that the imprecision of states of nature is of probability type 

and its distribution is described by the density 

)[0, : ∞→Rf . Let there be given also the loss function 

}{: ∞±∪→× RZDl , while its values ),( zdl  can be 

interpreted as losses occurring in a hypothetical case, when 

the state of nature is z  and the decision d  is taken. If for 

every Dd ∈  the integral ∫R zzfzdl d)( ),(  exists, then the 

Bayes loss function }{: ∞±∪→ RDlB  can be defined as  
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Every element Dd B ∈  such that )(min)( dldl B
Dd

BB
∈

=  is 

called a Bayes decision, and the above procedure – a Bayes 

decision rule. The Bayes decision minimizes the mean value 

of losses following the decision d . Further details are found 

in (Berger, 1980). 

2.2. Statistical Kernel Estimators  

Let the one-dimensional random variable X, with a distribution 

having the density f, be given. Its kernel estimator 

),0[ :  ˆ ∞→Rf  is calculated on the basis of the m-element 

random sample 1x , mxx  , ... ,2  acquired experimentally from 

the variable X, and is defined in its basic form by the formula  
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where the function ),0[ : ∞→RK  measurable, symmetrical 

relative to zero, with a weak global maximum at this point, 

and fulfilling the condition ∫ =
R

1d )( xxK , is called a kernel, 

whereas the positive coefficient h  is known as a smoothing 

parameter. It should be stated that the kernel estimators allow 

the identification of density of practically any distribution, 

without an arbitrary assumption concerning its type.  

Fixing values introduced in definition (3), i.e. choosing the 

form of the kernel K and calculating the smoothing parameter 

h value, is mostly carried out using the mean square criterion.  

Thus, from the statistical point of view, the form of the kernel 

seems not to have essential meaning, thanks to which it 

becomes possible for the choice of the function K to be 

arbitrary, taking into account above all required properties of 

the estimator obtained, e.g. class of regularity, positive 

values, or other qualities important in the case of a particular 

problem, especially the convenience of calculations.  

As opposed to the form of the kernel, the value of the 

smoothing parameter has significant influence on the quality 

of the estimator obtained, but fortunately many convenient 

algorithms have been developed. For the one-dimensional 

case considered here, the direct plug-in method is strongly 

recommended – for details see (Kulczycki, 2005, Section 

3.1.5; Wand and Jones, 1995, Section 3.6.1).  

Practical tasks call for the application of various useful 

procedures, which generally improve the quality of 

estimation, as well as other – facultative – suiting a model to 

fit the reality under research. For the needs of the problem 

considered hereinafter, modification of the smoothing 

parameter (Kulczycki, 2005, Section 3.1.6; Silverman, 1986, 

Section 5.3.1) is strongly recommended from the first type of 

procedures, while from the latter, the boundaries of a support 

of continuous variable X  (Kulczycki, 2005, Section 3.1.8; 

Silverman, 1986, Section 2.10) may be also applied.  

Detailed descriptions of the statistical kernel estimators 

methodology are found in (Kulczycki, 2005; Silverman, 

1986; Wand and Jones, 1995) as well as – with exemplary 

applications in systems research and industry – in (Kulczycki, 

2007, 2008).  

3. ALGORITHM  

3.1. Linear Case  

As an example illustrating the investigations presented in this 

section, an optimal control problem will be considered. Such 

systems have shown themselves in practice to be very 

sensitive to the inaccuracy of modeling, which was – in fact – 

the main limit of their applications. The control performance 

index which exists here, however, can also refer to quality of 

identification allowing the creation of an optimal procedure 

for estimation of model parameter values, thereby notably 

lowering this sensitivity.  

Thus, consider the following dynamic system:  
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where the positive parameter m  represents a mass submitted 

to a force according to Newton’s second law of dynamics. 

Then 1x , 2x  and u  denotes position and velocity of the 

mass, and the force regarded here as a control, respectively. 

Such a system constitutes a basis for the majority of research 

in the field of robotics, leading in consequence to much more 

complex models, specifically suited to the particular problem 

under investigation. Consider the time-optimal control task, 

the basic form of which consists of bringing the system’s 

state to the origin, in minimal and finite time, assuming the 

control values are bounded. For details see the classic 

textbook (Athans and Falb, 1966, Chapter 7). Fundamental 

meaning for phenomena existing in the control system lies in 

proper identification of value of the parameter m . The 

control is defined in relation to the value of the estimator m̂ , 

actually different from the value of the parameter m  in the 

object. Detailed analysis is found in (Kulczycki and 

Wisniewski, 2002).  

