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Abstract: The model of adaptive hinging hyperplanes (AHH) is proposed in this paper for black-box
modeling. It is based on Multivariate Adaptive Regression Splines (MARS) and Generalized Hinging
Hyperplanes (GHH) and shares attractive properties of the two. By making a modification to the basis
function of MARS, AHH shows linear property in each subarea. It is proved that AHH model is
identical to a special case of the Generalized Hinging Hyperplanes (GHH) model, which has a universal
representation capability for continuous piecewise linear functions. AHH algorithm is developed similar
to MARS algorithm. It is adaptive and can be executed quickly, hence has power and flexibility to model
unknown relationships. In addition, due to the piecewise-linear property, AHH is preferred to MARS
when modeling high-dimensional dynamic systems, especially when the sample size is small and under
noise conditions.
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1. INTRODUCTION

In the field of black-box modeling, the basis function expansion
is generally used, i.e., the unknown relationships are approxi-
mated by functions of linear combinations of basis functions
(Friedman [1994]),

f̂ (x) =

M
∑

k=0

akBk(x)

while x is a vector of predictor variables, ak is the expansion
coefficient and Bk(x) is the basis function. Different kinds of
basis functions yield different models, such as projection pur-
suit (Friedman and Stuetzle [1981]), wavelet neural networks
(Pati and Krishnaprasad [1990]), constrained topological map-
ping (Cherkassky and Lari-Najafi [1991]), multivariate adap-
tive regression splines (MARS) (Friedman [1991]), continuous
piecewise-linear approximation (Wang and Sun [2005]) and
so on. Among all these methods, MARS and piecewise linear
approximation possess their unique advantages.

MARS is simple, fast and efficient, which is due to its adap-
tiveness and identification method: least-squares. It combines
the idea of recursive partitioning regression (CART) (Breiman
et al. [1984]) with function representation based on tensor-
product splines. The advantages of the two methods: adaptive
adjusting and continuity, are preserved during the combination.
The MARS model can be interpreted as a tree where each
node in the tree consists of a basis function and uses a tree-
based algorithm for constructing the model. The nodes are split
according to a goodness of fit measure, but unlike other recur-
sive partitioning methods, all nodes (not just the leaves) are
candidates for splitting. Only the least-squares is used during
each splitting, so the execution speed is very fast. The basis
function for MARS is a product of univariate splines each with
a directional term, which is so called truncated power splines,
hence, combinations of these basis functions are continuous.
A forward stepwise strategy searching splitting nodes as well
as a backward stepwise strategy removing leaves is used in

the MARS procedure. Simulation results in Friedman [1991]
showed that MARS applied well in nonlinear system identi-
fication, not only effective for additive functions but also for
high-dimensional functions with variables interacted with each
other.

In the MARS model, the order of the basis function is in-
creased with the dimension of the problem. In general, high-
order splines are unstable and more likely to provide misleading
structures, which is more serious in the case of noise and small
sample size. Unfortunately, real dynamic system is often under
noise and the sample data is always not easy to obtain, there-
fore, the application of MARS in high-dimensional dynamic
system is restricted.

The continuous piecewise-linear model is linear in each sub-
area, hence represent more stability than high-order splines.
There are several piecewise linear models, such as Canonical
Piecewise Approximation (Kahlert and Chua [1990]), Lattice
Piecewise-linear Representation (Tarela et al. [1990]), Hinging
Hyperplanes model (Breiman [1993]), among which the last is
used widely for regression, classification and function approxi-
mation. The basis function of this model is as follows

max{0, l(x)} (1)

