
Terrain Avoidance Model Predictive

Control for Autonomous Rotorcraft

B. Guerreiro ∗ C. Silvestre ∗ R. Cunha ∗
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Abstract: This paper presents a terrain avoidance control methodology for autonomous
rotorcraft applied to low altitude flight. A model predictive control formulation is used to
adequately address the terrain avoidance problem, which involves stabilizing a nonlinear highly
coupled dynamic model, while avoiding collisions with the terrain and preventing input and state
saturations. Computing the model predictive control law amounts to solving a finite horizon
open-loop optimal control problem subject to the state difference equations that describe the
rotorcraft nonlinear dynamic model. State and input saturations are added to the optimization
cost functional as penalties and terrain avoidance is achieved by penalizing the distance between
the vehicle and the closest point on the terrain, yielding smooth and collision-free trajectories.
Simulation results, obtained with a simplified version of a small-scale helicopter nonlinear
dynamic model, are presented to assess the performance of the methodology with different
reference paths and terrain profiles, including the extreme case where a desired path leads to
collision with the terrain.

Keywords: Obstacle avoidance; Helicopter control; Model predictive control.

1. INTRODUCTION

In this paper the problem of low altitude terrain avoidance
flight for autonomous rotorcraft is addressed. Within the
scope of Unmanned Aerial Vehicles, autonomous rotorcraft
have been steadily growing as a major topic of research.
They have the potential to perform high precision tasks in
challenging and uncertain operation scenarios as new sen-
sor technology and increasingly powerful computational
systems are available. Missions like aerial surveillance,
infrastructure automatic inspection or 3-D surface map-
ping in unknown environments demand highly adaptable
autonomous vehicles that can meet low altitude flight
requirements, thus emphasizing the importance of terrain
avoidance strategies (e.g. Paulino et al. [2006]).

The presented methodology is formulated within the scope
of model-based predictive control (MPC) in order to
simultaneously solve the trajectory tracking and terrain
avoidance problems. The control law is obtained by solving
on-line, at each sampling instant, a finite horizon open-
loop optimal control problem, using the current state of
the plant as the initial state. The optimization yields an
optimal control sequence and the first element of this
sequence is applied to the plant. Since the optimal control
problem is solved online, it is straightforward to add state
and control saturation constraints as penalty functions to
the cost functional. Moreover, the vehicle model constraint
can be readily incorporated in the cost functional using
lagrange multipliers. These are standard procedures in
MPC literature such as Sutton and Bitmead [2000], Kim
et al. [2002], Shim et al. [2003]. To implement the terrain
avoidance capability, a virtual repulsive field is generated
around the helicopter such that any obstacle within its

range (possibly the terrain) is weighted in the optimal
control cost functional, directing the vehicle trajectory
away from collisions. Since this additional constraint is also
included in the cost functional as a penalty function, the
original constrained optimization problem is formulated as
an unconstrained optimization problem.

The resulting optimization problem is numerically solved
using the gradient and quasi-Newton methods to com-
pute the search direction and using Wolfe’s rule as the
line search algorithm to solve the step size optimization
subproblem (see Nocedal and Wright [1999]). The vehi-
cle model considered in this work is a helicopter non-
linear dynamic model, derived from first-principles and
specially suited for model-scale helicopters (see Cunha
[2002], Cunha et al. [2005]). The control algorithm relies
on a simplified version of the referred model to compute
the sequence of state vectors given a sequence of input
vectors.

This paper is organized as follows: Section 2 presents a
brief summary of the helicopter dynamic model; Section 3
formulates the terrain avoidance MPC problem, describing
the control problem, the saturation, terrain and model
constraints, and the optimization algorithm; implemen-
tation issues and the simulation results are presented in
Section 4 and finally Section 5 summarizes the main ideas
of this paper and discusses directions for future work.

2. HELICOPTER MODEL

This section summarizes the helicopter dynamic model. A
comprehensive coverage of helicopter flight dynamics can
be found in Padfield [1996]. In Cunha [2002], Cunha et al.
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[2005] this model and its simplified version are described
in more detail.

