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Abstract: This paper proposes a feedforward friction compensator based on LuGre friction model. The
various parameters in both the friction model and the system plant model would be coarsely estimated by
the various experiments, and then the genetic algorithm (GA) finely optimizes the key parameters by a
single identification experiment. When compared with the conventional black box learning algorithm, this
model-based compensator uses only five parameters to model the nonlinear friction phenomenon and the
corresponding convergent rate of parameters is fast in the learning process. Finally, the friction
compensated performance of proposed algorithm is evaluated and compared with the traditional
uncompensated system. The simulated and experimented results show that the velocity tracking error is
drastically improved by the feedforward friction compensator in a linear motor motion system.

 

1. INTRODUCTION

Friction is one of many forces present and, at most time,
induces undesirable phenomena such as stick-slip oscillation,
steady state error, and poor tracking performance. The good
friction models are required so that we could understand
more about the friction phenomena. There are many friction
models proposed in different research fields, such as
tribology, dynamics, and control. In general, friction model
can be grouped into two kinds, i.e., the static friction model
and the dynamic friction model. While the static model
defines static map between velocity and friction force which
has static, coulomb, and viscous friction components, the
dynamic friction model predicts the nonlinear behaviours of
friction under micro-dynamic scale and the macro-dynamic
scale.
The classical static models could not provide any information
about presliding displacement (micro-slip) in stiction regime
and friction lag. Therefore, Armstrong-Helouvry proposed a
seven-parameter integrated friction model to include various
observed friction phenomena. This model comprised
parameters to account for the presliding displacement,
Coulomb, viscous, and Stribeck friction. The behavior of
state variable friction models, called dynamic friction models,
resembles the behavior of a stiff (nonlinear) spring in pre-
sliding region, and also describes the behaviors of slipping
region without switch mechanism. Dahl model was the first
model in the form of state variable, which could predict
friction lag between velocity reversals and leaded to
hysteresis loops. Canudas de Wit et al. extended the Dahl
model by including arbitrary steady state characteristics, such
as Stribeck effect, and proposed a modified Dahl model (or
the LuGre friction model). This model captured most of the
friction behavior that had been observed experimentally.
Swevers et al. further improved the prediction of presliding
behavior by modifying the LuGre model. This new

integrated model incorporated a hysteresis function with non-
local memory and arbitrary transition curves.
When the requirement in tracking and positioning accuracy is
stringent, a good dynamic friction model is necessarily
associated with a suitable control scheme. There are two
classes of compensation techniques, i.e., non-model-based
and model-based compensation for friction. The non-model-
based compensation techniques include stiff PD control,
integral control, EKBF, and learning feed-forward
compensation, etc. Basically, the stiff PD control is
implemented in a high proportional loop gain with
differential controller to tune the damping value. Some
researchers modified the simple PD controller by adding
another compensators, such as integral controller and
nonlinear friction compensators, to improve system
performance under friction. Ray et al. presented and
validated an extended Kalman-Bucy filter (EKBF)-based
friction compensation method. This friction estimator was
constructed using EKBF by treating friction torque as an
unknown state element and estimating the augmented state.
Otten et al. studied a direct drive linear motor and found that
force ripple and friction were the major disturbances to the
system. They proposed a learning feed-forward controller
structure to eliminate the positional inaccuracy due to force
ripple, friction, and any other disturbances.
As motioned above, several friction models have been widely
studied for providing a good understanding of friction. Based
on different models, the model-based compensation strategies
can be employed. Friedland and Park presented an adaptive
compensation algorithm for a presumed constant Coulomb
friction model. In their approach, a nonlinear reduced-order
observer was introduced, which forced the error between the
estimated and actual parameter vector to converge
asymptotically to zero. Amin et al. and Tafazoli et al. used
this nonlinear observer to estimate dynamic friction. They
modified the original nonlinear observer by appending a

