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Abstract: The necessity of having low-cost aerospace vehicles with short development times means that 
control designers need to work with simplified and approximate dynamic models. Aerospace vehicles 
typically being light and slender, exhibit body bending and flexibility effects at relatively lower 
frequencies. It may not be possible or practical in every case to carry out detailed test and analyses 
exercises to determine the structural dynamic characteristics of a vehicle. So, body bending shapes and 
slopes may not be precisely known; the mode frequencies can however be roughly estimated through 
simplified analysis. Here it will be assumed that the flexible mode frequencies are approximately known, 
and are sufficiently high so that gain stabilization is possible. This paper discusses different digital filters 
for gain stabilization of flexible vehicles, and elaborates their advantages and drawbacks. Various filters 
are compared; Butterworth, Bessel, Chebychev, Elliptical and simple quadratic filters of various orders are 
discussed. The filter selection is based on having desirable magnitude attenuation characteristics while at 
the same time leading to minimum phase lag near the closed-loop bandwidth. The filter design and 
selection process is illustrated by an example of a sounding rocket stabilization problem. Two flights of the 
vehicle have been conducted, the first with no consideration of the body-bending dynamics and hence no 
filters. Serious problems were observed, hence Elliptic filters were used to provide gain stabilization in the 
second flight. Flight test results are presented and discussed. 
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1. INTRODUCTION 

There has been a tremendous growth of low-cost unmanned 
airborne vehicle applications in the recent past. The 
applications are diverse, ranging from surveillance to 
scientific research. Similarly, space and upper atmosphere 
missions for scientific measurements have also increased 
with the emphasis lying on being low-cost. Sounding rockets 
are routinely used for modeling the upper atmosphere of the 
earth; these have reasonably tight guidance and control 
requirements so as to follow the desired trajectory closely, 
while at the same time development time and cost is to be 
kept at a minimum. 
The necessity of having low-cost aerospace vehicles with 
short development times means that control designers need to 
work with simplified and approximate dynamic models. 
Aerospace vehicles typically being light and slender, exhibit 
body bending and flexibility effects at relatively lower 
frequencies. The control or autopilot sensors can pick up 
these bending modes and the control loop can oscillate or 
resonate at these frequencies resulting in fatal accidents (Noll 
et al. [1970], Noll and Zvara [1971] and Chang et al. [2000]). 
The vehicle control system or autopilot can be designed to 
stabilize and/or filter out the bending modes. Control system 
design therefore requires the investigation of the dynamic 
characteristics of the entire vehicle including all significant 
vibration modes (Livet et al. [1995], Idan et al. [1999], 
Dotson et al. [1998] and Blakelock [1991]). However, it is 
not possible or practical in every case to carry out a detailed 
test and analysis exercise to determine the structural dynamic 

characteristics of a vehicle, this being especially true for low-
budget projects with tight development schedules. Body 
bending shapes and slopes therefore, may not be precisely 
known for many vehicles for use in controller design. The 
mode frequencies can however be roughly estimated through 
simplified analyses. In this paper, it will be assumed that the 
flexible mode frequencies are approximately known, and are 
sufficiently high so that gain stabilization is possible. This 
paper discusses different digital filters (some useful 
references are Mathworks [1999,2001], Antoniou [1993], 
Mitra [1998] and Oppenheim [1989]) that can be used for 
gain stabilization of flexible vehicles, and elaborates their 
advantages and drawbacks. 
The fundamental concept presented is to use just the 
approximate mode frequency information to design digital 
filters that would allow subsequent controller design without 
consideration of the flexible modes, their shapes and slopes. 
Notch filters cannot be used because precise modal 
frequencies are not known. Hence low-pass filters must be 
employed. Various low-pass filters are compared. 
Butterworth, Bessel, Chebyshev, and Elliptic filters are 
discussed (see for example, Jackson [1996] and Chirlian 
[1994]). The filter selection is based on having desirable 
magnitude attenuation characteristics while at the same time 
leading to minimum phase lag near the closed-loop 
bandwidth. The filters are designed in the continuous domain 
and then discretized. The frequency response of the 
continuous and discrete filters is compared and the difference 
due to discretization is examined. The continuous domain (or 
analog) filters are re-synthesized to cater for changes in the 
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frequency response due to the discretization process. The 
filter design and selection process is illustrated by an example 
of a sounding rocket stabilization problem. The rocket is an 
experimental vehicle whose first flight was conducted with 
no consideration of the flexible dynamics. The results 
indicated the need to properly stabilize and/or filter the 
bending modes; Elliptic filters were therefore designed and 
implemented on the next flight. Results of the flight tests 
results are presented and discussed.  
 