where l(x) is a linear function. As (1) shows, 2 hyperplanes
given by 0 and l(x) are joined together at {x : l(x) = 0}, and (1)
is also called the hinge (function). The model can approximate
a large class of nonlinear functions to arbitrary precision as long
as it contains sufficient hinges. However, the HH model cannot
represent all the continuous piecewise linear functions (CPWL)
in more than 2 dimensions. In Wang and Sun [2005], by adding
a certain number of linear functions in (1), Wang introduced the
Generalized Hinging Hyperplanes (GHH) model and proved
the representation ability of the model in any dimensions. There
have been some approximation algorithms since the model was
proposed, such as Sun and Wang [2005],Wen et al. [2007], all of
which are based on Hinge Finding Algorithm (HFA) (Breiman
[1993]). Actually, HFA is a Newton algorithm applied to a sum
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of squared error criterion (Pucar and Sjöberg [1998]). Hence,
even the convergence of the algorithm to a local minimum
cannot be guaranteed. Due to no rapid and effective algorithm
exists for parameter identification of GHH, the applications of
it is restricted.

Inspired by MARS (Friedman [1991]), in this paper, we intro-
duce the model of adaptive hinging hyperplanes (AHH), the
basis function of which is obtained by a small modification
of that of MARS. It is proved that AHH is actually one kind
of GHH with restrictions imposed on the division of the do-
main. Like the MARS algorithm, only least-squares is needed
in the AHH algorithm, hence no nonlinear parameters exist
in this algorithm and it runs very fast. From computational
view, it is much superior compared to HFA and the series of
algorithms mentioned above as those algorithms are actually
Newton algorithm and infected by the convergency problem.
Besides, the AHH model has advantages over the MARS model
in high dimensional dynamic system identification due to the
stableness of linear functions.

The paper is organized as follows. Section 2 gives a brief
review of MARS and GHH, which are the basis of AHH. Then,
in Section 3, the AHH model and algorithm are introduced.
Section 4 compares the application of MARS and AHH in high
dimensional dynamic system, taking the influence of noise and
small sample size into account. Simulations are done in section
5, including approximating 2-dimensional functions using HH,
AHH and MARS, and comparing AHH with MARS in a 5-
dimensional nonlinear dynamic system.

2. A BRIEF REVIEW OF MARS AND GHH

2.1 MARS

MARS (Multivariable Adaptive Regression Splines) was first
introduced by J. H. Friedman (Friedman [1991]). The method
is presented for flexible regression modeling of high dimen-
sional data. It can be considered as a generalization of recursive
partitioning regression, which is generally viewed as a geomet-
rical procedure. The idea is to partitioning the entire domain
recursively, assigning a constant value for each subregion. In
short, the procedure is to cast the approximation to the original
function in the form below:

f̂ (x) =

M
∑

m=1

amBm(x) (2)

The basis function Bm(x) takes the form

Bm(x) = I[x ∈ Rm] (3)

where I is an indicator function having the value one if its
argument is true and zero otherwise. The regions are chosen
based on a greedy optimization procedure where in each step
the algorithm selects the split which causes the largest de-
crease in mean squared error. There are problems existed in
recursive partitioning regression, such as discontinuous among
subregions and unable to provide good approximation to certain
classes of simple often-occurring functions. These are functions
that either have no interaction effects, or strong interactions
each involving at most a few of the predictor variables.

To overcome the above problems, the MARS procedure uses
continuous basis functions rather than the indicator functions.
The basis functions of MARS can be expressed in terms of the

product of truncated power spline function [±(xυ − t)]
q
+, where

the subscript []+ denotes the positive part of the expression,
q is the order of univariate spline function, xυ is the split
variable and t is the knot location. Besides, MARS differs
from recursive partitioning regression in that it makes all the
subregions eligible for further splitting, while in the latter only
newborn subregions at the previous step is availble. This makes
it powerful to model relationships both additive and involving
interactions in at most a few variables.