Consider the helicopter modeled as a rigid body dynamic
where the resultant force and moment applied to the
helicopter’s center of mass is the sum of the contributions
of the helicopter components and gravitational force. Let
(

IpB,
I
BR

)

∈ SE(3) , R
3 × SO(3) denote the configu-

ration of the body frame {B} (attached to the vehicle’s
center of mass) with respect to the inertial frame {I}.

Consider also the Z-Y-X Euler angles λB = [ φB θB ψB ]
′
,

θB ∈]−
π
2 ,

π
2 [, φB, ψB ∈ R, representing the orientation of

{B} relative to {I} such that I
BR = R(λB). In addition, let

vB and ωB denote the linear and angular body velocities,
respectively, where vB = B

I R
I ṗB ∈ R

3, ωB = B
I R

IωB,
and IωB is the angular velocity of {B} relative to {I}.
For the sake of simplicity, the subscripts and superscripts
of the state variables vB , ωB, IpB and λB are dropped,
so that for example p = IpB.

Using this notation, the helicopter state equations, com-
bining kinematics and dynamics, can be written as















v̇ = −ω × v + 1
m

[fh (v,ω,u) + fg (φ, θ)]
ω̇ = −I−1 (ω × I ω) + I−1 nh (v,ω,u)
ṗ = R (λ) v

λ̇ = Q (φ, θ) ω

, (1)

wherem is the vehicle mass, I is the tensor of inertia about
the frame {B}, u is the input vector, fh and nh are the
external force and moment vectors due to the helicopter
components, and fg is the gravitational force vector, all
expressed in the body frame, and Q is the transformation
from angular rates to Euler angle derivatives. The state
vector x = [v′ ω′ p′ λ

′]′ ∈ X ⊂ R
nx has dimension

nx = 12. The input vector u ∈ U ⊂ R
nu with nu = 4,

defined as u = [ θc0 θc1c
θc1s

θc0t ]
′
, comprises the main

rotor collective input θc0 , the main rotor cyclic inputs θc1c

and θc1s
, and the tail rotor collective input θc0t

.

The force and moment vectors can be decomposed as
fh = fmr + ftr + ffus + ftp + ffn and nh = nmr + ntr +
nfus +ntp +nfn, where the subscripts mr, tr, fus, tp and
fn stand for main rotor, tail rotor, fuselage, horizontal tail
plane and vertical tail fin, respectively.

2.1 Main Rotor

As the primary source of lift, propulsion and control, the
main rotor dominates the helicopter dynamic behavior. As
a result of the aerodynamic lift forces that are generated
at the surface of its rotating blades, the main rotor
is responsible for the helicopter’s distinctive ability to
operate in low-speed regimes, which include hovering and
vertical maneuvering.

To present the main rotor equations of motion, two addi-
tional frames need to be introduced:

{hw} – Hub/Wind frame. Non-rotating frame, with
its origin at the hub, x-axis aligned with the compo-
nent of the helicopter linear velocity relative to the
fluid that is parallel with the hub plane;
{b} – Blade frame. Coordinate frame attached to
the blade, describing rotation, flapping, and pitching
motions. The y-axis is aligned with the blade chord.

Most of the helicopter maneuvering capabilities result
from effectively controlling the main rotor aerodynamic
loads. This is achieved by means of the swashplate - a
mechanism responsible for applying a different blade pitch
angle θm at each blade azimuth angle ψm, such that
θm(ψm) = θc0 + θ1c cosψm + θ1s sinψm. The collective
command θc0 is directly applied to the main rotor blades,
whereas the cyclics θ1c and θ1s result from combining the
cyclic commands θc1c

and θc1s
with the flapping motion

of the Bell-Hiller stabilizing bar, also called flybar. This
combined motion can be described by the first order
system

ΩAθ̇ θ̇1 + Ω2Aθ(µ)θ1 =
= Ω2 (Bθ(µ)θc1 +Bω ω +Bλ(µ)λ) ,

(2)

where θ1 = [ θ1c θ1s ]
′
, θc1 = [ θc1c

θc1s ]
′
, ω = [ p̄ q̄ ]

′
, λ =

[ µz − λ0 λ1c λ1s ]
′

and Ω = ψ̇m is the rotor speed. The
variables µ and µz are the normalized x and z-components
of the hub linear velocity and p̄ and q̄ are the normalized x
and y-components of the angular velocity, all expressed in
the frame {hw}. Detailed expressions for the matrices Aθ̇,
Aθ(µ), Bθ(µ), Bω, and Bλ(µ) can be found in Cunha et al.
[2005]. Due to this additional dynamic component, the

augmented state vector becomes x =
[

v′ ω′ p′ λ′ θ′
1

]′

and nx = 14.