2. COMPARATIVE STUDY OF DIFFERENT FILTERS 
 
A comparative study of different well-known filters is 
presented here. The only information for design of the gain 
stabilizing filter is that the first bending mode of the vehicle 
lies above 15 Hz. The requirement is to have a minimum of 
40 dB attenuation at and above 15 Hz (94.25 rad/sec). Six 
filters are designed to meet these objectives. These are of 3rd 
order each. Their frequency response is shown in Figs. 1 and 
2. In Fig. 1, the solid line is for the Butterworth filter, the 
dotted line for the Chebyshev Type I filter and the dashed 
line corresponds to the Elliptic or Cauer filter. Chebyshev 
Type I filters are equiripple in the passband and monotonic in 
the stopband (Mathworks [1999]). All three filters are analog 
(designed in the s-domain). The Butterworth and Chebyshev-
I filters are quite close, however the phase lag for the 
Chebyshev-I filter is slightly better at lower frequencies 
(10~20 rad/sec). The Elliptic filter has steeper roll-off 
characteristics than the other two filters. The ripple in the 
passband and stopband is not critical for our application. 
However, the lesser phase lag at lower frequencies is 
favourable from the closed-loop stability viewpoint. The 
bandwidth of the closed loop system is expected to be around 
10 rad/sec and hence better phase characteristics close to this 
frequency are important. 
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Fig. 1. Frequency response: Butterworth, Chebychev-I and 
Elliptic filters. 

Three other filters are compared in Fig. 2. The solid line is 
for the Bessel 3rd order filter whereas the dashed line 
represents the Chebyshev Type II filter. Type II filters are 
monotonic in the passband  and  equiripple  in the stopband 

(Mathworks [1999]). The dotted line is for the following 
filter: 

2

2 2

19.75 20( )
( 2 0.325 19.75 19.75 )( 20)

X s
s s s

×
=

+ × × + +
  (1) 

The Chebyshev-II shows better phase characteristics at lower 
frequencies as compared to the other two filters.  

The frequency responses of Chebyshev-II and Elliptic filters 
are very close to each other. The Elliptic filter is equiripple in 
both the passband and the stopband whereas the Chebyshev-
II filter is monotonic in the passband. As a result the Elliptic 
filter displays slightly lesser phase lag at lower frequencies 
(10~20 rad/sec). The Elliptic filter is therefore selected for 
the gain stabilization problem. 
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Fig. 2. Frequency response: Bessel, Chebychev-II and X(s) 
filters. 

The pole-zero map of the Elliptic filter reveals that it has a 
pair of zeros on the imaginary axis. This is not desirable since 
numerical rounding errors can give rise to a non-minimum 
phase system. The zeros of the filter are moved slightly into 
the left-half plane without significantly affecting the filter 
frequency response. The frequency response of the original 
(solid line) and modified (dashed line) Elliptic filters is 
shown in Fig. 3. The modified filter has the zero pair shifted 
from 0 105.17 j±  to -1.0517 105.17 j± . The modified filter 
will be discretized in the next section; the s-domain 
representation is given below: 

2

2
2.103 11060( ) 2.3565

( 19.18)( 16.82 1359)
s sH s

s s s
+ +

=
+ + +

 

 
3. EFFECTS OF DISCRETIZATION 

The filters presented in the previous section are all analog 3rd 
order filters (designed in the s-domain). For implementation 
on an embedded computer, the discrete form is required. A 
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sample rate of 20 msec is chosen and discretization is 
performed using the Bilinear (Tustin’s) approximation 
(Franklin et al. [1998]). The frequency response of the analog 
and discretized Elliptic filters is shown in Fig. 4. The solid 
line represents the analog filter response and the dashed line 
the discrete filter response. 
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Fig. 3. Frequency Response: Original and modified Elliptic 
filters. 