The MARS algorithm is comprised of a forward stepwise and
backward stepwise strategy. In the forward stepwise procedure,
a search is performed over all subregions to find the next sub-
regions, after a certain number of splits, the backward stepwise
procedure incorporate subregions (remove basis functions) that
no longer contribute sufficiently to the accuracy of the fit. The
model generated following the MARS procedure (q = 1) is of
the form

f̂ (x) = a1 +

M
∑

m=2

am

Km
∏

k=1

[

sm
k · (xm

k − tm
k )
]

+
(4)

where a1, . . . , aM are the coefficients of the basis functions, a1

is for the constant basis function. The sum is over the basis
functions Bm produced by the forward stepwise procedure that
survive the backwards deletion strategy. Km is the number of
splits that gave rise to Bm, sm

k
= ±1, xm

k
and tm

k
denote the

split variable and split point at the k-th split for the m-th basis
function. Always restricting the splitting area to the original
domain gives rise to additive MARS model, i.e., Km = 1

f̂ (x) =

M
∑

m=1

amĝm(xm) (5)

The measure of fit used by the MARS algorithm is a modi-
fied form of the generalized cross validation (GCV) estimate
(Craven and Wahba [1979]):

LOF( f̂M) =
1

N

N
∑

i=1

[

yi − f̂M(xi)
]2
/[

1 −
C̃(M)

N

]2

(6)

whereas C̃(M) is called the cost complexity function and can be
expressed as

C̃(M) = trace(B(BT B)−1BT ) + 1 + d · M (7)

where B is the M × N data matrix of the M (nonconstant)
basis functions. The quantity d is a smoothing parameter of
the procedure, representing the cost for each basis function
optimization. Larger values for d will lead to fewer knots being
placed and thereby smoother function estimates. It provides
an estimate of the future prediction accuracy by measuring
the mean squared error on the training set and penalizing this
measurement to account for the increase of variance due to
model complexity.

2.2 GHH

The model of generalized hinging hyperplanes (GHH) was first
introduced by Wang and Sun [2005] as a generalization or
extension of the model of hinging hyperplanes (HH), which was
first raised by Breiman (Breiman [1993]). The HH model is a
sum of hinge functions like

H(x) =

M
∑

m=1

δmhm(x)
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where δm = ±1 and the hinge function hm(x) is given by (1),
hm(x) = max{0, lm(x)}. Linear function lm(x) can be expressed
as lm(x) = [1, xT ]θm with x ∈ Rn and θm is an n + 1 dimensional
coefficient vector.

It is proved by Breiman that if f (x) is a sufficiently smooth
function, there is a constant C( f ) such that for any positive
integer M, there are hinge functions h1, . . . , hM with

∥

∥

∥

∥

∥

∥

∥

f (x) −

M
∑

m=1

hm(x)

∥

∥

∥

∥

∥

∥

∥

≤
C

M

The HH model can approximate a large class of nonlinear func-
tions to arbitrary precision. However, they can represent only a
small part of continuous piecewise-linear (CPWL) functions in
more than 2 dimensions. In Wang and Sun [2005], it is proved
that any CPWL function p(x) of n variables can be represented
by a sum of generalized hinges containing at most n + 1 linear
functions, i.e.

∑

m

δmĥm(x) (8)

where the generalized hinge function is of the form

ĥm(x) = max
{

0, [1 xT ]T θm1, . . . , [1 xT ]T θmkm
]
}

with δm = ±1 and km ≤ n. (8) is called n-order hinging
hyperplanes, or generalized hinging hyperplanes (GHH). As
GHH covers more continuous piecewise-linear functions, it is
more flexible than the HH model for black-box modeling.

3. ADAPTIVE HINGING HYPERPLANES

3.1 AHH model

In MARS, the truncated power spline function with q = 1
is [±(xυ − t)]+, in fact, it can be written as max{0,±(xυ −
t)}, which is actually a hinge function of 2-order. Therefore,
additive MARS model is actually equivalent to one kind of the
HH model, for which the boundary of each subregion is parallel
to the axis. Since additive MARS model has some relations
with hinge functions, would it be possible to obtain generalized
hinge functions based on nonadditive MARS model?