As result of the thrust force generated at the surface of the
rotating blades, the air is accelerated downwards creating a
flowfield, usually called induced downwash. The downwash
can be decomposed in Fourier Series and approximated
by the constant and first-order harmonic terms, yielding
an expression similar to that of the blade pitch angle
λ(ψm) = λ0 + rm (λ1c cosψm + λ1s sinψm), where rm is
the rotor radius integration variable. Also as a consequence
of the rotation and feathering (blade pitching) motions
and interaction with the motion of the helicopter, the
blades describe flap and lag motions, roughly characterized
by pulling up and backwards, respectively, the tip of the
blade. In this work, assuming that the blades are assumed
rigid and linked to the hub through flap hinge springs
with stiffness kβ , the lag motion is neglected and the flap
motion is approximated by the first three components of
the Fourier Series expansion of the steady-state solution,
that is,

β = A−1
0 (µ) [B1(µ)θ +B2(µ)ω +B3(µ)λ] , (3)

where β = [ β0 β1c β1s ]
′
, θ = [ θc0 θ1c θ1s ]

′
, and the

matrices A0(µ), B1(µ), B2(µ), and B3(µ) are defined in
Cunha et al. [2005].

The forces and moments generated by the main rotor
are the sum of the contributions of each blade expressed
in the hub frame. The main rotor contribution to the
total force acting on the helicopter can be written as
fmr = B

hwR
hwfmr, with the expression for hwfmr given

by

hw
fmr ≃

nb

2

[

−Y1s

−Y1c

2 Z0

]

+ nb

2







−Z1c −Z0 −

Z2c

2
−

Z2s

2

Z1s
Z2s

2
Z0 −

Z2c

2
0 0 0







β

where nb is the number of blades, Y(.) and Z(.) are the
components of the Fourier Series decomposition of the
aerodynamic force generated at each blade. Similarly, the
main rotor contribution to the overall moment is computed
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using nmr = B
hwR

hwnmr, where the expression for hwnmr

can be rewritten as

hw
nmr ≃ nb

[

0
0

N0

]

+ nb

2







−N1c −N0 −

N2c

2
−kβ −

N2s

2

N1s −kβ +
N2s

2
N0 −

N2c

2
0 0 0







β

where N(.) are the components of the Fourier Series
decomposition of the aerodynamic yaw moment generated
at each blade.

2.2 The Other Components

The tail rotor, placed at the tail boom in order to coun-
teract the moment generated by the rotation of the main
rotor, provides yaw control of the helicopter. To model
this component we can use the same principles adopted for
the main rotor, neglecting the blade flapping and pitching
motions, which have little significance due to the small
rotor size. The tail rotor contribution to the total force
can be approximated by

ftr = B
trR

trf ≃

[

0
−nbt

Z0t

0

]

, (4)

where nbt
is the number of blades of the tail rotor, Z0t

is
the thrust force produced by the tail rotor and B

trR
tr is the

rotation from the tail rotor frame {tr} to the body frame
{B}. Similarly, the moment expression is given by

ntr =

[

0
−nbt

N0t

0

]

+ Bptr × ftr , (5)

where N0t
is the tail rotor generated torque.

Accurately modeling of the aerodynamic forces and mo-
ments generated by the flow surrounding the helicopter
fuselage is a demanding task. In this work these loads
are modeled as functions of the mean flow speed vfus,
the incidence angle αfus and the sideslip angle βfus. The
horizontal tail plane and vertical tail fin are modeled as
normal wings, whose aerodynamic force contributions can
be approximated by functions of the angle of attack and
sideslip, respectively.