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15696 10.3182/20080706-5-KR-1001.1951



velocity observer. Leonid et al. considered the observer
design of LuGre model-based compensation for friction
compensation. They proposed some new insights into
numerical real time implementation of friction compensators
for various LuGre type model. Ro et al. designed a robust
tracking control with a friction estimate and a direct
disturbance observer (DOB). The approximation of friction
can be obtained by multilayer neural networks (MNN) or
radial basis function networks (RBFN). Horng et al.
proposed a LuGre model-based neural network friction
compensation algorithm for a linear motor stage. For
matching the friction phenomena in both the motion-start
region and the motion-reverse region, the LuGre dynamic
model is employed into the proposed compensation algorithm.
Peng et al. proceeded to design a servo system for the hard
drive using an enhanced composite nonlinear feedback
control technique with a simple friction and nonlinearity
compensation scheme.
The LuGre model can capture most of the known frictional
behaviors, and is suitable for control. In this paper, a
feedforward friction compensator based on LuGre friction
model is proposed. The key parameters in this model are
firstly estimated by various experiments of parameter
identification. According to the above identified results, GA
finely optimizes the key parameters, using reasonable search
space, by a single experiment and the well tuned parameters
will be adopted into the feedforward friction compensator.
When compared with the conventional black box learning
algorithm, this mode-based compensator uses only five
parameters to model the nonlinear friction phenomenon and
the corresponding convergent rate of parameters is fast in the
learning process. Finally, the friction compensated
performance of proposed algorithm is evaluated and
compared with the traditional uncompensated system. The
simulated and experimented results show that the velocity
error is drastically improved by the feedforward friction
compensator in a linear motor motion system.

2. DYNAMICS OF LINEAR MOTOR STAGE

The linear slide systems are the most common applications of
motion control. From the friction study viewpoint, the
existing backlash and compliance in a ball-screw-driven
system may induce nonlinear phenomena together with
multi-source friction effects. This makes it practically
impossible to distinguish friction from other nonlinear effects.
On the contrary, linear-motor-driven systems are free from
the complicated situation because nonlinear backlash and
multi-source frictions do not exist in the systems. The
observed friction behaviors will be quite different for the
same reason. In this paper, a linear-motor-driven motion
system is under study.

2.1 Hardware Setup

The experimental motion system setup illustrated in Fig. 1,
consists of following components: a linear-motor-driven
motion system and a PC with a DAC and encoder interface.
The linear motor system is composed of a linear motor
(PLSA-A-2-NC) and a servo amplifier (SERVOSTAR CD)
operating in torque (current) mode, both of which are made

by Kollmorgen Corporation. Some specifications are listed
in Table 1. The linear motor is assembled with two linear
guide-ways and other mechanical components to form the
single-axis motion stage. A linear scale (RENISHAW
RGH22Y, resolution 0.4 micrometer) provides position
information for the vector control of servo amplifier.

Fig. 1. The experimental linear-motor-driven motion

2.2 Modeling of the Linear Motor Stage

In general, the bandwidth of current loop is very fast as
compared with mechanical system. If the high frequency
modes are ignored, the system equation can be simplified as

uFbvma f =++ (1)

where m is the inertia (equivalent mass);
fFbv + is the

friction force; and u is the input force to the system
generated by a current-controlled servo amplifier.

2.3 The Dynamic LuGre Model

The LuGre model, proposed by Canudas de Wit et al., can
capture most of the known frictional behaviors, and is
suitable for control. In this section, the LuGre model is
briefly described first. The interface of two contact rigid
bodies can be modeled as a lot of elastic bristles. When a
tangential force is applied, the bristles will deflect like
springs which give rise to friction force. If the force is
sufficiently big, some of the bristles deflect so much that they
will slip. The LuGre model is based on the average behavior
of the bristles and can be described as follows.

z
vg

v
v

dt

dz
0)(

σ−= (2)

Table 1
Specifications of linear motor (PLSA-A-2-NC)

Specifications Units

Peak force 205 N

Peak current 9.0 A

Electrical resistance 5.0

Electrical inductance 2.8 mH

Force constant 23.0 N/Arms
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dt

dz
zFf 10 σσ += (3)

where z is the average bending displacement of bristles; v is
the relative velocity between the two bodies;

0σ and
1σ are

the stiffness and damping coefficient of average behavior of
bristles;

fF is the friction force due to bristles’ deflection,

and )(vg is a positive function of velocity, and it can be

described as

)1)(()( sv

v

css eFFFvg
−

−−−= (4)

where
cF is the Coulomb (kinetic) friction,

sF is the stick

force, and the constant
sv is the Stribeck velocity. A term

accounting for the viscous friction could be added to (3), and
the whole friction force becomes

bv
dt

dz
zF ++= 10 σσ (5)

where b is the viscous friction coefficient.