The answer is positive. The model of adaptive hinging hyper-
planes is obtained by a slight modification to the basis function
of MARS, i.e., the operator ”×” is replaced by ”min”. Hence,
the basis function of AHH is

min
k∈{1,...,Km}

{max{0, sm
k · (xm

k − tm
k )}}

where Km is the number of univariate truncated power spline
function (hinge function) contained in a basis function and
items in the ”min” bracket must involve distinct predictor
variables. It is proved that AHH is equivalent to one special
kind of the GHH model.

Theorem 1. Let

Bm(x) = min
k∈{1,...,Km}

{max{0, sm
k · (xm

k − tm
k )}} (9)

be the m-th basis function of AHH, then the following identity
is valid for all x ∈ Rn

Bm(x) = min{sm
1 (xm

1 − tm
1 ), . . . , sm

Km
(xm

Km
− tm

Km
)} (10)

−min{0, sm
1 (xm

1 − tm
1 ), . . . , sm

Km
(xm

Km
− tm

Km
)}

Proof. Let Im equals the set {i|sm
i

(xm
i
− tm

i
) > 0}, the proof is

continued according to the value of Im.
(i) Im = ∅

Bm(x) equals 0 and the right-hand side of (10) becomes sm
j0

(xm
j0
−

tm
j0

) − sm
j0

(xm
j0
− tm

j0
) = 0, where sm

j0
(xm

j0
− tm

j0
) is the minimum of

sm
i

(xm
i
− tm

i
), (i = 1, . . . ,Km). (10) holds.

(ii)Im = {1, . . . ,Km}

Bm(x) equals to

min{sm
1 (xm

1 − tm
1 ), . . . , sm

Km
(xm

Km
− tm

Km
)}

The right-hand side of (10) becomes
min{sm

1
(xm

1
− tm

1
), . . . , sm

Km
(xm

Km
− tm

Km
)} − 0

= min{sm
1

(xm
1
− tm

1
), . . . , sm

Km
(xm

Km
− tm

Km
)}

(10) holds.
(iii)Im ⊆ {1, . . . ,Km} but not equal and Im , ∅ and sm

i0
(xm

i0
− tm

i0
)

is the least among all the variables.
Bm(x) is 0 at this time and the right-hand side of (10) becomes

sm
i0

(xm
i0
− tm

i0
) − sm

i0
(xm

i0
− tm

i0
) = 0

(10) still holds.
Therefore, the identity holds for all x ∈ Rn.

Corollary 2. The result of AHH procedure

f̂ (x) = a1 +

M
∑

m=2

amBm(x) (11)

with Bm(x) being as the form of (9), is equivalent to one special
kind of the Generalized Hinging Hyperplanes model.

Proof. From Theorem 1, (11) is equivalent to

a1 +a2 min{s2
1(x2

1 − t2
1), . . . , s2

K2
(x2

K2
− t2

K2
)}

−a2 min{0, s2
1(x2

1 − t2
1), . . . , s2

K2
(x2

K2
− t2

K2
)}

+ · · ·

+aM min{sM
1 (xM

1 − tM
1 ), . . . , sM

KM
(xM

KM
− t2

KM
)}

−aM min{0, sM
1 (xM

1 − tM
1 ), . . . , sM

KM
(xM

KM
− t2

KM
)}

As each basis function is restricted to involve distinct predictor
variables in the ”min” bracket, at most n distinct items are
included in each ”min” bracket.

Compared to the Generalized Hinging Hyperplanes model
∑

m

δm max
{

[1 xT ]T θm1, . . . , [1 xT ]T θmkm

}

, km ≤ n + 1

AHH model is actually a special kind of GHH model with linear
functions in the ”max” (actually ”-min”) bracket specified with
s j(x j − t j), j ∈ {1, . . . , n}. Consequently, the boundaries of
subregions are those satisfying x j = t j or s j(x j − t j) = sk(xk −

tk), j, k = 1, . . . , n.

