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Abstract: In eigenvalue analysis, transformation from real systems to complex systems is very
important. First, we clarify a necessary and sufficient condition that solutions of real nonlinear
systems coincide with solutions of transformed complex nonlinear systems in the real subspace.
Moreover, we propose a complex transformation such that a) real homogeneous systems of degree
� with respect to r are transformed to complex homogeneous systems of degree (�, 0) with respect
to r and b) solutions of real systems coincide with solutions of transformed complex systems in
the real subspace. Then, we show examples.

1. INTRODUCTION

1.1 Eigenvalue Analysis for Linear Systems

For linear systems, eigenvalue analysis is a very useful
technique to determine the characteristics. First, a real
linear system

ẋ = Ax (x ∈ R
n) (1)

is transformed to a complex linear system

ż = Az (z ∈ C
n). (2)

Notice that

1) System (1) is real homogeneous of degree 0 with respect
to r = (1, . . . , 1)T . And system (2) is complex homoge-
neous of degree (0, 0) with respect to r = (1, . . . , 1)T .

2) x(t) is a solution of system (1) if and only if x(t)ei·0 is
a solution of system (2).

3) System (1) is (asymptotically) stable if and only if
system (2) is (asymptotically) stable.

4) Both systems (1) and (2) are analytic.

System (2) has n eigenvalues and n linearly independent
eigenvectors. Moreover, solutions on eigenvectors can be
written by using corresponding eigenvalues and eigenvec-
tors. Since system (2) satisfies the superposition principle,
general solutions can be written by using eigenvalues and
eigenvectors. Furthermore, the stability of (2) can be iden-
tified by eigenvalues. Hence, the stability of (1) also can
be identified by eigenvalues.

1 This work was supported by Grant-in-Aid for Special Purposes
(19569004) and Grant-in-Aid for Young Scientists (B) (19760288).

1.2 Eigenvalue Analysis for Homogeneous Systems

Our ultimate purpose is to extend eigenvalue analysis for
homogeneous systems.

In [1], homogeneous eigenvalues and homogeneous eigen-
vectors are defined for real homogeneous systems. While
the number of homogeneous eigenvalues is only partly elu-
cidated [2], solutions on homogeneous eigenvectors can be
written by using corresponding homogeneous eigenvalues
and homogeneous eigenvectors [1].

In [4], complex homogeneous systems are defined. More-
over, homogeneous eigenvalues and homogeneous eigenvec-
tors are defined for complex homogeneous systems of de-
gree (�, 0) or degree (�, �) [4] [5]. For these complex homo-
geneous systems, solutions on homogeneous eigenvectors
also can be written by using corresponding homogeneous
eigenvalues and homogeneous eigenvectors [4] [5].

In [5], we have shown a transformation from a real nonlin-
ear system

ẋ = f(x) (x ∈ R
n) (3)

to a complex nonlinear systems

ż = F (z) (z ∈ C
n). (4)

This complex transformation holds the following condi-
tions:

1’) System (3) is real homogeneous of degree � with
respect to r. And system (4) is complex homogeneous
of degree (�, �) with respect to r.

2’) x(t) is a solution of system (3) if and only if x(t)ei·0 is
a solution of system (4).
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3’) System (4) may not be (asymptotically) stable even if
system (3) is (asymptotically) stable.

4’) Both systems (3) and (4) are analytic.