The effect of discretization is clearly seen. The frequency 
response of the filter is altered due to the discrete 
approximation. The -40 dB point is shifted from 14.48 Hz to 
11.74 Hz. This shift is undesirable. The discrete filter is 
therefore adjusted so that the -40 dB point matches with the 
analog filter. The adjustment is done by a simple trial and 
error process of selecting the analog design parameters so 
that after discretization the desired frequency characteristics 
are achieved. The frequency response of the adjusted discrete 
filter (Fig. 5) reveals that the -40 dB point now matches with 
the original analog filter (solid line). It may be noted that the 
discrete filter (dashed line) is not the transformation of the 
analog filter (solid line) of Fig. 5, but of an adjusted analog 
filter so that the frequency response after discretization meets 
the requirement. The adjusted discrete filter is given below: 

2

2
( 1)( 0.7536 1)( ) 0.0557

( 0.574)( 0.966 0.685)
z z zH z

z z z
+ + +

=
− − +

 

4. AN APPLICATION: SOUNDING ROCKET CONTROL 

The application discussed below is that of a sounding rocket 
designed to explore the upper atmosphere. The rocket is long 
and slender and the only information available about its 
structural modes is that the first mode is greater than or equal 
to 15 Hz. Hence the filters discussed above are designed with 
this application in mind. The control system closed-loop 
simulation block diagram is shown in Fig. 6. The Lateral 
Dynamics block captures the non-linear equations of motion 
and the time-varying dynamics of the rocket as it flies thro-
ugh the lower atmosphere into the upper rarer atmosphere. 

gv  and gp  are gust disturbance inputs, ycF and cL  are 

lateral control force and roll control moment, and yeF , eL  

and eN  are lateral disturbance force, and roll and yaw 
disturbing moments, respectively. The yaw angle psi and the 
lateral velocity and position iV  and iy  are used to close the 
loops. For the simulation results presented here, the lateral 
guidance gain Lg_gain is kept zero, thus essentially reducing 
the block diagram to an attitude control loop only. The block 
Discrete Filter implements the adjusted Elliptic filter 
discussed above and the Discrete Controller block 
implements an H∞ controller designed using the loop-shaping 
design procedure of McFarlane and Glover [1990,1992].  

The loop-shaping design procedure is intuitive in that it is 
based on the generalization of classical loop-shaping ideas. 
The open-loop plant, once given the desired loop-shape, is 
robustly stabilized against coprime factor uncertainty. The 
resulting controller has been shown to enjoy some favourable 
properties, such as no pole-zero cancellation occurs in the 
closed-loop system (except for a certain special class of 
plants), see Tsai et al. [1992]. In addition, the controllers thus 
designed have been successful in various applications; 
examples are those described by Samar et al. [1996], Smerlas 
et al. [2001] and Skogestad and Postlethwaite [2005]. The 
design starts with an evaluation of the frequency response of 
the plant model (which is a model of the rocket dynamics 
cascaded with the actuator and sensor transfer functions). The 
frequency response is then shaped by pre- and/or post-
multiplication with weighting functions 1W  and 2W  to form 
the shaped plant 2 1W GW , G  being the original plant model. 
Shaping is typically done so as to yield a high loop gain at 
low frequencies for good disturbance rejection and tracking, 
and a low gain at high frequencies for robustness and noise 
suppression. The shaped plant is then robustly stabilized 
against coprime factor uncertainty; formulae for the 
controller (say K) are given by McFarlane and Glover 
[1990,1992]. The weights 1W  and 2W  finally form part of the 
controller. 