3. MODEL PREDICTIVE CONTROL PROBLEM

In this section the Model Predictive Control problem is
formulated as a discrete-time open-loop optimal control
problem with finite horizon, subject to the discretized
nonlinear model equations, the state and input saturation
constraints, and the terrain avoidance constraint.

In general, the vehicle dynamics can be modeled as a
continuous-time state-space differential equation

ẋ(t) = fc (x(t),u(t)) , (6)

where x ∈ X and u ∈ U , noting that X ⊂ R
nx and

U ⊂ R
nu denote the feasibility sets of the state and

control vectors, respectively. Since the control problem is
formulated as a discrete-time open loop optimal control
problem, the helicopter motion needs to be described as a
difference equation, which can be obtained from

x((k + 1)Ts)≈ x(kTs) + Tsfc (x(kTs),u(kTs))

= f (x(k Ts),u(k Ts)) , (7)

where Ts is the sample time. Using a compact notation,
the previous equation can be rewritten as

xk+1 ≈ f (xk,uk) . (8)

Let N be the prediction horizon of the control problem,
Uk = {uk, . . . ,uk+N−1} the sequence of control inputs
at iteration k, and Xk = {xk, . . . ,xk+N} the sequence
of state vector generated by that control sequence. The
saturation constraints of the state and input sequences
are defined by the conditions Xk ∈ X N and Uk ∈ UN ,
where X N = {Xk : xi ∈ X , ∀i=k,...,k+N} and UN =
{Uk : ui ∈ U , ∀i=k,...,k+N−1}. Let X̄k ∈ X N and Ūk ∈ UN

be the reference state sequence and the respective control
sequence, chosen to satisfy the saturation constraints. The
errors between the actual and desired state and input
vectors are defined as x̃i = xi − x̄i, and ũi = ui − ūi,
respectively.

Using (8), the model constraint for N steps ahead horizon
can be written as

FM (Xk, Uk) =







f(xk,uk)− xk+1

...
f(xk+N−1,uk+N−1)− xk+N






= 0 (9)

whereas the terrain constraint is denoted by

FT (Xk) = [ fT (xk) · · · fT (xk+N ) ]
′
= 0 , (10)

where fT (.) weights the distance between the vehicle and
the terrain, as discussed later on this section.

Given this set of constraints, the terrain avoidance MPC
problem can be defined as

U∗
k = arg min

Uk

Jk (11)

s.t. Xk ∈ X N , Uk ∈ UN (12)

FM (Xk, Uk) = 0 (13)

FT (Xk) = 0 (14)

where

Jk = J(Xk, X̄k, Uk, Ūk) = Fk+N +

k+N−1
∑

i=k

Li , (15)

Fi = F (xi, x̄i) = 1
2 x̃′

i P x̃i , (16)

Li =L(xi, x̄i,ui, ūi) = 1
2 [x̃′

iQ x̃i + ũ′
i R ũi] (17)

and P , Q, and R are symmetric positive definite matrices.
In summary, the objective of the terrain avoidance MPC
problem is to find, at each iteration k, the optimal control
sequence U∗

k with horizon N , such that the resulting
state sequence X∗

k follows the state reference X̄k without
violating the state and input constraints imposed by (12)
and avoiding collisions by verifying (14).

Following the standard approach, the constrained opti-
mization problem presented above can be solved by refor-
mulating it as an unconstrained optimization problem and
using gradient methods to approximate the optimal solu-
tion. While constraint (13) is eliminated using lagrange
multipliers, constraints (12) and (14) are incorporated into
the cost functional resorting to penalty methods. In the
following subsections each constraint function and the way
they are included in the unconstrained optimization cost
functional are described.
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3.1 Terrain Avoidance Constraint

The goal is to define a terrain constraint function in the
form of (10), such that the helicopter finds the best col-
lision free trajectory even if the reference trajectory goes
through the terrain. This constraint can be implemented
by defining a repulsive field around the helicopter (a sphere
with radius rS), and weighting exponentially the minimum
distance between the helicopter position p and the closest
terrain point pm. Considering the position error vector
between these two points pe = p − pm, the sphere can
be defined as p′

e pe = r2S . Noting that the closest terrain
point is a function of the position of the helicopter pm(p),
a function g(x) that measures the distance between the
terrain and the sphere, depending only on the state vector,
can be defined as

g (x) = p′
e pe − r

2
S , (18)

such that g (x) = 0 when the terrain touches the sphere.
Thus, the terrain avoidance constraint function can be
written as

fT (x) = e−g(x) . (19)
Since this function has always a positive value, the zero
value is forced whenever the helicopter-terrain distance
is greater than a predefined outer radius rO where the
influence of the terrain is negligible, that is fT = 0 if
‖pe‖ > rO.