For general homogeneous systems, a transformation satis-
fying 2’), 4’) and

3”) System (3) is (asymptotically) stable if and only if
system (4) is (asymptotically) stable

does not exist because a transformation satisfying condi-
tions 2’) and 4’) exists uniquely [5].
Example 1. The real analytic homogeneous system of de-
gree 2 with respect to r = 1

ẋ = −x3 (x ∈ R) (5)
is transformed to the complex analytic homogeneous sys-
tem of degree (2, 2) with respect to r = 1

ż = −z3 (z ∈ C). (6)
While system (5) is asymptotically stable, system (6) is
unstable. Both systems (5) and (6) are analytic. �

Example 2. The real analytic homogeneous system of de-
gree 1 with respect to r = (1, 2)

d

dt

(
x1

x2

)
=

(
x2

−x3
1

)
(x1, x2 ∈ R) (7)

is transformed to the complex analytic homogeneous sys-
tem of degree (1, 1) with respect to r = (1, 2)

d

dt

(
z1

z2

)
=

(
z2

−z3
1

)
(z1, z2 ∈ C). (8)

While system (7) is stable, system (8) is unstable. Both
systems (7) and (8) are analytic. �

1.3 The Purpose of This Paper

In this paper, we propose another complex transformation
for homogeneous systems. In Section 2, we introduce some
definitions and results as a preliminary. In Section 3.1, we
clarify a necessary and sufficient condition for condition
2’). In Section 3.2, we propose a complex transformation
satisfying 2’) and

1”) System (3) is real homogeneous of degree � with
respect to r. And system (4) is complex homogeneous
of degree (�, 0) with respect to r.

In Section 4, we show examples and in Section 5 conclude
this paper.

2. PRELIMINARY

Let R, R>0, and C denote the set of all real numbers, the
set of all positive real numbers, and the set of all complex
numbers, respectively.

2.1 Category and Functor

Definition 1. (Category). A category C consists of

C1) a set O of objects

C2) a set A of arrows
C3) domain dom : A → O : f �→ dom f

C4) codomain cod : A → O : f �→ cod f

C5) identity id : O → A : c �→ idc

C6) composition ◦ : A ×O A → A : 〈g, f〉 �→ g ◦ f where
A ×O A := {〈g, f〉| g, f ∈ A ∧ dom g = cod f}

such that
dom(idc) = c = cod(idc), ∀c ∈ O

dom(g ◦ f) = dom f, ∀〈g, f〉 ∈ A ×O A

cod(g ◦ f) = cod g, ∀〈g, f〉 ∈ A ×O A

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

∀〈h, g〉, 〈g, f〉 ∈ A ×O A

1b ◦ f = f, ∀f : a �→ b

g ◦ 1b = g, ∀g : b �→ c.

�

Definition 2. (Functor). For categories C and B, a functor
T : C → B with domain C and codomain B consists of

F1) a object function T which assigns to each object c of
C an object Tc of B

F2) an arrow function T which assigns to each arrow
f : c �→ c′ of C an arrow Tf : Tc �→ Tc′ of B such
that

T (1c) = 1Tc, T (g ◦ f) = Tg ◦ Tf.

�

2.2 Real Homogeneous Systems

We consider the following nonlinear system:
ẋ = f(x), (9)

where x ∈ R
n is a state vector and t ∈ R.

Definition 3. (dilation). A mapping
Δr

εx = (εr1x1, . . . , εrnxn)T , ∀ε > 0 (10)
is said to be a dilation on Rn, where r = (r1, . . . , rn),
0 < rj < ∞ (j = 1, . . . , n) and x ∈ Rn. �

Definition 4. (Euler vector field). A vector field
ν(x) = (r1x1, . . . , rnxn)T . (11)

is said to be a Euler vector field with respect to the dilation
exponent r = (r1, . . . , rn). �

Definition 5. (homogeneous ray). Solution curves of ẋ =
ν(x) (t ∈ R) are said to be homogeneous rays. �

For fixed x ∈ Rn, a dilation Δr
εx (ε > 0) coincides with an

homogeneous ray by definitions.
Definition 6. (homogeneous function). A function V : Rn

→ R is said to be homogeneous of degree k ∈ R with
respect to the dilation Δr

εx if
V (Δr

εx) = εkV (x). (12)
�

Definition 7. (homogeneous vector field). A vector field
f : Rn → Rn is said to be homogeneous of degree � ∈ R

with respect to the dilation Δr
εx if
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f(Δr
εx) = ε�Δr