Inclusion of the Elliptic filter into this design framework is 
straightforward as it is simply made part of the weighting 
function 2W . The sensor measurements will therefore filter 
through 2W  before progressing further through the loop. The 
high frequency bending modes sensed by the sensors will be 
filtered out at this stage. The above procedure was followed 
and a controller designed using the adjusted discrete filter of 
section 3. The implementation of Fig. 6 is based on this 
design. The weight 1W  and the controller K are both 
implemented inside the Discrete Controller block, while the 
weight 2W  which in fact is just the adjusted Elliptic filter, 
runs inside the Discrete Filter block. 

A 15 Hz sinusoidal signal of constant amplitude (0.5 deg) is 
added to the reference input to check for the attenuation 
performance of the filter. This simulation does not capture 
the control system–structure interaction but only serves to 
check the stability of the closed loop system, and the  
attenuation characteristics of the filter. 
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Fig. 4. Frequency Response: Analog and Discrete Elliptic 
filters. 
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Fig. 5. Frequency Response: Analog Elliptic filter and 
Adjusted Discrete Elliptic filter. 
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Fig. 6. Closed-loop simulation block diagram: Lateral-Directional Control.

Fig. 7 shows the reference (solid) and actual (dashed) yaw 
angles and the corresponding actuator commands without the 
filter. The high frequency is amplified and applied to the 
actuator. This is highly undesirable since it can cause the 
actuator to get damaged, and can also give rise to unstable 
control–structure coupling. This latter effect is not modelled 
in the simulation because the mode shape/slope information 
for the vehicle is not available; the only information available 
is on the lower bound of the first bending mode. The 
simulation is re-run with the filter in the loop and the 
attenuation characteristics of the filter are clearly seen from 
Fig. 8. The actuator signal is greatly improved. 
 

5. APPLICATION: FLIGHT TEST RESULTS 

Here two flight test results of an experimental sounding 
rocket (Fig. 9) are presented. This vehicle can carry payloads 
to altitudes in excess of 130 km. The first flight of the vehicle 

was carried out with no consideration of flexible dynamics in 
the control system design. Figs. 10 and 11 show the 
telemetred values of pitch and yaw error angles for this flight 
(when no body bending filter was employed). The 
corresponding actuator deflections are also shown in these 
figures. The structure–control system coupling is apparent. 
The body bending mode is excited, and the actuators respond 
to the structural vibrations amplifying the mode (positive 
feedback). This is clear from the initial portion (the first 5 
seconds) of the figures. The limit on the actuator deflection 
causes the system oscillation to remain bounded; otherwise 
the controller—structure coupling could have proven 
destructive. The simulation results shown in the previous 
section did not include this effect, but this is clearly indicated 
in the flight test results. 
 
The next flight was conducted with the adjusted discrete 
Elliptic filter in the loop to filter the high frequency 
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oscillations. The telemetred results of this flight are shown in 
Figs. 12 and 13. Fig. 12 shows the pitch error angle along 
with corresponding actuator deflection and Fig. 13 shows the 
yaw angle and the yaw actuator deflection. It is clear that the 
body bending mode is gain stabilized (filtered out). 
 

6. CONCLUSION 
 
In conclusion, it can be said that 3rd order Elliptic filters can 
provide satisfactory gain stabilization for flexible vehicles. 
One does not need to know the detailed modal response of 
the vehicle structure, but only an estimate on the lower bound 
of the first modal frequency.  
 
However, the closed-loop bandwidth must be small enough 
so that the phase lag of the filter does not significantly 
deteriorate the closed-loop stability. It is seen that the steeper 
roll off and better phase characteristics of the Elliptic filter 
makes it well-suited for such applications. 
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Fig. 7. Closed-loop Simulation: Yaw angle tracking and 
corresponding actuator deflection without filter. 
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corresponding actuator deflection with filter. 