2.4 Parameter Identification

This previous work by the authors deals with the
measurement, identification of friction parameters of
dynamic LuGre model in linear motor stage. The
identification procedure for the linear motor parameters are: 1)
inertia constant, 2) viscous coefficients, Stribect velocity,
coulomb and maximum stick force and 3) bristle stiffness and
damping coefficients. From the experiments, the identified
parameters of this dynamic friction model are list in Table 2.

3. PROPOSED FEEDFORWARD FRICTION
COMOENSATOR

3.1 The Scheme of Feedforward Friction Compensator

The benefits of feedforward friction compensator versus in
feedback are that, 1) feedforward compensation is principally
faster than feedback compensation; 2) feedback loop may
endanger stability but feedforward loop does not injure the
stability. In this paper, a novel feedforward friction
compensator is proposed in Fig. 2(a). In this figure, the
model of linear motor is depicted with plant and friction, the

detail is shown in (1); the nominal loop is a closed velocity
loop without the effect of friction; and the friction
compensator is the LuGre model, as shown in (2) and (3).
When the well tuned parameters of LuGre model are applied
in the friction compensator and the corresponding
compensated force Fc is fed into the force command, this
scheme will be reduced to a nominal velocity loop, as shown
in Fig. 2(b). That implies that the friction force Ff is
completely compensated by the proposed feedforward
friction compensator.

tK

1
tK

(a)

tK

(b)
Fig. 2. The friction compensation scheme, (a) feedforward
friction compensation, (b) nominal velocity loop.

tK

1
tK

Fig. 3. The GA learning scheme for feedforward friction
compensation.

3.2 Feedforward Friction Compensator learning by GA

Genetic algorithms are directed random search techniques
which can find the global optimal solution in complex
multidimensional search spaces. GA was firstly proposed by
Holland and has been applied successfully in many
engineering and optimization problems. Friction parameters
appear nonlinearly in the LuGre model, which make them
difficult to estimate. Using GA, the friction parameters can
be estimated by a single identification experiment. In this

Table 2
Parameters of LuGre Friction model

Symbol Value Unit

m 5.557 kg
b 6.6135 Nm/sec

SF 8.999 N

CF 5.999 N

sv 0.00055697 m/sec

0σ 5109162.3 × N/m

1σ 3104248.4 × Nsec/m
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paper, the five parameters (Stribect velocity, coulomb and
maximum stick force, and bristle stiffness and damping
coefficients) of LuGre model, coarsely obtained in section
2.4, are optimized by GA. The learning scheme is
represented in Fig. 3; where the well tuned parameters of
LuGre model are obtained by minimizing the error between
velocity response vr from nominal velocity loop and the
actual velocity response v.
The flow chart for the proposed GA learning scheme for
feedforward friction compensation is shown in fig. 4. The
parameter tuning by GA is carried out using the following
steps:

Step 1. Initialization
The parameters identified with various experiments, as
mentioned in section 2.4, are given as initial values of the
parameters. The corresponding upper and lower limit values
of the parameters are specified according to the identified
values, as shown in section 2.4. The following fitness
function has been selected

2

1

( )r

J
v v

=
−

(6)

Then, the friction parameters are encoded into the real
number and the initial generation is generated based on
experience.

Step 2. Fitness calculation
The “genetic information” of the real number strings are
converted to corresponding friction parameters are known as
decoding. Then, the velocity response vr from the nominal
velocity loop and the compensated force Fc, using the new
friction parameters, are calculated. A fitness function J
defined in (6) is calculated by the summation of square error
of velocity response vr from nominal velocity loop and the
actual velocity response v.

Step 3. Evaluation
Evaluation is decided by the evolution number of the set life
group or the value of fitness function. The algorithm will
stop once the specified number of generations is reached or
the value of fitness function is smaller than a predetermined
thresholdε . Otherwise, the flow will go to step 4 to generate
the next generation of population.

Step 4. New generation of population
The new generation obtained after genetic operation is treated

as the next generation life group. The desired next
generation is obtained by the following operations:

1). The selection directs a GA search toward promising
regions of the search space, where the elitist strategy is used
as the selection method.
2). The crossover operator works on pairs of selected
solutions with the adaptive probability of crossover rate,
shown as

<′

≥′
−

′−
=

ffk

ff
ff

ff
k

Pc

,

,

2

max

max
1 (7)

where
maxf is the maximum fitness value of the current

generation; f ′ is the maximum fitness value of the parents’s

generation; f is the average fitness value of the whole

generation; and 1k , 2k are constants.