εf(x). (13)

�

Definition 8. (homogeneous system). Nonlinear
system (9) satisfying (13) is said to be homogeneous of
degree � ∈ R with respect to the dilation Δr

εx. �

Lemma 1. A C1 function V : R
n → R satisfies (12) if and

only if
∂V

∂x
ν(x) = kV (x). (14)

�

Lemma 2. If a C1 function V : Rn → R satisfies (12),
∂V

∂xj
(Δr

εx) = εk−rj
∂V

∂xj
(x). (15)

�

Lemma 3. A C1 vector field f : Rn → Rn satisfies (13) if
and only if

∂f

∂x
ν(x) − ∂ν

∂x
f(x) = �f (x). (16)

�

Lemma 4. We consider homogeneous system (9) of degree
� with respect to a dilation Δr

εx. If x(t) is the solution for
an initial state x(0), Δr

εx
(
ε�t

)
is the solution for an initial

state Δr
εx(0). �

2.3 Complex Homogeneous Systems

In this paper, we consider complex functions defined
on a Riemmann surface for avoiding discontinuity and
multi-value problems of complex functions [9]. Namely, we
consider complex functions defined on

z = (z1, . . . , zn)T

zj = rje
iθj (rj , θj ∈ R, j = 1, . . . , n).

(17)

We define the complex conjugate of z = reiθ by z̄ := re−iθ .

Definition 9. (complex dilation). A mapping

Δr
εz = Δr

{ξ,η}z = (ξr1eiηr1z1, . . . , ξrneiηrnzn)T ,

∀ε = ξeiη ∈ C\{0} (∀ξ ∈ R>0, ∀η ∈ R)
(18)

is said to be a complex dilation on C
n, where r =

(r1, . . . , rn), 0 < rj < ∞ (j = 1, . . . , n) and z ∈ Cn.
�

Definition 10. (complex Euler vector field). A vector field

ν(z) = (r1z1, . . . , rnzn)T (19)

is said to be a complex Euler vector field with respect to
the dilation exponent r = (r1, . . . , rn). �

Definition 11. (complex homogeneous ray). Solution curves
of ż = ν(z) (t ∈ C) are said to be complex homogeneous
rays. �

For fixed z ∈ Cn, a complex dilation Δr
εz (ε ∈ C\{0})

coincides with a complex homogeneous ray by definitions.

Definition 12. (complex homogeneous function). A func-
tion V : Cn → C is said to be complex homogeneous of

degree (k1, k2) ∈ R
2 with respect to the complex dilation

Δr
{ξ,η}z if

V (Δr
{ξ,η}z) = ξk1eiηk2V (z). (20)

�

Definition 13. (complex homogeneous vector field). A vec-
tor field F : Cn → Cn is said to be complex homogeneous
of degree (�1, �2) ∈ R2 with respect to the complex dilation
Δr

{ξ,η}z if

F (Δr
{ξ,η}z) = ξ�1eiη�2Δr

{ξ,η}F (z). (21)
�

Definition 14. (complex homogeneous system). A nonlin-
ear system

ż = F (z) (22)
satisfying (21) is said to be complex homogeneous of degree
(�1, �2) ∈ R2 with respect to the complex dilation Δr

{ξ,η}z,
where t ∈ R. �

Lemma 5. An analytic function V : Cn → C satisfies (20)
if and only if

∂V

∂z
ν(z) = k1V (z) = k2V (z). (23)

�

Lemma 6. If an analytic function V : Cn → C satisfies
(20),

∂V

∂zj
(Δr

{ξ,η}z) = ξk1−rj eiη(k2−rj)
∂V

∂zj
(z). (24)

�

Lemma 7. An analytic vector field F : Cn → Cn satisfies
(21) if and only if

∂F

∂z
ν(z) − ∂ν

∂z
F (z) = �1F (z) = �2F (z). (25)

�

Lemma 8. We consider complex homogeneous system (22)
of degree (�1, 0) with respect to a complex dilation Δr

