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Abstract: This paper presents the design and performance evaluation of two globally stable
time varying kinematic Navigation Kalman filters to estimate linear motion quantities, in three
dimensions, with application to underwater vehicles. The proposed technique is based on the
linear time invariant Kalman filter steady state solution and employs frequency weights to
explicitly achieve adequate wave disturbance rejection and attenuation of the noise of the sensors
on the state estimates. In the first case study a Navigation filter is designed for the estimation of
unknown constant ocean currents, linear position, and inertial velocity of an underwater vehicle
with respect to a fixed point in the mission scenario. In the second case the proposed solution
also addresses the estimation of the acceleration of gravity. The theoretical background is briefly
introduced and simulation results are offered that illustrate the achievable performance in the
presence of extreme environmental disturbances and realistic noise of the sensors.

1. INTRODUCTION

The design of Navigation and Positioning Systems plays
a key role in the development of a large variety of mobile
platforms for land, air, space, and marine applications. In
the domain of marine research, the quality of the Navi-
gation data is a fundamental requirement in applications
that range from ocean sonar surveying to ocean data
acquisition (salinity, temperature, etc) or sample collection
(microbial organisms, sediments, etc), as the acquired data
sets should be properly georeferenced with respect to a
given mission reference point. For control purposes other
quantities such as the attitude of the vehicle and/or the
linear and angular velocities are also commonly required.

This paper presents the design and performance evalua-
tion of globally stable time varying kinematic Navigation
Kalman filters to estimate linear motion quantities, in
three dimensions, with application to underwater vehicles.
Related work can be found in Fossen and Strand (1999)
where a globally exponentially stable (GES) observer for
ships (in two-dimensions) that includes features such as
wave filtering and bias estimation is presented and in H.
Nijmeijer and T. I. Fossen (Eds) (1999) an extension to
this result with adaptive wave filtering is available. An
alternative filter was proposed in Pascoal et al. (2000)
where the problem of estimating the velocity and position
of an autonomous vehicle in three-dimensions was solved
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resorting to special bilinear time-varying complementary
filters. In Refsnes et al. (2006) a pair of coworking GES
observers for underwater vehicles is presented that in-
cludes the ocean current in the plant model to improve the
performance of the observer. A passivity based controller-
observer design for robots with n degrees of freedom is
proposed in Berghuis and Nijmeijer (1993) and a sliding
mode observer for robotic manipulators is reported in
C. De Wit and J.-J. Slotine (1991). The development of
nonlinear observers for Euler-Lagrange systems has been
addressed in Skjetne and Shim (2001) and Ortega et al.
(1998). In these approaches robustness to environmental
disturbances and/or noise of the sensors is considered but
no optimal results are provided.

The methodology proposed in this paper relies on the
design and implementation of optimal time-varying Nav-
igation filters based on the steady state Kalman filter
solution for equivalent linear time invariant (LTI) sys-
tems. Furthermore, the design methodology permits the
use of frequency weights to explicitly achieve adequate
wave disturbance rejection and attenuation of the noise
of the sensors on the state estimates. Two case studies
are presented: i) in the first one a filter is designed for
the estimation of unknown constant ocean currents, linear
position, and inertial velocity of an underwater vehicle
with respect to a fixed point in the mission scenario; ii)
in the second one the proposed filter also addresses the
estimation of the acceleration of gravity.

The paper is organized as follows. The theoretical results
behind the proposed solutions are summarized in Section
2. In Section 3 the first case study is presented for the
estimation of the position and velocity of an underwater
vehicle and the velocity of constant ocean currents. Sim-
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ulation results are offered that illustrate the achievable
performance in the presence of extreme environmental
disturbances and realistic noise of the sensors. The second
estimation solution, which also deals with the estimation
of the gravity acceleration, is presented in Section 4. Sim-
ulation results are also offered to evaluate the resulting
performance. Finally, Section 5 summarizes the main con-
tributions of the paper.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×
n, and diag(A1, . . . ,An) a block diagonal matrix. When
the dimensions are omitted the matrices are assumed of
appropriate dimensions.

2. THEORETICAL BACKGROUND

This section briefly introduces the kinematic filter design
methodology adopted in the present work, for further
details the reader is referred to Batista et al. (2008). The
solution relies on the design of optimal time-varying filters
based on the steady state Kalman filter for equivalent
linear time invariant systems. This is achieved through
the use of an orthogonal Lyapunov transformation and
frequency weights may be employed to explicitly attain
adequate wave disturbance rejection and attenuation of
the noise of the sensors on the state estimates.