3). Mutation is a random alteration with small probability.
The operation will prevent GA from being trapped in a local
minimum.
4). Both the elitist chromosomes and chromosomes, after
crossover and mutation operations, are combined into the
next generation, and is return to step 2.

Fig. 4. The flow chart of parameter tuning using GA.

4. EXPERIMENT

4.1 Experimental Setup

A linear motor feed drive servomechanism, which is shown
in Fig. 1, is used to test the friction compensated performance
of our proposed compensator. The LuGre friction dynamic
model is learned to match both the friction phenomena in the
motion-start region and the motion-reverse region because
the phenomena between these two regions are different. As
mentioned in section 2.4, the various parameters in both the
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friction model and the system plant model would be
estimated by the various experiments. From the results, the
identified parameters of this LuGre model and other
parameters are list in Table 2. Search space for each
parameter must be specified before using the GA to estimate
the parameters of LuGre model. Generally, the larger search
spaces more generation are needed for the GA to converge to
the optimal solution. In this paper, the corresponding upper
and lower limit values of the parameters are specified as 100
times and 0.1 times of the identified values. And the
parameters of genetic learning algorithm are shown in Table3.
Then, the following experiments are based on this set of
parameters.

Table 3
Parameters of genetic learning algorithm

parameter Setting value

Resolution 0.0001

Number of chromosome 10

Number of gene 10

crossover rate adaptive probability of crossover rate

mutation rate 0.15

Elitist rate 0.2

generations 100

4.2 Experimental Results

In the training phase, a velocity command is designed to
enhance the friction phenomena of motion-start and motion-
reverse regions so as to learn the friction model in these
regions. The sinusoid signal, with frequency form 0.1 Hz to
5 Hz and amplitude form 30 mm/sec to 40 mm/sec , will be
the excellent velocity command because they can fully
capture the start and reverse motions. The cost function
converges with stepped profile, shown in Fig. 5, and the
corresponding steps implies it stay at local minimum values.
Finally, it converges to the value of 31.7 10−× after 100
generations.
Then, the trapezoid velocity command, shown in Fig. 6(a),
will be fed to the servo loop to verify the compensation
performance based on the above GA learning scheme. The
performance comparisons between the proposed method and
without friction compensation are presented by the maximum
tracking error and root mean square tracking error at these
two regions. They are defined as

vvE cmd
Ni

−= maxmax
(8a)

( )−=
iN

cmd
i

rms vv
N

E
1 (8b)

where Ni are the data numbers corresponding to motion-start
and motion-reverse regions. And the error reduction ratio is
defined as

on)compensatitrms(withoumax,

on)compensati(withrmsmax,oncompensatiwithoutrms
r E

EE
E

−
= )(max, (9)

Fig. 6(b) and (c) show the experiment results of velocity and
velocity error during the motion-start and motion-reverse
regions. In motion start region, the maximum tracking error
reduction ratio with friction compensation is 22% and the
mean square error reduction ratio is 44%. In motion-reverse
region, the maximum tracking error reduction ratio with
friction compensation is 59% and the mean square error
reduction ratio is 73%. The maximum tracking error and root
mean square tracking error for this experiment are shown in
Table 4.
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Fig.5 Fitness function.

5. CONCLUSIONS

This paper proposes a feedforward friction compensator
based on LuGre friction model. The various parameters in
both the friction model and the system plant model would be
coarsely estimated by the various experiments, and then the
GA optimize the key parameters by a single identification
experiment. The friction can be estimated so as to
compensate the friction in a linear motor stage. When
compared with the conventional black box learning algorithm,
this model-based compensator uses only five parameters to
model the nonlinear friction phenomenon and the
corresponding convergent rate of parameters is fast in the
learning process. Finally, the proposed compensator is
evaluated and compared experimentally with a traditional
uncompensated system on a microcomputer controlled linear
motor positioning system. The experimental results show
that the maximum tracking and the mean square error
reduction ratio are 22% and 44%, respectively for motion
start region, and are 59% and 73%, respectively for motion
reverse region.
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(b)

(c)
Fig. 6 The experimental results of friction compensation, (a)
input velocity command, (b) start-motion region, (c) reverse-
motion region.

Table 4
Friction compensation at motion-start and motion-reverse

regions
Motion-start region Motion-reverse region

Emax Erms Emax Erms

without compensation 0.98 0.86 1.76 1.62

with compensation 0.76 0.48 0.72 0.44
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