3.2 AHH algorithms

Analog to the MARS algorithm, the AHH forward and back-
ward algorithms are developed. The GCV criterion is also used.
Use υ(k,m) to denote the variable of the k-th factor in the m-th
basis function, the algorithm is as follows.

Algorithm 1(AHH-forward stepwise)

1. Set the first basis function B1(x) = 100 (or some positive
integer large enough to make min{B1(x), Bm(x)} = Bm(x) when
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m > 1), initial number of the basis functions M = 1.
2. Choose a basis function Bm(x), (m = 1, . . . ,M), a splitting
variable υ < {υ(k,m)|1 ≤ k ≤ Km} and a splitting point t. Let
g =
∑M

i=1 aiBi(x) + aM+1 min{Bm(x),max{xυ − t, 0}}
+ aM+2 min{Bm(x),max{−(xυ − t), 0}}

use least-squares to obtain an optimal approximation of g to the
data with respect to coefficients a1, . . . , aM+1, aM+2.
3. Choose B∗m(x), corresponding splitting variable x∗υ and knot
t∗ as those that yield the best fit, then

BM+1(x) = min{B∗m(x),max{x∗υ − t∗, 0}}

BM+2(x) = min{B∗m(x),max{−(x∗υ − t∗), 0}}

4. If M < Mmax, go to 2. Else, exit.

As the backward stepwise is concerned, the model containing
Mmax basis functions obtained above is considered as the initial
model. At each iteration, one basis function is to be deleted,
which is the one whose removal either improves the fit the most
or degrades it the least. Hence, a sequence of Mmax − 1 models
is constructed, each one having one less basis function than the
previous one in the sequence. Choose the model fit the best as
the final model.

4. COMPARISON OF MARS AND AHH IN
HIGH-DIMENSIONAL NONLINEAR DYNAMIC SYSTEM

Consider the nonlinear dynamic system

y(t) = g(ϕ(t), θ) + ε(t) (12)

where ϕ(t) = ϕ(ut−1, yt−1) is the regression vector, y(t) ∈ R is
the measured output and ε(t) ∈ R is the error term.

When the regression vector ϕ(t) consists of previous inputs and
outputs

ϕ(t) = [1, y(t − 1), . . . , y(t − na), u(t − 1), . . . , u(t − nb)]T

the system is defined as an NARX system (Sjöberg et al.
[1995]).

Given an adequate data set without noise, both MARS and
AHH exhibit good approximation ability, or may to some
extent, MARS even perform better. However, in a real NARX
system, some unfavorable conditions exist. First, sample data
available is limited. Then, output noise affects. Last, as the
regression vector contains previous outputs, input uncertainty
appears. All the 3 factors affects the prediction to a certain
extent.

Assume x = φ(t), according to Friedman [1997], the random
nature of the training data T implies that the estimate ĝ(x|T ) is
a random variable. Assume the output noise ε is a white noise,
therefore, the expected prediction error can be expressed as

ET [y − ĝ(x|T )]2

= ET [g(x) − ĝ(x|T ) + ε]2

= ET [g(x) − ĝ(x|T )]2

= [g(x) − ET ĝ(x|T )]2 + ET [ĝ(x|T ) − ET ĝ(x|T )]2 (13)

The term ET [y − ĝ(x|T )]2 represents the squared prediction
error (at x) averaged over repeatedly realized training samples
of the (same) size N from the system under study. The term
ET [g(x) − ĝ(x|T )]2 is the squared ”estimation error” in the

target function g(x) averaged over training samples. From the
last equality of (13), we can see it depends only on the mean
and the variance of the distribution of ĝ(x|T ). The bias g(x) −
ET ĝ(x) represents how closely on average the estimate is able
to approximate the target. The variance ET [ĝ(x|T )−ET ĝ(x|T )]2

reflects the sensitivity of the function estimate ĝ(x|T ) to the
training sample T . More sensitivity means that the estimates
will be more variable under sampling variations in the data.