In the purely hypothetical case of mm =ˆ , i.e. when the value 

of the estimator of this parameter is equal to its true value, the 

process is regular in character. The system’s state reaches the 

origin in minimal and finite time. However, in the event of 

overestimation (i.e. mm <ˆ ), over-regulations occur in the 

system – its state oscillates around the origin and reaches it in 

a finite time, albeit larger than the minimal. Next, in the case 

of underestimation (i.e. when mm >ˆ ), the system’s state 

moves along a so-called sliding trajectory and finally reaches 

the origin in a finite time, again larger than the minimal. 

Figure 1 shows the graph of the performance index for values 
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of the estimator m̂ . One can note that an increase in this 

index is roughly proportional to the estimation error 

|ˆ| mm − , although with different coefficients for positive and 

negative errors. The resulting losses can so be described in 

the form of an asymmetrical linear loss function, i.e. given by 

formula (1) with 1=k .  

 

Fig. 1. Performance index J  for values of the estimator m̂ , 

with 1=m  

The parameter under investigation, whose value is to be 

estimated, will be denoted by x . In order to adhere to the 

principles of decision theory presented in Section 2.1, it will 

be treated here as the value of a random variable. According 

to point estimation methodology, it is assumed that the 

metrologically achieved measurements of the above 

parameter, i.e. 1x , mxx , ... ,2 , are the sum of its “true” 

(although unknown) value and random disturbances of 

various origin. The goal of this research is the calculation of 

the estimator of this parameter (hereinafter denoted by x̂ ), 

which would approximate the “true” value – the best from the 

point of view of a practical problem investigated. In order to 

solve this task, the Bayes decision rule will be used, ensuring 

a minimum of expectation value of losses. According to the 

conditions formulated above, the loss function is assumed in 

asymmetrical linear form:  
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while the coefficients a  and b  are positive and not 

necessarily equal to each other. Thus, the Bayes loss function 

(2) is given by the formula  
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where ),0[: ∞→Rf  denotes the density of distribution of a 

random variable representing the uncertainty of states of 

nature, i.e. the parameter in question. It is readily shown that 

the function Bl  fulfils its minimum for the value being a 

solution of the following equation with the argument x̂ :  
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Since 1)(0 <+< baa , a solution for the above equation 

exists, and if the function f  has connected support, e.g. it is 

positive, this solution is unique. Moreover, thanks to equality 
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  , (8) 

it is not necessary to identify the parameters a  and b  

separately, rather only their ratio.  

The identification of the density f  present in condition (7) 

will be carried out using statistical kernel estimators, 

presented in Section 2.2. Then one should choose a 

continuous kernel of positive values and also so that the 

function RR →:I  such that ∫ ∞−
=

x
yyKxI d)()(  can be 

expressed by relatively simple analytical formula. In 

consequence, this results in a similar property regarding the 

function RR →:iU  for any fixed mi  , ... 2, ,1=  defined as  
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Then criterion (7) can be expressed equivalently in a form of  
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If the left side of the above formula is denoted by )ˆ(xL , its 

derivative is simply  

)ˆ(ˆ)ˆ( xfxL =′   , (11) 

where f̂  was given by definition (3). In this situation, the 

solution of criterion (7) can be calculated numerically on the 

basis of Newton’s algorithm (Kinkaid and Cheney, 2002) as 

the limit of the sequence ∞
=0}ˆ{ jjx  defined by  
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with the functions L  and L′  being given by formulas (10)-

(11), whereas a stop criterion takes on the form  

σxx jj ˆ 01,0 |ˆˆ| 1 ≤− −   , (14) 

where σ̂  denotes the estimator of the standard deviation 

obtained from the sample 1x , mxx  , ... ,2 .  

In the linear case worked out above, the Cauchy kernel  
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3.2. Quadratic Case  

As an example, consider the problem concerning the classical 

task of optimal control for a quadratic performance index 

(Athans and Falb, 1966, Section 9.5) with infinite end time 

and unit matrix/parameter for the integrand function of the 

performance index. The object is the dynamic system  
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where {0}\R∈λ . Moreover, let {0}\ˆ R∈λ  represent an 

estimator of the parameter λ . An optimal feedback controller 

is defined on the basis of the value λ̂ , not necessarily equal 

to the value of the parameter λ  existing in the object. The 

values of the performance index obtained for a particular λ̂ , 

are shown in Fig. 2. One can see that the resulting graph can 

be described with great precision by a quadratic function with 

different coefficients for positive and negative errors, which 

in fact proves that over- and underestimation of the parameter 

λ  have other results on the performance index value.  

To use an analogous methodology to that of the linear case 

considered in the previous section, the loss function is 

assumed in quadratic and asymmetrical form defined as  
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Fig. 2. Performance index J  for values of the estimator λ̂ , 

with 1=λ  

while the coefficients a  and b  are positive and not 

necessarily equal to each other. Thus, the Bayes loss function 

(2) is given by the formula  
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One can show that the function Bl  fulfils its minimum for the 

value x̂  being a solution of the equation  
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This solution exists and is unique. Like in the linear case, 

dividing the above equation by b , note that it is necessary to 

identify only the ratio of the parameters a  and b .  

