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Abstract: The attitude dynamics of a satellite with a large magnetic residual dipole is analysed
and the effect of perturbations of the orbital parameters on stability is discussed. The analysis
is the basis for the design of an attitude control strategy that minimizes the required control
torque while satisfying an absolute pointing error constraint whenever direct compensation of
magnetic torque is not achievable. The proposed strategy is validated in a case study.

1. INTRODUCTION

Space vehicles are usually equipped with attitude control
systems for two different reasons. First of all, the open-
loop attitude dynamics is never asymptotically stable, so
the control system must ensure closed-loop stability for
the controlled satellite. In addition, a satellite is subject
to a number of disturbance torques affecting its motion,
the effect of which must be suitably attenuated in order to
achieve the desired level of pointing performance. External
disturbance torques have different sources, such as grav-
ity gradient, aerodynamics, solar radiation and residual
magnetic dipoles (see, e.g., Hughes [1986], Wertz [1978]).
All disturbance torques are in principle state-dependent,
i.e., they depend on the spacecraft attitude. The design
of nominal attitude controllers is usually performed on
the basis of linearised models for the equations of rigid
body angular dynamics, in which only gravity gradient
torques are explicitly included, given the relatively simple
nature of the underlying physics. Torques due to magnetic
residuals, on the other hand, are normally dealt with as
external disturbances, although their physical modelling is
extremely simple, the only source of uncertainty being the
amplitude and direction of the satellite’s residual dipole
vector. The main difficulty associated with the analysis of
the effect of a magnetic residual dipole is associated with
the time-variability in the dynamics introduced by the
effect of the geomagnetic field. The effect of magnetic resid-
ual on the nonlinear attitude dynamics has been studied
by Chen and Liu [2002]. When considering the linearised
dynamics near a desired attitude, it turns out that periodic
systems and control theory has been used extensively in
the study of the design problem associated with magnetic
attitude control, see for example Silani and Lovera [2005]
and the references therein), but to the best knowledge
of the Authors no specific attention has been dedicated
to the open-loop linearised dynamics of a spacecraft with
magnetic residuals or to the associated design issues.

In view of the above discussion, this paper aims at two
objectives: studying the open loop behavior of the system

⋆ This work was partially supported by the Italian National Re-
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and designing the attitude controller for a satellite with a
large magnetic residual.

The paper is organised as follows: in Section 2 a description
of the dynamics of a generic spacecraft is presented; a
linearised dynamic model is derived and studied in Section
3. The associated control and guidance issues are finally
discussed in Section 4, while Section 5 presents some
simulation results obtained in a realistic case study.

2. SPACECRAFT MODEL

In this Section the nonlinear, time-varying equations of
attitude motion for a spacecraft subject to a magnetic
residual dipole are derived. To this purpose, the following
coordinate frames are used. INE is the Earth-centered
inertial frame; ORB is the orbital reference frame defined
as follows. The origin of this frame moves with the center
of mass of the satellite. The Zr axis points toward the
Earth; the Xr axis is in the orbit plane, perpendicular to
Zr, in the direction of the orbital velocity of the spacecraft.
The Yr axis completes the orthogonal system. Thus, ORB
orbits around the inertial frame and its angular velocity
in local coordinates for a circular orbit is [0 − ω0 0]T

where ω0 is the orbital angular frequency. Finally, SAT is
the body-fixed frame whose origin is the center of mass of
the satellite and whose axes are aligned with the satellite
principal axes. The origin of SAT is coincident with ORB
origin.