3.2 State and Input Saturation Constraint

The state and input saturation constraint (12) can be
incorporated in the cost functional as a penalty function
fR (x,u) . This function has zero value if x ∈ X and u ∈ U ,
and behaves as a quadratic function outside these sets.
Assuming that the valid sets for state and input vectors

are given by X = {x ∈ R
nx : |x(j)| ≤ x

(j)
max ∀j=1,...,nx

} and

U = {u ∈ R
nu : |u(l)| ≤ u

(l)
max ∀l=1,...,nu

}, respectively, the
penalty function can be defined as

fR (x,u) =
1

2

nx
∑

j=1

h(|x(j)| − x(j)
max)

2w(j)
x

+
1

2

nu
∑

l=1

h(|u(l)| − u(l)
max)

2w(l)
u , (20)

where

h(a) =

{

a , if a > 0

0 , otherwise
(21)

and w
(j)
x and w

(l)
u are positive scalar weights. The partial

derivatives of the terrain function are given by
∂ fR

∂x(j)
= sign(x(j))h(|x(j)| − x(j)

max)w
(j)
x , (22)

∂ fR

∂u(l)
= sign(u(l))h(|u(l)| − u(l)

max)w
(l)
u . (23)

3.3 Unconstrained Optimization Problem

Adding to the optimization cost functional the state and
input saturation constraint and also the terrain avoidance
constraint, the new problem can be written as

U∗
k = argmin

Uk

J̄k (24)

s.t. FM (Xk, Uk) = 0 (25)

where

J̄k = J̄(Xk, X̄k, Uk, Ūk) = F̄k+N +

k+N−1
∑

i=k

L̄i , (26)

F̄i = F̄ (xi, x̄i) = Fi + fR(xi, 0) + fT (xi) , (27)

L̄i = L̄(xi, x̄i,ui, ūi) = Li + fR(xi,ui) + fT (xi) . (28)

To solve the model constraint (25), the elimination method
using Lagrange multipliers is used. Introducing the La-
grange multiplier sequence Λk = {λk+1, . . . ,λk+N} and
the Hamiltonian

Hi = H (xi,ui, x̄i, ūi) = L̄i + λ′
i+1 fd (xi,ui) , (29)

the cost functional J̄ can be redefined adding a zero value
sequence, that is,

J̄k = F̄k+N−λ′
k+N xk+N +

k+N−1
∑

i=k+1

[

Hi − λ′
i xi

]

+Hk. (30)

For a fixed initial state xk, the first order condition of
optimality yield

∂ J̄k

∂xi

=
∂ Hi

∂xi

− λi = 0 , ∀i=k+1,...,k+N−1 , (31)

∂ J̄k

∂xk+N

=
∂ F̄k+N

∂xk+N

− λk+N = 0 , (32)

∂ J̄k

∂ui

=
∂ Hi

∂ui

= 0 , ∀i=k,...,k+N−1 . (33)

where ∂ Hi

∂ui
= ∂ L̄i

∂ui
+

∂ fdi

∂ui
λi+1 and ∂ Hi

∂xi
= ∂ L̄i

∂xi
+

∂ fdi

∂xi
λi+1.

Since the Lagrange multipliers sequence is multiplying zero
value terms, they can be arbitrarily chosen. In particular,
by choosing

λk+N =
∂ F̄k+N

∂xk+N

and λi =
∂ Hi

∂xi

, ∀i=k+1,...,k+N−1, (34)

the first order conditions of optimality reduce to (33).