Solution of equation (20) for a general case is not an easy 

task. However, if estimation of the density f  is reached 

using statistical kernel estimators, then – thanks to a proper 

choice of the kernel form – one can design an effective 

numerical algorithm to this end. Let, therefore, a continuous 

kernel of positive values, fulfilling the condition  

∞<∫
∞
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be given. Besides the functions iU  introduced in Section 3.1, 

let for any fixed mi  , ... 2, ,1=  the functions RR →:iV  be 

defined as  
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The kernel K  should be chosen so the function RR →:J  

such that ∫ ∞−
=

x
yyKyxJ d)()(  be expressed by a 

convenient analytical formula.  

If an expected value is estimated by the arithmetical mean 

value of a sample, then criterion (20) can be described 

equivalently as  
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If the left side of the above formula is denoted by )ˆ(xL , then 

– using the equality )ˆ(ˆ)ˆ( xUxxV ii ′=′  directly resulting from 

dependencies (9) and (22) – one can express the value of its 

derivative as  
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In this situation, the solution of criterion (20) can be 

calculated numerically on the basis of Newton’s algorithm 

(12)-(14). In the quadratic case also Cauchy kernel (15) is 

proposed; then formula (16) remains true and additionally:  
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3.2. Polynomial Case  

In this section, detailed investigations presented earlier will 

be supplemented with the polynomial case, that is where the 

loss function is an asymmetrical monomial of the order 

2≥k  and is therefore given by the following formula:  
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while the coefficients a  and b  are positive, and may differ. 

Criterion for the optimal estimator x̂  is given here in the form  
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The solution of the above equation exists and is unique. 

When the statistical kernel estimators are used with respect to 

the density f , it is possible again to create an efficient 

numerical algorithm enabling equation (27) to be solved. Let 

the kernel K  be continuous, of positive values and fulfilling 

the following condition:  
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For clarity of presentation, the case 3=k  is presented below. 

Thus, equation (27), after simple transformations, takes on 

the equivalent form  
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Now, with any fixed mi  ,  2, ,1 K= , let the functions iU  and 

iV  defined by dependencies (9) and (22) be given, and 

furthermore RR →:iW  be introduced as  
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Making use of the above notations, condition (28) can be 

expressed in the following form 
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If the left-hand side of the above formula is denoted as )(xL , 

then – also taking into account the equalities )()( xUxxV ii ′=′  

and )()( xVxxW ii ′=′  resulting from dependencies (9), (22) 

and (30) – the derivative of the function L  is  
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Finally, the desired estimator can be calculated numerically 

through Newton’s algorithm (12)-(14), while the functions L  

and L′  are given by formulas (31)-(32).  

The Cauchy kernel (15) must by modified here to the form  
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An increase of the power in the denominator has been 

implied with the necessity of ensuring the fulfillment of 

condition (28). Here:  
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The above investigations can be analogously transposed to a 

higher order of asymmetrical polynomial loss function (1), 

although on account of their extreme nature, they seem to be 

useful mainly for untypical applicational tasks.  

4. NUMERICAL SIMULATION RESULTS  

The operation of the algorithm designed here has been 

checked in detail using a numerical simulation. In the case 

ba = , the results were close to medium value, however, 

when ba ≠ , the algorithm provided possibilities that cannot 

be achieved using classical methods, by appropriately 

shifting the value of the estimator in the direction associated 

with smaller losses, where intensity of this process was 

stimulated by the parameter k  depending on the nature of the 

system under research. Many different distributions were 

examined including e.g. multimodal with asymmetrical 

modes. In each case, as the size of a random sample m  

increases, the mean estimation error and its standard 

deviation tend to zero. From an applicational point of view, 

these fundamental properties are demanded of estimators 

used in practice. This, above all, states that as the sample size 

increases, the estimators’ values achieved tend to the desired 

value, and their dispersion decreases. This allows for the 

obtaining of any required precision, although the proper 

sample size must be guaranteed. In practice this implies a 

necessity for compromise between these two quantities. A 

satisfactory degree of precision was obtained when the size of 

the sample was between 10 and 200, i.e. for 200] [10,∈m ; in 

particular, the large values became necessary when the 

difference between parameters a and b increased.  

Generally, the benefits arising from application of the method 

proposed in this paper are greater the more complex the 

control system is, and over- and under-estimation of a 

model’s parameters have a more differing influence on 

performance index, i.e. when asymmetry of the loss function 

is more distinct.  
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