The attitude dynamics model is a 7-dimensional system
whose state is made of an attitude quaternion q and an
angular velocity vector ω

x = [q1 q2 q3 q4 ωx ωy ωz]
T

, (1)

where the attitude is expressed with respect to the ORB

frame, i.e., the quaternion q = [q1 q2 q3 q4]
T

represents
the rotation from the orbital reference frame to the body

fixed frame and ω = [ωx ωy ωz]
T

is the relative angular
velocity between the body fixed frame and the orbital
reference frame, expressed in body coordinates. If the
matrix Ω is defined as

Ω(ω) =







0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0






,
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then the differential equation for the attitude kinematics,
parameterised in terms of the attitude quaternion q, is
given by

q̇ =
1

2
Ω(ω)q,

while the Euler equations can be used to express conser-
vation of angular momentum in body fixed coordinates

ḣ + ωsat × h = τg + τm + τa,

where h = I ωsat is the satellite angular momentum ex-
pressed in body coordinates, τg is the gravity gradient
torque, τm the magnetic disturbance torque and τa the ac-
tuator torque. After a change of coordinates the dynamics
can be written in ORB frame as

q̇(t) =
1

2
Ω(ωrel)q

Iω̇rel = I

(

A

[

0
−ω0

0

]

× ωrel

)

− ωrel × A

[

0
−ω0

0

]

+

+τg + τm + τa.
(2)

In the above equations the gravity gradient and the
magnetic torque still need to be specified. Gravity gradient
modeling is a standard issue and it is treated in many
references, for example Sidi [1997]. For a satellite with
diagonal inertia matrix (i.e., I = diag(Ix, Iy , Iz)), the
gravity gradient is given by

τg = 3ω2
0

[

(Iz − Iy)A2,3 A3,3

−(Iz − Ix)A1,3 A3,3

−(Ix − Iy)A1,3 A2,3

]

. (3)

The magnetic torque, on the other hand, can be expressed
as

τm = m × bsat,

where m and bsat are, respectively, the satellite residual
dipole and the Earth’s magnetic field expressed in body
coordinates. For the purpose of stability analysis a dipole
approximation of the Earth’s magnetic field suffices. The
dipole equations, when assuming no Earth rotation and no
orbit precession, are

borb =
µm

a3

[

cos(ωot)sim

−cim

2 sin(ω0t)sim

]

,

where im is the inclination of the satellite’s orbit with
respect to the magnetic equator, a is the orbit’s semimajor
axis and µm is the field’s dipole strength. The above as-
sumptions hold if the orbital period of the satellite is small
compared to the Earth rotation period: Earth rotation
can be treated as a slowly varying parameter affecting
the magnetic inclination of the orbit. In conclusion, the
magnetic torque is computed as

τm = m × A(q)
µm

a3

[

cos(ωot)sim

−cim

2 sin(ω0t)sim

]

. (4)

The magnetic torque is periodically time varying; this
renders the final model time-periodic.

Substituting (3) and (4) into (2) one gets the nonlinear,
time varying periodic system

ẋ = f(x, t, τa). (5)

3. OPEN LOOP STABILITY ANALYSIS

In this Section the stability of the reference Earth-pointing
attitude is studied. In the present work we will assume that
the residual dipole lies on the x − y plane of the satellite,
so that it can be parametrized as a norm and direction on
the plane, yielding

m(m0, γ) =

{

mx = m0cγ

my = m0sγ

mz = 0.

It is possible to linearize equation (5) in the neighborhood
of the reference attitude, characterized by null pointing
error and expressed by the vector x0 = [0 0 0 1 0 0 0]T .
For small perturbations, the state vector can be reduced
to 6 variables by dropping the kinematic equation q̇4 and
substituting it with a unit norm constraint; moreover it is
convenient to rearrange the state variables as

x = [q2 ωy q1 q3 ωx ωz]
T

. (6)

Consequent linearization yields

˙δx ≈ f(x0, t, 0) + A(t)δx + Bτa, (7)

where A(t) = ∂f(x,t,τa)
∂x

∣

∣

∣

x=x0,τa=0
and B = ∂f(x,t,τa)

∂τa

∣

∣

∣

x=x0

,

and

f(x0, t, 0) =























0
µm

Iya3
(−2m0cγ sin(ω0t)sim

)

0
0

µm

Ixa3
(2m0sγ sin(ω0t)sim

)

µm

Iza3
(−m0cγcim

− m0sγ cos(ω0t)sim
)























.