Following the standard approach, an iterative algorithm
based on the first order gradient method can be applied
to estimate U∗

k , whereby at each iteration j, the control
sequence is updated according to

U
(j+1)
k = U

(j)
k + s(j) ∆

(j)
k (35)

where the step size is denoted by s(j) and the search

direction by ∆
(j)
k . The optimization algorithm can be

summarized as follows.

Algorithm 1. Minimization algorithm for the MPC uncon-
strained problem.

(1) Initialize X
(0)
k , X̄k, U

(0)
k and Ūk and set j = 0;

(2) Compute {λi} using (34), i = k +N, . . . , k;

(3) Compute
{

∂ Hi

∂ui

}

, i = k, . . . , k +N − 1;

(4) Compute the search direction ∆
(j)
k ;

(5) Compute the step size s(j) using Wolfe’s rule;

(6) Compute U
(j+1)
k using (35) and X

(j+1)
k = {xi} using

xi+1 = fd (xi,ui), for i = k + 1, . . . , k +N ;

(7) Test ‖∇J̄
(j)
k |(j)‖ < ε: if false set j = j + 1 and go to

step (2), if true let Ûk = U
(j+1)
k be the final estimate

and continue;
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(8) Apply first input vector ûk to system and set the

next initial solution to U
(0)
k+1 = {ûk+1, . . . , ûk+N−1}.

The search direction can be obtained using the gradient
method, such that

∆
(j)
k = −

∂H
(j)
k

∂U
(j)
k

(36)

where H
(j)
k is the sequence of the Hamiltonian functions

H
(j)
i for i = k, . . . , k + N − 1 or using the quasi-Newton

method, such that

∆
(j)
k = −D(j) ∂H

(j)
k

∂U
(j)
k

(37)

where D(j) is an estimate of the inverse matrix of the
second-order derivative of the Hamiltonian, given by

D(j+1) = D(j) +
p p′

p′ q
+
D(j) q q′D(j)

q′D(j) q
+ ξ τ v v′ (38)

with p = U
(j+1)
k − U

(j)
k , q =

∂ H
(j+1)

k

∂U
(j+1)

k

−
∂ H

(j)

k

∂U
(j)

k

, v = p
p′ q
−

D(j) q
τ

, τ = q′D(j) q and 0 ≤ ξ ≤ 1.

The line search optimization subproblem is numerically
solved using the Wolfe conditions (see Nocedal and Wright
[1999] for further details). Consider the step size optimiza-
tion subproblem defined by

s(j) = argmin
s≥0

φ(s) ; (39)

where φ(s) = J̄
(j+1)
k = J̄k

(

X
(j+1)
k , U

(j+1)
k

)

, with U
(j+1)
k

given by (35). Let the derivative of φ(s) be given by

φ′(s) =
dφ(s)

ds
=
d J̄

(j+1)
k

ds

where
d J̄

(j+1)

i

ds
=

∂ L̄
(j+1)

i

∂x′
(j+1)
i

ηi +
∂ L̄

(j+1)

i

∂u′
(j+1)
i

∆
(j)
i +

d J̄
(j+1)

i+1

ds
, with

d J̄
(j+1)

k+N

ds
=

∂ L̄
(j+1)

k+N

∂x′
(j+1)

k+N

ηk+N and ηi =
dx

′(j+1)
i

ds
=

∂ f
(j+1)
i−1

∂x
(j+1)
i−1

ηi−1 +

∂ f
(j+1)
i−1

∂u
(j+1)

i−1

∆
(j)
i−1.

Let also µi = φ(0) + σ φ′(0) si and µ0 = λφ′(0), where σ
and λ are parameters of the search algorithm. The Wolfe
rule classifies the step size according to the sets

A = {si > 0 : φ(si) ≤ µi ∧ φ′(si) ≥ µ0}
D = {si > 0 : φ(si) > µi}
E = {si > 0 : φ(si) ≤ µi ∧ φ′(si) < µ0}

(40)

that define the acceptable, the right unacceptable and the
left unacceptable step sizes, respectively. The algorithm
that finds an acceptable step size, i.e. an estimate of the
optimal step size, is given below.

Algorithm 2. Line search algorithm using Wolfe’s rule.