Generally speaking, the bias and variance increases with de-
creasing training sample size. Due to the polynomial structure
of the MARS procedure, it tends to give a more precise descrip-
tion of the training data but larger bias and variance when pre-
dicting. From (13), this larger bias and variance lead to larger
prediction error at x. Hence, when the sample size is small , the
MARS procedure may provide a misleading indication of the
association between the response and the predictor variables.

On the other hand, the output noise ε(t) affects the identification
by adding random ingredients to the training data T , both on the
input and output. It is easy to see that linear structure is more
stable when the output was added a random element. Following
gives a brief analysis of how input uncertainties affects the
identification procedure in the MARS and AHH models.

In MARS, the products of truncated power spline function
[±(x − t)]q is included in each basis function, as the dimen-
sion increases, the order of the basis function increases. On
the other hand, AHH takes the minimum of several truncated
power spline functions, hence the order remains to be 1 in any
dimensions. Suppose in n-dimensional x-space, the input un-
certainties for predictor variables (actually noise on the output)
are δx1, · · ·, δxn, and consider changes of the two kinds of basis
functions in the corresponding valid subregions. In (4), assume

the basis function is of the form Bm(x) =
n
∏

k=1

[sk · (xk − tk)]+,

for the case of simplicity, suppose each sk equals 1, then when
measurement uncertainty exists, the relative change of Bm(x) is

∆Bm(x)

Bm(x)
=
δx1

x1 − t1
+ · · · +

δxn

xn − tn

+
δx1δx2

(x1 − t1)(x2 − t2)
+ · · · +

δxn−1δxn

(xn−1 − tn−1)(xn − tn)

+ · · · +
δx1 · · · δxn

(x1 − t1) · · · (xn − tn)

In case of (11), analog to the assumptions made above, the
change of Bm(x) = min{x1 − t1, · · · , xn − tn} is

xi − ti + δxi − (x j − t j)

x j − t j

<
δx j

x j − t j

in which x j − t j is the least when the measurement uncertainty
is not considered and xi − ti + δxi is the least afterwards.

As the coefficient matrix B for the least-squares is comprised
of the value of basis functions at each sample point, from the
above two expressions, we can expect AHH procedure give
more stable identification results when measurement uncer-
tainty affects.

Overall, under the 3 factors mentioned in the begining of this
section, the AHH procedure provides a more stable identifica-
tion. This directly yields less bias and variance of the predic-
tion ĝ(x|T ), thus smaller prediction error. Therefore, the AHH
model is more suitable than the MARS model when the NARX
system is considered and the superiority would become more
significant as the dimension grows.
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5. SIMULATION EXAMPLES

In the following simulation examples, we present the result
of applying the AHH procedure to 2 examples. It is shown
that when modeling nonlinear phenomenon, AHH is accurate,
flexible and computationally effective. In the examples below,
when MARS is used to compare the effects with those of AHH,
continuous but not smooth piecewise polynomial splines is
used. d in the GCV criterion (6) is set to be 2(Friedman [1991]).

In section 5.1, the approximation of a 2-dimensional function
is handled using a special HH model, AHH model and MARS
model. Section 5.2 applies AHH and MARS to a 5-dimensional
dynamic system with white noise and confirms results obtained
in section 4.

5.1 Modeling 2-Dimensional Function

Consider the following nonlinear function

y = f (x) = e−δ1‖x−0.3e‖22 − e−δ2‖x−0.7e‖22 (14)

where e = [ 1 1 ]T . The example is first studied in Breiman
[1993] to inspect the approximating ability of the HH model,
here, we use it to show the approaching capability of the AHH
model and compare it to that of the HH model with the domain
partitioned parallel to the axis (equivalent to additive MARS
model). It is realized by placing constraints on the parameter mi
in the AHH model, which is the maximum number of variables
allowed to appear in any basis function, Km ≤ mi. In this
example, mi = 1 corresponds to the special HH model, and
mi = 2 is equivalent to the AHH model. The MARS procedure
is also applied. There are 500 points sampled uniformly on the
square [0 1]2. The response is assigned according to

yi = f (xi) + εi, 1 ≤ i ≤ N (15)

with εi randomly generated from a standard normal distribu-
tion. Here the signal-to-noise ratio is 3.28 so that the true
underlying function accounts for 91.5% of the variance of the
response. The training error and prediction error are all calcu-
lated by