(8)
Matrix A(t) can be divided into four blocks

A(t, m0, γ) =

[

Ap(t, m0, γ) Acoupl12(t, m0, γ)
Acoupl21(t, m0, γ) Ay+r(t, m0, γ)

]

(9)

where the pitch, the coupled yaw-roll dynamics and their
couplings are highlighted. With the above definitions, the
following expressions are obtained

Ap(t, m0, γ) =







0
1

2

−6ω2
0σy −

2µmm0cγsim
cos(ω0t)

a3Iy

0






,

Acoupl12(t, m0, γ) =





0 0 0 0

−
2

a3Iy

m0µmcγcim
0 0 0



 ,

Acoupl21(t, m0, γ) =















0 0
0 0

2

a3Ix

m0µmsγsim
cos(ω0t)) 0

4

a3Iz

m0µmsγsim
cos(ω0t)) 0















,

where σx ≡ (Iy −Iz)/Ix, σy ≡ (Ix−Iz)/Iy and σz ≡ (Iy −

Ix)/Iz , and finally

B = P

[

O3×3

I−1

]

,

where P is a suitable permutation matrix taking into
account the reordering of the state variables. The following
considerations are due:
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Ay+r(t, m0, γ) =















0 0
1

2
0

0 0 0
1

2

−8ω2
0σx +

2m0µmsγcim

a3Ix

0 0 ω0(1 − σx)

4

a3Iz

m0µmcγsim
sin(ω0t)) −2ω2

0σx +
2m0µm

Iza3
(sγcim

− cγsim
cos(ω0t)) ω0(σz − 1) 0















1) In general, the reference attitude is not an equilibrium.
Equation (8) describes the torques acting on the satellite
when it is in the reference attitude. For the case of mx =
mz = 0, Figure 1 depicts the maximum magnetic torque
acting on the satellite in the reference attitude for different
im values and over an orbit period. When im = 0 the
reference is an equilibrium state and the residual torque
increases with im.
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Fig. 1. Maximum residual torque components per unit
dipole for the case of mx = mz = 0 and an orbit
altitude of 250 km.

2) The dynamic matrix, A(t), is a time-periodic matrix
with period equal to the orbital period T .

3) As is well known (see, e.g., Sidi [1997]), in the absence
of residual dipole the satellite dynamics show a natural de-
coupling between pitch and roll-yaw motion. When taking
the residual dipole into account, the system’s dynamics
retains a block triangular structure provided that the
inclination γ of the residual dipole in the x−y plane takes
very specific values: in particular, the structure is lower
triangular for γ = ±90◦ and upper triangular for γ = 0◦

and γ = 270◦. In both cases a decoupling between the
pitch dynamics and the roll-yaw dynamics arises; moreover
in the case of γ = ±90◦ the pitch and roll-yaw dynamics
turn out to be time-invariant while only the coupling from
roll-yaw to pitch is time-varying (this simplification can
be exploited for control design purposes - see Section 4).

4) The analytical expression for the open-loop dynamics
(9) provides a guideline for the definition of a scalar
parameter to be used in measuring the importance of the
residual dipole. This concept can be formalised by letting

µ := max

{

m0

Ix

,
m0

Iy

,
m0

Iz

}

, [A kg−1]. (10)

µ is an indicator of the impact of magnetic residual dipole
on the dynamics of the spacecraft.

Having written the parametrized dynamic matrix of the
system it is now possible to use LTP systems theory to
study the stability characteristics of the open-loop system
as a function of the residual dipole. In this study, the
so-called periodic Schur decomposition (see Bojanczyk
et al. [1992], Lust [1997]) has been employed. As a first

step we prove that the configuration with γ = −90◦ is
the ‘most stable’. This is shown by the position of the
characteristic multipliers as the angle γ increases from -
90◦ to 90◦. Figure 2 shows the characteristic multipliers as
a function of the residual dipole angle for a LEO satellite
with µ = 0.14. The multipliers start off from the unit circle
with γ = −90◦ and move away from it as the residual
dipole tends to align to y; it should be noted that the
effect on stability of the orientation of the residual dipole
is more and more significant as µ increases.
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Fig. 2. Characteristic multipliers of matrix (9), for a LEO
satellite with µ = 0.14, as the residual dipole rotates
in the x − y plane.