Consider the class of dynamic systems
{

η̇p(t) = Apηp(t) − MS (ω(t))ηp(t) + Bp(t)u(t) + T
T (t)Lpd(t)

ψ(t) = Cpηp(t) + R
T (t)Mpn(t)

,

(1)

where

• ηp(t) =
[

ηT
1
(t) . . . ηT

N
(t)

]T
, with ηi(t) ∈ Xi ⊆ R

3,
i = 1, . . . , N , is the system state,

• ψ(t) ∈ R
3 is the system output,

• u(t) is a deterministic system input,
• ω(t) ∈ R

3 is a continuous bounded function of t,
• d(t) denotes the system disturbances input,
• n(t) denotes the noise of the sensors,
• MS (ω(t)) is the block diagonal matrix

MS (ω(t)) := diag (S(ω(t)), . . . , S(ω(t))) ,

where S(ω(t)) is a skew-symmetric matrix that ver-
ifies S (a)b = a × b, with × denoting the cross
product, and that satisfies

Ṙ(t) = R(t)S(ω(t)),

where R(t) ∈
{

R ∈ R
3×3 : RRT = I3, det(R) = 1

}

,

i.e., R(t) is a proper rotation matrix,
•

Ap =
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,

where γi ∈ R, γi 6= 0, i = 1, . . . , N − 1,
• Cp = [I3 03×3 . . . 03×3], and
• T(t) := diag (R(t), . . . ,R(t)).

It is assumed that Mp is a full row-rank matrix and R(t)
and ω(t) are known over time. Notice that the disturbance
input d and the noise of the sensors n affect the state and
the system output through time varying rotation transfor-
mations, T(t) and R(t), respectively. Nevertheless, these
transformations preserve the norm of the disturbances and
the noise of the sensors - only the directionality is affected
over time.

For design purposes, consider the augmented plant as
depicted in Fig. 1. In the figure w1 and w2 represent
generalized disturbance vectors and Wd and Wn are linear
time invariant filters included to shape both the noise of
the sensors n and the state disturbances d.

Wd

Wn

Ap

Bp Cp

Lp

Mp
w1

w2

d

n

u ψηp

TT(t) RT(t)

MS (ω)

∫

+

+

+

+

+

+

−

Fig. 1. Generalized design framework

Let w(t) :=
[

wT
1
(t)wT

2
(t)

]T
and define the augmented

state vector η(t) :=
[

ηT
p (t)xT

d (t)xT
n (t)

]T
, where xd and

xn denote the states of the state space realizations
(Ad,Bd,Cd,Dd) and (An,Bn,Cn,Dn) of the filters Wd

and Wn, respectively. The augmented dynamics corre-
sponding to the generalized design framework, depicted
in Fig. 1, can be written as

{

η̇(t) = AAA(t)η(t) +BBBp(t)u(t) +BBB(t)w(t)
ψ(t) = CCC(t)η(t) +DDD(t)w(t)

,

where the definition of the various matrices is omitted
since it is evident from the context. Before presenting the
main result of this section the following definitions are
required. Let

A :=

[

Ap LpCd 0
0 Ad 0
0 0 An

]

, B :=

[

LpDd 0
Bd 0
0 Bn

]

,

C := [Cp 0 MpCn], and D := [0 MpDn]. Define also

V :=

[

B
D

]

[

BT DT
]

=

[

Vxx Vxy

VT
xy Vyy

]

.

The following theorem presents the optimal Kalman filter
for the class of systems (1).

Theorem 1. Consider the generalized system dynamics as
depicted in Fig. (1), where w is assumed to be continuous-
time zero-mean unit intensity white noise. Let PPP0 be the
initial covariance matrix of the augmented system state η.
Then, the optimal Kalman filter is given by
{

˙̂η(t) = AAA(t)η̂(t) +BBBp(t)u(t) +KKK2(t) [ψ(t) −CCC(t)η̂(t)]

ψ̂(t) = CCC(t)η̂(t)
,

where KKK2(t) := TT
c (t)K2(t)R(t), with

K2(t) :=
[

P2(t)C
T + Vxy

]

V−1

yy ,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15017



Tc(t) := diag (T(t), I, I) ,

and P2(t) is the solution of the differential matrix Riccati
equation

Ṗ2(t) = AeP2(t) + P2(t)AT
e − P2(t)CT

V
−1

yy CP2(t)

+Vxx − VxyV
−1

yy V
T
xy , (2)

with P2(t0)=Tc (t0)PPP0T
T
c (t0) and Ae := A−VxyV

−1

yy C.