E =

N
∑

i=1

(ŷi − yi)
2

/ N
∑

i=1

(yi − ȳi)
2 (16)

where ŷi is the approximation value and ȳ = 1
N

N
∑

i=1

yi. The pre-

diction error is calculated over 5000 sample data regenerated.
As the problem to be considered is simple (in 2-dimension), the
maximum number of the basis function for each method is set to
be 15. All the computation were performed with MATLAB6.5
on Pentium(R) 4. For this simple example, computation cost
for all the 3 cases (HH, AHH, MARS) is small. For example, in
one experiment, when δ1 = δ2 = 16, time consuming is 1.28s,
2.97s and 3.86s respectively. Table 1 compares the training and
prediction error of applying these 3 strategies, of which TE and
PE stand for the 2 errors respectively. Errors listed in Table 1
are mean values of 100 replications, also shown in Table 1 are
the corresponding standard deviations (in parentheses) over the
100 replications.

Comparing the two kinds of errors of the 3 situations, AHH and
MARS exhibit their superior approximating ability over HH,
which is more significant when the function to be approximated

Table 1. Comparison of the accuracy of HH, AHH
and MARS modeling

Errors δ1 = δ2 = 4 δ1 = δ2 = 9 δ1 = δ2 = 16

TE

HH 0.0381(0.0027) 0.0734(0.0048) 0.0996(0.0082)

AHH 0.0067(0.0014) 0.0135(0.0034) 0.0306(0.0084)

MARS 0.0057(0.0011) 0.0175(0.0036) 0.0342(0.0080)

PE

HH 0.0499(0.0312) 0.0993(0.0265) 0.1340(0.0333)

AHH 0.0058(0.0018) 0.0132(0.0040) 0.0344(0.0093)

MARS 0.0046(0.0013) 0.0181(0.0039) 0.0394(0.0140)

becomes sharp. However, the powerful ability of HH cannot
be ignored. In some situations such that the function to be
approximated is smooth or in low-dimension, the HH procedure
will be chosen if its error is only slightly (say 5 or 10 percent)
worse due to its simpleness. Besides, the behaviors of AHH and
MARS differed little in this example.

5.2 Modeling High-Dimensional Nonlinear Dynamic System

Consider the nonlinear dynamical system described by the
input-output model (Narendra and Parthasarathy [1990])

y(t) =
y(t − 1)y(t − 2)y(t − 3)u(t − 2)(y(t − 3) − 1)

1 + y2(t − 2) + y2(t − 3)

+
u(t − 1)

1 + y2(t − 2) + y2(t − 3)

(17)

To generate the identification data, the system is excited with
a random input signal u(t) uniformly distributed in the inter-
val [−0.5, 0.5]. To provide a complete comparison between
the MARS and AHH procedure, 4 situations are considered:
training set contains 200 (1 ≤ t ≤ 200) or 2000 points (1 ≤
t ≤ 2000), without or with noise (the noise is conformed to
normal distribution N(0, 0.052)). 20 basis functions are allowed
for both MARS and AHH. 500 points are used as the testing
data, for which the input is defined as

ut = sin(2πt/50), 1 ≤ t ≤ 500 (18)

Fig (1) shows the performance of MARS and AHH procedure
over one experiment when there are 200 sample points with
noise, computation cost for the two are 23.25s and 21.75s.
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(a) True (solid) and simulated

(dashed) output using MARS
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−1.5
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−0.5

0

0.5

1

1.5

(b) True (solid) and simulated

(dashed) output using AHH

Fig. 1. Using MARS and AHH simulate system (17) with input
(18)

We can see from fig (1) that outputs deviation generated by
MARS was much greater than that of AHH in this experiment.