It has already been noted that another important param-
eter is orbital inclination. For the µ = 0.14 case, Figure 3
depicts the characteristic multipliers loci for two different
configurations, as the orbital inclination varies between
30◦ to 50◦. In the left hand plot the residual dipole is
taken in the −y direction; in the right hand one γ = −80
is assumed. The advantages of having the dipole in the −y
direction are clear: in this case the inclination of the orbit
does not affect stability of the system as the characteristic
multipliers move on the unit circle. Finally, though details
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Fig. 3. Characteristic multipliers of matrix (9), for a LEO
satellite with µ = 0.14. Orbit inclination from 30 to 50
degrees are considered. In the left hand plot γ = −90;
in the right hand one γ = −80.

are omitted for brevity, it can be seen that if the stability
analysis is carried out by varying the orbit altitude or the
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dipole magnitude it is apparent that they do not play a
role in the position of the characteristic multipliers.

4. CONTROLLER DESIGN

In this Section we turn to the issues associated with control
design. In particular, we will first discuss the issue of
robustness with respect to the orientation of the magnetic
residual dipole, and subsequently we will turn to the
problem of dealing with the nominal magnetic disturbance
torque (8).

4.1 Stabilisation of attitude dynamics

As mentioned in the Introduction, in the practice of at-
titude control systems design magnetic residuals are con-
ventionally treated as external disturbances. However, the
results of the previous Section seem to indicate that a
residual dipole with adverse characteristics may lead to
a significantly unstable satellite and, as a consequence,
to a more critical design problem. The two apparently
contradictory views can be reconciled by noting that the
instability brought in by magnetic residuals is associated
with the modulation of the geomagnetic field, which is
intrinsically very slow. Therefore, while it is expected that
a wider controller bandwidth will be needed in order to
dominate the effect of magnetic residuals and stabilise the
satellite, such a bandwidth increase might not be as dra-
matic as expected from the inspection of the characteristic
multipliers loci of Figure 2, provided that the available
actuators can ensure the necessary control authority. In
order to investigate in which situation the uncertainty as-
sociated with the direction of the magnetic residual dipole
vector can actually give rise to stability problems, we have
considered a satellite with µ = 0.28 and designed two
different controllers in the nominal γ = −90 configuration.
The first control law is of the form τa = Kx, where the gain
K has been designed using LQ control theory, with the
aim of achieving a closed loop settling time of about 150
seconds on each axis. The second control law, on the other
hand, assumes the use of magnetic torquers as actuators
and is of the form

τa =
1

bT b
S(b)ST (b)Kx, S(b) =

[

0 bz −by

−bz 0 bx

by −bx 0

]

,

(see, e.g., Sidi [1997], Silani and Lovera [2005] for details
on magnetic attitude control), and the gain K has been
chosen in order to ensure closed-loop stability of the
nominal configuration, with a settling time of about 1500
seconds on each axis. The effect on the spectral radius of
the closed-loop dynamics of the spacecraft is illustrated
in Figures 4 and 5 for the wide bandwidth controller and
for the magnetic one, respectively. It is apparent that in
the first case no significant problems arise because of the
uncertainty associated with the orientation of the residual
dipole. In the second case, on the other hand, the rotation
of the dipole vector can lead to a loss of stability in the
closed-loop system.