{ξ,η}z.
If z(t) is the solution for an initial state z(0), Δr

{ξ,η}z
(
ξ�1t

)
is the solution for an initial state Δr

{ξ,η}z(0). �

2.4 Eigenvalue Analysis for Complex Homogeneous Sys-
tem of Degree (�, 0)

Definition 15. (complex homogeneous norm). The follow-
ing complex homogeneous function of degree (1, 0) with
respect to a complex dilation Δr

εz is said to be a complex
homogeneous p-norm:

‖z‖{r,p} =

⎛
⎝ n∑

j=1

|zj |
p

rj

⎞
⎠

1
p

. (26)

�

Definition 16. (Homogeneous eigenvalue). We consider
complex homogeneous system (22) of degree (�, 0) with
respect to a complex dilation Δr

εz. If there exist λ ∈ C

and zλ ∈ C
n such that

F (zλ) = λ‖zλ‖�
{r,2}ν(zλ), (27)

λ and zλ are said to be an homogeneous eigenvalue and
an homogeneous eigenvector, respectively. �
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Lemma 9. We consider complex homogeneous system (22)
of degree (�, 0) with respect to a complex dilation Δr

εz. If
there exist λ ∈ C and zλ ∈ Cn with (27),

z(t) = Δr
Q(t)zλ

Q(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
λ‖zλ‖�

{r,2}t
)

(��(λ) = 0)(
1 − ��(λ)‖zλ‖�

{r,2}t
)− 1

�

· exp
{
− i(λ)

��(λ)
ln

(
1 − ��(λ)‖zλ‖�

{r,2}t
)}

(��(λ) �= 0)
(28)

is the solution for an initial state z(0) = zλ. �

Theorem 1. For complex homogeneous system (22) of de-
gree (�, 0), the followings are true:

1) If an homogeneous eigenvalue with positive real part
exists, the system is unstable.

2) If an homogeneous eigenvalue with zero real part exists,
the system is not asymptotically stable.

3) If an homogeneous eigenvalue with negative real part
exists, the system has a solution that converges to the
origin.

�

Lemma 10. We consider complex nonlinear system (22)
with F (z) = F (z̄). If z(t) is the solution for an initial
state z(0), z̄(t) is the solution for an initial state z̄(0). �

Lemma 11. We consider complex homogeneous system
(22) with F (z) = F (z̄). If z0 is an homogeneous eigen-
vector corresponding to an homogeneous eigenvalue λ,
z̄0 is an homogeneous eigenvector corresponding to an
homogeneous eigenvalue λ̄. �

3. COMPLEX TRANSFORMATION

3.1 Necessary and Sufficient Condition

We obtain a necessary and sufficient condition that solu-
tions of real nonlinear system (9) coincide with solutions
of transformed complex nonlinear system (9) in the real
subspace as follows:

Lemma 12. Let Tc be a functor that assigns xei·0 ∈ Cn to
x ∈ Rn and F : Cn → Cn to f : Rn → Rn. Then, the
followings are equivalent:

1) The following diagram

x
f−−−−→ f(x)

Tc

⏐⏐�
⏐⏐�Tc

z
F−−−−→ F (z)

(29)

is commutative.
2) x(t) is a solution of real nonlinear system (9) if and

only if x(t)ei·0 is a solution of complex nonlinear system
(22).

Proof 1. First, we show 1)⇒2).

{ẋ − f(x)}ei·0 = Tc(ẋ) − Tc(f(x)) (30)
d

dt
(xei·0) − F (xei·0) = Tc(ẋ) − F (Tc(x)). (31)

If condition 1) is satisfied, the right-hand side of (30)
coincides with the right-hand side of (31). Hence, condition
2) is held.