Proof. The proof, which relies on the transformation of
the linear time varying (LTV) system into an LTI system,
is omitted here due to the lack of space but can be found
in Batista et al. (2008).

Notice that the proposed Kalman filter gain matrix KKK2(t)
has a limit solution, although the system at hand is not
LTI. Indeed, as t approaches infinity, P2(t) converges to
the solution P∞

2
of the matrix Riccati equation

AeP
∞

2
+ P

∞

2
A

T
e − P

∞

2
C

T
V

−1

yy CP
∞

2
+ Vxx − VxyV

−1

yy V
T
xy = 0.

Thus, as t approaches infinity, K2 converges to K∞

2
:=

[

P∞

2
CT + Vxy

]

V−1

yy and the filter gain to

lim
t→∞

KKK2(t) = TT
c (t)K∞

2
R(t).

This is a fundamental property in practical applications,
as the filter gain can be replaced by the corresponding
limit solution, TT

c (t)K∞

2
R(t), of which K∞

2
can be easily

obtained offline from the solution of an algebraic Riccati
equation.

3. POSITION AND CURRENT ESTIMATION

3.1 Problem Statement

The example provided in this section revisits the problem
first described in Batista et al. (2006). Consider an under-
water vehicle equipped with an acoustic positioning system
like an Ultra Short Base Line (USBL) sensor and suppose
that there is a moored buoy in the mission scenario where
an acoustic transponder is installed. The linear motion
kinematics of the vehicle can be written as

ṗ = Rv, (3)

where p is the position of the origin of the body-fixed
coordinate system {B} described in the inertial coordinate
system {I}, R is the rotation matrix from {B} to {I}, that

verifies Ṙ = RS(ω), v is the linear velocity of the vehicle
relative to {I}, expressed in body-fixed coordinates, and ω
is the vehicle angular velocity, also expressed in body-fixed
coordinates. Assume that the buoy where the transponder
is installed is subject to wave action of known power
spectral density that affects its position over time, and
suppose that the position of the vehicle with respect to
the transponder is available, in body-fixed coordinates
as measured by the USBL sensor installed on-board.
Suppose also that the body angular velocity ω and the
rotation matrix R are available from an Attitude and
Heading Reference System (AHRS). Finally, suppose that
the vehicle is moving in deep waters (far from the wave
action), in the presence of an ocean current of constant
velocity, which expressed in body-fixed coordinates is
represented by vc.

The problem considered here is that of estimate the
velocity of the current and the position of the vehicle
with respect to the transponder. Further consider that the
velocity of the vehicle relative to the water is available
from the measures of an on-board Doppler velocity log. In
shallow waters, this sensor can be employed to measure
both the velocity of the vehicle relative to the inertial
frame and relative to the water. However, when the vehicle
is far from the bottom the inertial velocity is usually
unavailable. By estimating the ocean current velocity, an
estimate of the velocity of the vehicle relative to the
inertial frame is immediately obtained.

3.2 Proposed Solution

Let e denote the position of the transponder and vr de-
note the velocity of the vehicle relative to the fluid, both
expressed in body-fixed coordinates. Since the transpon-
der is assumed at rest (in the absence of environmental
disturbances) in the inertial frame, the time derivative of
e is given by

ė = −vr − vc − S (ω) e. (4)

On the other hand, since the velocity of the fluid is as-
sumed to be constant in the inertial frame, the time deriva-
tive of this quantity expressed in body-fixed coordinates
is simply given by

v̇c = −S(ω)vc.

Notice that the vehicle velocity relative to the inertial
frame satisfies v = vr + vc.

Clearly, the problem of estimating the velocity of the fluid,
vc, falls into the class of problems addressed in Section 2,
with η

1
= e, η

2
= vc,

Ap =

[

0 −I3

0 0

]

, Bp(t) =

[

−I3

0

]

,

and u = vr. Thus, it is possible to design an optimal
Kalman filter using the methodology introduced in the
previous section.

Note that, in this case, the position of the transponder
changes with time as the latter is assumed to be mounted
in a buoy close to the sea surface, subject to strong
wave action. Nevertheless, the buoy wave induced random
motion can be modeled as an external disturbance on the
USBL positioning system expressed on the inertial frame,
and its description embedded in the frequency weights as
presented in Section 2. As filter design objective consider
the rejection of the wave induced disturbances from the
position measurements to the position and current velocity
estimates, as well as the noise in the position and relative
velocity measurements.