4.2 Disturbance management

Besides giving rise to periodic perturbations of the lin-
earised attitude dynamics, the presence of a magnetic
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Fig. 4. Spectral radius for a LEO satellite with µ =
0.14, controlled with wide bandwidth feedback, as the
residual dipole rotates in the x − y plane.
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Fig. 5. Spectral radius for a LEO satellite with µ = 0.14,
controlled with magnetic actuators, as the residual
dipole rotates in the x − y plane.

residual dipole leads to the nominal disturbance torques
given by equation (8). Such disturbances lead to very dif-
ferent situations in terms of the design of the attitude con-
trol system depending on the actual source of the residual
dipole. The simplest situation is the one arising when the
residual dipole is due to the magnetisation of components
of the satellite platform (solar arrays, batteries, power elec-
tronics...). In this case, suitable schemes for disturbance
estimation and compensation can be implemented, such as
the ones presented in Pittelkau [1993], Lovera et al. [2002].
The idea is to actively compensate the disturbance torque,
provided that the available actuators allow for such an
explicit compensation. Indeed, the most critical situation
corresponds to a case in which the residual dipole is too
large to be explicitly compensated, and/or it is necessary
for the operation of the payload. In such a situation (which
might occur in missions designed to run particle physics ex-
periments) the problem of reducing the needed propellant
is particularly compelling. If the magnetic disturbances
are instantaneously greater than the torque that can be
exerted by the actuators, one has to deal with the fact that
some degree of pointing error is unavoidable. Therefore the
goal is to find means to optimize the actuator usage while
satisfying the pointing requirements.

Actuator usage reduction can be achieved by exploiting
the magnetic disturbance to one’s favor. The net effect of
the magnetic torque is to align the residual dipole with
the local direction of the geomagnetic field. As shown in
Section 3, this phenomenon is undamped, but a controller
may be devised to damp this dynamics and considerably
reduce the control torques. One way to implement this
solution is to track a moving attitude reference computed
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so to keep the residual dipole aligned with the local
direction of the magnetic field. It should be pointed out
that this strategy cannot always be applied; self-alignment
may not meet the pointing requirements for the specific
mission; nevertheless the idea can still be employed to
reduce control action. The rationale is to compute the
reference attitude so to minimize the magnetic interaction,
while satisfying the pointing requirements. This can be
achieved by following the perfect alignment whenever
it yields acceptable errors and by staying on the error
constraint boundary for the rest of the orbit. The field
alignment condition is a two degrees of freedom constraint;
the remaining degree of freedom is a rotation around the
y axis (the one aligned with the field) which is chosen to
minimize the pointing error. If the aforementioned case
with the residual dipole in the -y direction is assumed
and the pointing error specification is given in terms of
Absolute Pointing Error (APE), the field aligned reference
frame can be computed as in Algorithm 1.

input: threshold
while in scientific mode do

measure/estimate local magnetic field b;
y := −b;
measure/estimate local zenith/nadir r;
k := y×r

|y×r|
;

rotate y of 90◦ around k and call the vector z;
complete the reference frame0 (x,y,z) ; /* frame0 is aligned

with the magnetic field */

APE := acos(r · z) ;
if APE < threshold then

frame set := frame0 ; /* magnetic alignment is

achievable */

else
θ := APE - threshold;
rotate frame0 of θ around k and call it frame1;
frame set := frame1;

end

feed frame set to the three-axis controller;
end

Algorithm 1: Moving reference generation.

5. SIMULATION RESULTS

In this Section, the results obtained in the design of an
attitude control law for a LEO satellite characterised by a
large magnetic residual dipole are presented and discussed.
An approximately spherical satellite with µ = 0.14 is
considered. The satellite orbit is designed to decay from an
altitude of 500 km to to 250 km while the orbit inclination
varies from 30◦ to 50◦. The mission requires a maximum
APE of 15◦.

The simulations have been carried out using an object-
oriented environment for satellite dynamics (see Lovera
[2006] for details) developed using the Modelica language.
For the purpose of the present study, a full nonlinear sim-
ulation of the coupled orbital and attitude dynamics has
been performed. The simulation of the space environment
has been performed on the basis of the JGM -3 spherical
expansion for the geopotential as a gravitational model,
of the Harris-Priester model for the atmospheric density
distribution (see Montenbruck and Gill [2000] for details)
and of the International Geomagnetic Reference Field
(IGRF, see Wertz [1978]) for the Earth’s magnetic field.