 
 

 
 
Fig. 9. Line drawing of the experimental sounding rocket. 
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Fig. 10. Flight Test 1: Pitch error angle and corresponding 
actuator deflection without filter. 
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Fig. 11. Flight Test 1: Yaw angle tracking and 
corresponding actuator deflection without filter. 
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 Fig. 12. Flight Test 2: Pitch error angle and corresponding 
actuator deflection with filter. 
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 Fig. 13. Flight Test 2: Yaw angle tracking and corresponding 
actuator deflection with filter. 

REFERENCES 

Antoniou, A. (1993). Digital filters: analysis, design, and 
applications. Second Edition, McGraw-Hill.  

Blakelock, J.H. (1991). Automatic control of aircraft and 
missiles. John Willey & Sons Inc., USA. 

Chang, I.S., S. Toda and S. Kibe (2000). European space 
launch failures. In: 36th AIAA/ASME/SAE/ASEE Joint 
Propulsion Conference and Exhibit, Alabama, USA. 

Chirlian, P.M. (1994). Signals and filters. Van Nostrand 
Reinhold. 

Dotson, K.W., R.L. Baker and B.H. Sako (1998). Launch 
vehicle self-sustained oscillation from aeroelastic 
coupling part 1: theory. Journal of Spacecraft and 
Rockets, 35(3):365—373. 

Franklin, G.F., J.D. Powell and M. Workman (1998). Digital 
control of dynamic systems. 3rd Edition, Addison-
Wesley, USA. 

Idan, M., M. Karpel and B. Moulin (1999). Aeroservoelastic 
interaction between aircraft structural and control design 
schemes. Journal of Guidance, Control and Dynamics, 
22(4):513—519. 

Jackson, L. (1996). Digital filtering and signal processing 
with MATLAB exercises. Third Edition, Kluwer 
Academic Publishers.  

Lapsley, P., J. Bier, A. Sholam and E.A. Lee (1997). DSP 
processor fundamentals: architectures and features. 
IEEE Press. 

Livet, T., F. Kubica and J.F. Magni (1995). Robust flight 
control design with respect to delays, control efficiencies 
and flexible modes. Control Engineering Practice, 
3(10):1373—1384. 

Mathworks. (1999). Signal processing toolbox user’s guide. 
The Mathworks, Inc., USA. 

Mathworks. (2001). Filter design toolbox user’s guide. The 
Mathworks, Inc., USA. 

McFarlane D.C. and K. Glover (1990). Robust controller 
design using normalized coprime factor plant 
descriptions, volume 138 of Lecture Notes in Control 
and Information Sciences. Springer-Verlag, Berlin. 

McFarlane, D. and K. Glover (1992). A loop shaping design 
procedure using H∞ synthesis. IEEE Transactions on 
Automatic Control, 37(6):759—769. 

Mitra, S. K. (1998). Digital signal processing: a computer-
based approach. McGraw-Hill. 

Noll, R.B., J. Zvara and J.J. Deyst (1970). Effects of 
structural flexibility on launch vehicle control systems 
(NASA SP-8036), NASA, USA. 

Noll, R.B. and J. Zvara (1971). Structural interaction with 
control systems (NASA SP-8079), NASA, USA. 

Oppenheim, A.V. and R.W. Schafer (1989). Discrete-time 
signal processing. Prentice-Hall. 

Samar, R., G. Murad, I. Postelthwaite and D.-W. Gu (1996). 
A discrete-time H∞ observer-based controller and its 
application to a glass tube production process. European 
Journal of  Control, 2:112—125. 

Skogestad, S. and I. Postlethwaite (2005). Multivariable 
Feedback Control Analysis and Design. Second Edition, 
John Wiley & Sons.  

Smerlas, A., D.J. Walker, I. Postelthwaite, M.E. Strange, J. 
Howitt and A.W. Gubbells (2001). Evaluating H∞  
controllers on the NRC Bell 205 fly-by-wire helicopter. 
Control Engineering Practice, 9(1):1—10. 

Tsai, M.C., E.J.M. Geddes and I. Postlethwaite (1992). Pole-
zero cancellations and closed-loop properties of an H∞  
mixed sensitivity design problem. Automatica, 
28(3):519—530. 

 
 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12053