Then, we show 2)⇒1). If condition 2) is satisfied, the left-
hand side of (30) and the left-hand side of (31) becomes
0. Hence, condition 1) is held. �

3.2 Complex Transformation Functor for Homogeneous
Systems

We consider real homogeneosu system (9) of degree � with
respect to Δr

εx and assume that

H1) f is a C1 mapping.
H2) � + rj �= 0 (j = 1, . . . , n).

We propose a functor that transforms this system (9) to
complex homogeneous system (22) of degree (�, 0) with
respect to Δr

εz as follows:

Theorem 2. We consider real homogeneosu system (9) of
degree � with respect to Δr

εx. We assume that H1) and H2)
are satisfied. Let Tc be a functor that assigns xei·0 ∈ C

n

to x ∈ Rn and

F :

⎛
⎜⎝

x1e
iy1

...
xneiyn

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
� + r1

n∑
j=1

∂f1

∂xj
(x)rjxje

i
r1
rj

yj

...
1

� + rn

n∑
j=1

∂fn

∂xj
(x)rjxje

i rn
rj

yj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(xj , yj ∈ R)

(32)

to f : x �→ f(x). Then, Tc transforms from real homo-
geneous system (9) to complex homogeneous system (22)
of degree (�, 0) with respect to Δr

εz. Moreover, x(t) is a
solution of real homogeneous system (9) if and only if
x(t)ei·0 is a solution of complex homogeneous system (22).
Furthermore, F (z) = F (z̄). �

Proof 2. By the homogeneity of f and Lemma 2, we obtain

F (Δr
εz) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
� + r1

n∑
j=1

∂f1

∂xj
(Δr

ξx)rjξ
rj xje

i
r1
rj

(yj+rjη)

...
1

� + rn

n∑
j=1

∂fn

∂xj
(Δr

ξx)rjξ
rj xje

i rn
rj

(yj+rjη)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ξ�Δr
εF (z),

where zj = xje
iyj (j = 1, . . . , n) and ε = ξeiη (ξ > 0).

Since (21) with (�1, �2) = (�, 0) is satisfied, F is a complex
homogeneous vector field of degree (�, 0) with respect to
Δr

εz.

By the homogeneity of f and Lemma 1, we get
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F (Tc(x)) = F (xei·0)

=

⎛
⎜⎜⎜⎜⎝

1
� + r1

∂f1

∂x
ν(x)ei·0

...
1

� + rn

∂fn

∂x
ν(x)ei·0

⎞
⎟⎟⎟⎟⎠

= Tc(f(x)).
By the equation and Lemma 12, x(t) is a solution of
real homogeneous system (9) if and only if x(t)ei·0 is a
solution of complex homogeneous system (22). By (32),
F (z) = F (z̄) is clearly satisfied. �

4. EXAMPLE

Example 3. By Theorem 2, real homogeneous system (5)
of degree 2 with respect to r = 1 is transformed to the
following complex homogeneous system of degree (2, 0)
with respect to r = 1:

ż = −|z|2z (z ∈ C). (33)
Both systems (5) and (33) are asymptotically stable. While
system (5) is analytic, system (33) is not analytic. �

Example 4. By Theorem 2, real homogeneous system (7)
of degree 1 with respect to r = (1, 2) is transformed to
the follwoing complex homogeneous system of degree (1, 0)
with respect to r = (1, 2):

d

dt

(
x1e

iy1

x2e
iy2

)
=

(
x2e

i
y2
2

−x3
1e

i2y1

)
(x1, x2, y1, y2 ∈ R). (34)

While system (7) is stable and analytic, system (34) is
unstable and nonanalytic. �

5. CONCLUSION

We have clarified a necessary and sufficient condition
that solutions of real nonlinear systems coincide with
solutions of transformed complex nonlinear systems in
the real subspace. Moreover, we have proposed a complex
transformation such that a) real homogeneous systems of
degree � with respect to r are transformed to complex
homogeneous systems of degree (�, 0) with respect to r

and b) solutions of real systems coincide with solutions of
transformed complex systems in the real subspace. Then,
we have shown examples.
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