The disturbances induced by the three-dimensional wave
random field in the position of the buoy are modeled using
three second-order harmonic oscillators representing the
disturbance models along the x, y, and z directions,

Hi
w(s) =

σis

s2 + 2ξiω0is + ω2

0i

, i = 1, 2, 3,

where ω0i is the dominating wave frequency along each
axis, ξi is the relative damping ratio, and σi is a parameter
related to the wave intensity, see Fossen and Strand (1999)
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and Silvestre et al. (1997) for further details. The sensor
frequency weight matrix transfer function Wn(s) was
chosen as

Wn(s) =

(

1 +
σis

s2 + 2ξiω0is + ω2

0i

)

I3.

Notice that a direct term was included, not only to satisfy
design requirements (nonzero sensor noise), but also to
model the noise on the USBL, which was assumed Gaus-
sian with standard deviation of 1m. In the simulation the
dominating wave frequency was set to ω0i = 0.8975rad/s
and the relative damping ratio to ξi = 0.1.

In addition to the disturbances induced by ocean waves
and the noise on the USBL positioning system, in the sim-
ulation the measurements of the vehicle velocity relative to
the water and the angular velocity were also assumed to be
corrupted by Gaussian noise, with standard deviations of
0.01m/s and 0.02 °/s, respectively. The system disturbance
weight transfer matrix was chosen as Wd(s) = 0.01I6.

Albeit it was not explicitly shown, the Kalman filter
error dynamics have an equivalent LTI description, which
relates to the LTV dynamics through the transformation
matrix Tc(t), which preserves the norm of the different
state estimation errors and only affects the directionality
over time. Fig. 2 shows the singular values of the linear
time invariant closed loop transfer functions from the
disturbances and sensor noise input, d and n, respectively,
to the position and current velocity estimate errors, in
the inertial frame, of the Kalman filter. The diagram
shows that the performance requirements are met by the
resultant filter, which is evident from the band rejection
characteristics of the notch present in the diagram.
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Fig. 2. Singular values of the Kalman LTI filter error
dynamics

3.3 Simulation results

To illustrate the performance of the proposed solution a
simulation was carried out with a simplified model of the
SIRENE underwater vehicle, see Silvestre et al. (1998).

The trajectory described by the vehicle is shown in Fig. 3,
where the undisturbed position of the buoy is marked with
a cross and the initial position of the vehicle coincides with
the origin of the inertial frame. The actual position of the
buoy, expressed in inertial frame coordinates, is depicted
in Fig. 4. As it can be seen, the buoy wave induced random
motion is confined to an interval of about 10m of height,
which corresponds to extreme weather conditions.
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Fig. 3. Trajectory described by the vehicle
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Fig. 4. Time evolution of the position of the buoy (ex-
pressed in inertial coordinates)

The filter initial states were chosen to reflect the knowledge
of the position of the transponder as given by the USBL
sensor. Fig. 5 presents the time evolution of the estimates
of the Kalman filter. The position of the buoy if there were
no ocean waves is also shown, as well as the actual velocity
of the fluid, all expressed in body-fixed coordinates. From
these plots the performance of the filter is evident - only
the initial transients are noticeable.
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Fig. 5. Actual (dash-dot lines) and estimated (solid lines)
variables

The evolution of the filter error variables is shown in
Fig. 6. The initial transients arise due to the mismatch
of the initial conditions of the states of the filter and
can be considered as a warming up time of 180 s of the
corresponding Integrated Navigation System. The filter
error variables are shown in greater detail in Fig. 7. From
the various plots it can be concluded that the disturbances
induced by the waves, as well as the noise of the sensors,
are highly attenuated by the filter, producing very accurate
estimates of the velocity of the current and the position of
the buoy.

Notice that if the position of the transponder at rest in the
inertial frame is known to the vehicle, then an estimate of
the actual position of the vehicle in the inertial frame is
simply obtained from

p = I(e) − Re,
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where I(e) is the position of the transponder expressed
in the inertial frame. Fig. 8(a) depicts the actual and the
estimated vehicle trajectories. For comparison purposes,
the non-filtered position of the vehicle is plotted in Fig.
8(b). It is clear how accurate the filter estimates the
trajectory described by the vehicle, even in the presence of
severe wave action affecting the position of the buoy and
realistic noise of the sensors.
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Fig. 8. Vehicle trajectory

To conclude the discussion it should be said that the
proposed solution for the estimation of the position and
the velocity of the ocean current is optimal with respect
to disturbances arising from all sensors but the Attitude
and Heading Reference System (AHRS). Nevertheless, the
performance exhibited by the proposed filter is good, as
the simulation results clearly demonstrate.