Disturbance torques due to gravity gradient (including
J2 effects), magnetic residual dipole and solar radiation
pressure (computed using the solar coordinates formulas
given in Montenbruck and Gill [2000]) have been taken
into account in the simulation.

In order to check the feasibility of the perfect alignment
strategy the APE for different orbital inclinations is com-
puted and plotted in Figure 6.
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Fig. 6. Absolute pointing error for different orbit inclina-
tions under perfect magnetic field alignment.

The following remarks can be made:

• The pointing error meets the specifications only for a
small fraction of the orbit (around 14% of the orbit).
The duration of this period mainly depends on the
orbital inclination.

• The greater the inclination is, the greater the pointing
errors are.

• Altitude does not have any effect on the pointing
error.

Although the self-aligning controller does not meet the
mission specifications, the moving reference solution can
be adopted in order to reduce the control action. The
strategy described in Section 4 is implemented with an
acceptable APE of 15◦. This choice allows to identify an
upper bound on the achievable torque reduction. In the
final implementation it may be necessary to reduce the
threshold to account for closed loop tracking errors and
errors in the magnetic field measure/estimate.

The results for the case of a low altitude orbit with a
50◦ inclination are thoroughly described in the following.
Note that a normalized scale was used for confidentiality
reasons; it is still possible, however, to appreciate the dif-
ferences between the two control strategies. As previously
described, the 50◦ orbit is the worst case; it will be shown
that this remains true also with the moving reference at-
titude. A period of 24 hours is simulated and the pointing
errors and required torque are depicted. In order to better
appreciate the advantages of the proposed solution, the
results are compared to the ones of a three axis state feed-
back controller (referred to as fixed reference controller).
Figure 7 depicts the APE for the perfect alignment with
the magnetic field and the moving reference case. It is clear
that when the perfect alignment satisfies the pointing error
specifications, the alignment is followed; while during the
rest of the orbit the attitude that minimizes the product
τ = m × b with the APE constraint of 15◦ is the one
that yields the maximum acceptable error. Figure 8 shows
the disturbance torques that need to be canceled by the
actuators to achieve perfect tracking of the commanded
reference. The moving reference is superior under two
aspects. The new strategy requires less torque around the
x axis than the fixed reference strategy and the satellite

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14058



0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

orbits

A
P

E
 [
°

]

 

 

perfect field alignment

moving reference

Fig. 7. Absolute pointing error.

is not subject to any disturbance around the z axis. Both
strategies do not suffer from magnetic disturbance around
the y axis.
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Fig. 8. Magnetic torques to be compensated.

Finally the norm of the total control torque is discussed;
this variable is particularly important because it allows to
evaluate the needed propellant and the savings introduced
by the new control strategy, whenever thrusters are used.
Figure 9 shows this variable.
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Fig. 9. Norm of actuation torque.

Table 1 summarizes the results of the moving reference
strategy. The table shows the time spent in magnetic
alignment, the reduction of the maximum torque with
respect to the fixed reference strategy in the same orbital
conditions and an estimate of the propellant reduction that
the moving reference strategy allows with respect to the
fixed reference. It can be noted that the savings introduced

inclination 10◦ 20◦ 30◦ 40◦ 50◦

% time in field alignment 47% 26% 16% 12% 10%
% max torque reduction 34% 21% 15% 11% 7%
% prop. reduction 66% 55% 45% 39% 36%

Table 1. Moving reference strategy summary.

by the moving reference are of considerable magnitude and
are inversely proportional to the orbit’s inclination.

6. CONCLUDING REMARKS

A model of the attitude dynamics for a spacecraft with a
large magnetic residual has been derived and the stability
of the linearised, open-loop dynamics has been analysed.
The results of the analysis have guided the design of a
closed loop strategy useful whenever the magnetic distur-
bance cannot be directly compensated. The controller is
based on the tracking of a moving reference computed so
as to minimize the magnetic disturbance while satisfying
the pointing requirements. The devised policy is applied
to a case study and it is shown that this controller can
reduce the amount of needed propellant up to 45% (with
respect to the fixed reference controller).
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