(1) Initialize s0 > 0, e = 0, d = +∞ and i = 0;
(2) test si: if si ∈ A set s(j) = si and stop; if si ∈ D set

d = si; if si ∈ E set e = si;
(3) test d: if d = +∞ choose si+1 > si; if d < +∞: choose

si+1 ∈ (e, d);
(4) i← i+ 1 and return to step 2;

4. SIMULATION RESULTS

The Terrain Avoidance MPC method is designed to pro-
vide low altitude flight capabilities even for scenarios
where the predefined trajectory collides with the terrain.
In this section the performance of the terrain avoidance
MPC method is evaluated in simulation.

Since the problem of terrain acquisition and representation
is not the focus of this paper, it is assumed that the
terrain is represented by an elevation function and that
this information enters the control algorithm in the com-
putation of the closest helicopter-terrain distance. In the
results presented hereafter, the helicopter model described
in Section 2 is parameterized for the Vario X-treme model
scale helicopter and used to close the simulation loop.
A simplified version of this model is used in the control
algorithm, in order to efficiently compute the actuation
at each sampling time. The simulations where carried out
in an Intel Pentium Centrino processor at 1.7 GHz, using
Matlab/Simulink with C mex-functions.

The terrain is represented by an elevation function that
resembles a winding river stream and the reference tra-
jectory is composed by 1) a hovering stage at the initial
position; 2) a forward flight trajectory with constant speed
‖v‖ = 2m/s; and 3) a hovering stage at the final position.
The sample time is Ts = 0.02s and the horizon is 70 sample
times, or equivalently 1.4 seconds. This horizon allows the
algorithm to predict impacts with the terrain and change
the trajectory to avoid it. The precision of the solution
is determined by the algorithm stop condition given by

‖∇J̄
(j)
k |U(j)

k

‖/‖∇J̄
(0)
k |U(0)

k

‖ < 10−2.

The simulation results are presented in Figure 1, where
the 3-D trajectory described by the helicopter and the
time evolution of the position and actuation are shown.
The average number of iterations for the quasi-Newton
method with line search is 99.1 iterations, while the
gradient method with line search required in average 135.5
iterations to complete a minimization. The usage of the
line search algorithm allows the dramatic reduction of 40
times the average number of iterations, while the quasi-
Newton method introduces a 30% reduction. The results
shown are obtain with the quasi-Newton method, since the
different methods yield similar results. According to these
results, the control algorithm achieves effective terrain
avoidance, changing the trajectory of the vehicle in order
to avoid the terrain while keeping the vehicle the closest
possible to the reference trajectory.

5. CONCLUSIONS

Motivated by the use of autonomous rotorcraft in low
altitude flight applications, this paper presented a MPC-
based strategy for terrain avoidance and motion control of
helicopters. In addition to imposing state and input satu-
ration constraints, the proposed solution enforces terrain
avoidance by defining a repulsive field around the heli-
copter that grows exponentially as the distance between
the vehicle and the closest point on the terrain decreases.

Following the standard approach in MPC literature, the
constrained optimization problem was reformulated as
an unconstrained optimization problem using the penalty
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Fig. 1. Trajectory tracking with terrain avoidance.

method to accommodate the saturation and terrain con-
straints and lagrange multipliers to eliminate the heli-
copter dynamic model constraint. The optimization prob-
lem was then solved using an iterative algorithm that relies
on the gradient and quasi-Newton methods to find the

search direction and the Wolfe rule to find an estimate of
the optimal step size. The simulation results were obtained
using a simplified nonlinear helicopter model in the MPC
algorithm and the full model as the real plant, showing
that the presented methodology can achieve effective ter-
rain avoidance while steering the vehicle along a reference
trajectory.

The proposed methodology, as most of the strategies using
MPC in high sampling rate platforms, faces the challenge
of real time implementation. The most CPU time consum-
ing tasks involve the helicopter model computations and
finding the closest terrain point. Hence, future work will
deal with the simplification of the helicopter model and
with the redefinition of the terrain representation in order
to simplify the closest point computation. In addition,
further effort shall be put on analyzing the influence of
reducing the sampling frequency and the prediction hori-
zon of the controller.
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