4. POSITION, VELOCITY, AND GRAVITY
ESTIMATION

4.1 Problem Statement

As in the previous section, consider a vehicle with kinemat-
ics (3) moving in a mission scenario where a transponder
is installed, also subject to environmental disturbances of

known power spectral density. Suppose that the position
of the transponder is available, in body-fixed coordinates,
as well as the vehicle angular velocity and the rotation
matrix R from body-fixed coordinates to inertial coordi-
nates. Finally, suppose that the vehicle is equipped with
an accelerometer, whose measures satisfy

a = v̇ + g + S(ω)v, (5)

where a is the accelerometer measurement and g denotes
the gravity acceleration vector expressed in body-fixed
coordinates. The problem here considered is that of es-
timate the linear position of the vehicle with respect to
the undisturbed position of the transponder, the linear
velocity of the vehicle relative to the inertial frame, and
the gravity acceleration vector, all expressed in body-fixed
coordinates. This last point is of major importance in the
design of Navigation Systems as, due to its magnitude,
any misalignment in the estimation of the gravity acceler-
ation vector results in severe problems in the acceleration
compensation.

4.2 Proposed Solution

As in Section 3.2, let e denote the position of the transpon-
der expressed in body-fixed coordinates. Its time deriva-
tive, given by (4), can be rewritten, in order to fit in the
proposed design setup, as

ė = −v − S (ω) e.

On the other hand, from (5) it follows that

v̇ = a − g − S(ω)v.

Assuming the gravity acceleration vector constant in the
inertial frame its time derivative in body frame coordinates
can be written as

ġ = −S(ω)g.

As in the previous example, this estimation problem falls
in the class of systems (1). To be more explicit, just
consider η

1
= e, η

2
= v, η

3
= g,

Ap =

[

0 −I3 0
0 0 −I3

0 0 0

]

, Bp(t) =

[

0
I3

0

]

,

and u = a. Thus, it is possible to design a Kalman filter
using the technique presented in Section 2.

4.3 Simulation

To illustrate the performance of the proposed solutions the
simulation presented in the previous section was modified
in order to suit this new setup. The disturbances that affect
the position of the buoy were kept, as well as the trajectory
described by the vehicle. Gaussian noise was added to the
accelerometer measurements with standard deviation of
6 × 10−3 m/s

2
.

Fig. 9 shows the singular values of the linear time invariant
closed loop transfer functions from the disturbances and
sensor noise to the position, vehicle velocity, and gravity
acceleration estimate errors, in the inertial frame. Once
again, the diagram indicates that the performance require-
ments are met by the filter, which is evident from the band
rejection characteristics of the notch present in the figure.
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The evolution of the filter error variables is shown in Fig.
10 and, in greater detail, in Fig. 11. The results are similar
to those presented in the previous section, with a slight
decay in the rejection of the environmental disturbances
and the noise of the sensors due to the increased order of
the filter that arises from the additional effort of estimation
of the acceleration of gravity.
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Fig. 11. Detailed evolution of the Kalman filter error
variables

5. CONCLUSIONS

Navigation Systems are a key component in the design
of a great variety of vehicular applications. This paper
presented the design and performance evaluation of two
globally stable time varying kinematic Kalman filters to
estimate linear motion quantities, in three dimensions,
with application to underwater vehicles. The proposed
technique is based on the steady state Kalman filter for
an equivalent linear time invariant system and employs fre-
quency weights to explicitly achieve adequate wave distur-
bance rejection and attenuation of the noise of the sensors
on the state estimates. In the first case study a Navigation
filter was designed for the estimation of unknown constant
ocean currents, linear position, and inertial velocity of an
underwater vehicle with respect to a fixed point in the

mission scenario. In the second case the proposed solution
also addressed the estimation of the acceleration of gravity.
The theoretical background, which applies to a broader
class of systems, was briefly introduced and simulation
results were offered that illustrate the filtering achievable
performance in the presence of extreme environmental
disturbances and realistic noise of the sensors.

Future work includes the investigation on the applicability
of the proposed estimation design technique to other
classes of systems. Other applications can also be devised
in the design of navigation systems for other mobile
platforms, like aerospace and indoor vehicles.
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