To explicitly observe the overall trend of the training error and
prediction error, the summary consists of the percent points of
the lower half of the distribution of the two errors for the MARS
and AHH model. These distributions were obtained by applying
MARS and AHH to 100 data sets. The percent points of the
lower half of a distribution X is often called α-lower quantiles,
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which is the smallest value K with P(X ≤ K) = α. For example,
the value 0.0002 in the third row, second column of table 2
reflects that when using MARS, the training error was no more
than 0.0002 10 times out of the 100 experiments.

Table 2. Lower quantiles for training error

10% 50% 70% 80% 90%

N=200 (without noise)

MARS 0.0002 0.0003 0.0003 0.0003 0.0003

AHH 0.0007 0.0009 0.0010 0.0011 0.0014

N=200 (with noise)

MARS 0.0313 0.0369 0.0389 0.0403 0.0430

AHH 0.0328 0.0378 0.0398 0.0411 0.0442

N=2000 (without noise)

MARS 0.0003 0.0003 0.0003 0.0003 0.0004

AHH 0.0007 0.0011 0.0012 0.0012 0.0012

N=2000 (with noise)

MARS 0.0351 0.0365 0.0373 0.0379 0.0388

AHH 0.0355 0.0369 0.0377 0.0383 0.0389

Table 3. Lower quantiles for prediction error

10% 50% 70% 80% 90%

N=200 (without noise)

MARS 0.0156 0.0750 0.1553 0.2088 0.4279

AHH 0.0272 0.0518 0.0728 0.0859 0.1123

N=200 (with noise)

MARS 0.0554 0.1900 0.5342 0.9080 6.4992

AHH 0.0653 0.1404 0.2587 0.4239 1.1402

N=2000 (without noise)

MARS 0.0062 0.0386 0.0611 0.0862 0.1489

AHH 0.0393 0.0478 0.0506 0.0537 0.0616

N=2000 (with noise)

MARS 0.0292 0.1153 0.1939 0.3243 0.5080

AHH 0.0323 0.0615 0.0757 0.0950 0.1539

Table 2 shows that MARS gives a little smaller training er-
ror than AHH, which coincides with the fact that splines can
describe a relationship finer than linear functions. However,
under noise conditions, the differences is very small, which
indicates that AHH is more resistant to noise than MARS even
in approximating. As the prediction error is concerned, which
is shown in Table 3, AHH exhibits significant superiority to
MARS, and the superiority becomes more noteworthy when the
sample is of small size or with noise. In the most unfavorable
situation, when the noise is added on the 200 training points,
AHH outperforms MARS almost each time of the 100 replica-
tions.

Furthermore, a much smaller variation is founded in the distri-
bution obtained by AHH for each of the 4 situations, represent-
ing that AHH is more stable and more likely to give smaller
prediction error than MARS in modeling high-dimensional dy-
namic systems.

6. CONCLUSION

The model of adaptive hinging hyperplanes (AHH) is devel-
oped to combine the model of multivariate adaptive regression
splines (MARS) and generalized hinging hyperplanes (GHH)
in a way that best retains the positive aspects of the both, while
being less vulnerable to their unfavorable properties. Inheriting
the property of adaptiveness from MARS, AHH shows a strong
approximation ability and great flexibility. As a special case of

GHH, AHH preserves all advantages of linear functions, thus is
more suitable than MARS to problems of high dimension and
with high noise. The AHH algorithm runs fast and no nonlinear
parameters exists, which is superior to the algorithms developed
for GHH before.

AHH is actually bringing GHH to nonlinear modeling in an
effective way. It is promising to use it in nonlinear system
identification and control.
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