
     

Modeling of Fermentation Processes using Online Kernel Learning Algorithm 
 

Yi Liu*, Diancai Yang**, Haiqing Wang*, Ping Li* 
 

*State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control 

Zhejiang University, Hangzhou, 310027, P. R. China 

(Tel: 086-571-8795-1442-810; e-mail: hqwang@ iipc.zju.edu.cn). 

**Qingdao Mesnac Co., LTD., Qingdao, 266045, P. R. China (e-mail: yangdc@mesnac.com). 

Abstract: A novel online identification method is developed for nonlinear multi-input multi-output 

process modeling issue, which is based on kernel learning framework and named as online kernel learning 

(OKL) algorithm in this paper. This proposed approach can adaptively control its complexity and thus 

acquire controlled generalization ability. The OKL algorithm performs first a forward increasing for 

incorporating a “new” online sample and then a backward decreasing for pruning an “old” one, both in a 

recursive manner. Furthermore, the prior knowledge about process can be easily integrated into the OKL 

scheme to improve its performance. Numerical simulations on a fed-batch penicillin fermentation process 

show that the proposed OKL algorithm can learn adaptively the dynamics of the process using relatively 

small samples, indicating the OKL is an attractive online modeling method for fermentation process. 

 

1. INTRODUCTION
 
 

Biochemical processes, such as fermentation processes, 

encounter many difficulties in modeling and control issues 

due to the inherent nonlinearity and the exceeding complexity 

in physiology. To obtain an accurate mathematical model for 

such a multi-input multi-output (MIMO) bioprocess is a 

time-consuming and costly task. Furthermore, the lack of 

suitable online sensors for analyzing the key process 

variables, such as biomass or production concentrations, 

limits the effective control and optimization of fermentation 

processes (Alford, 2006; Thibault et al., 1990). 

To overcome these obstacles, soft sensors were developed to 

estimate hard-to-measure process variables from other 

on-line measurable process variables (Alford, 2006; Tham et 

al., 1991; Thibault et al., 1990). Neural networks (NN) have 

been proved to be able to approximate any nonlinear systems 

(Narendra and Parthasarathy, 1990) and applied for 

developing the soft sensors of various biochemical processes 

(Thibault et al., 1990). However, training NN is a 

time-consuming task and a large number of training examples 

are necessary. Further, there are still no guarantees of 

avoidance of the local minima and over-fitting problems. 

Actually, it is not uncommon only limited measurements 

from fermentation processes available in practice. 

Recently, support vector machine (SVM), which is a novel 

machine learning method based on statistical learning theory 

(SLT) and kernel learning (KL) technique, is gaining 

widespread attention (Schölkopf and Smola, 2002; Suykens 

et al., 2002) and with applications to chemical engineering 

(Wang et al., 2006; Yan et al., 2004). Some SVM based soft 

sensors for fermentation processes have been proposed 
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recently (Desai et al., 2006; Li and Yuan, 2006). The results 

clearly indicate that the SVM is an attractive alternative to 

NN for the soft sensor applications in bioprocess engineering. 

However, the soft sensors are built in an offline manner, 

which implies that a set of samples should be obtained 

beforehand. Further, offline training algorithm is not suitable 

for the practical applications such as online system 

identification and control problems, where the data come in a 

sequential way and new information of the process is difficult 

to be directly absorbed into the established model. 

In this contribution, an online kernel learning (OKL) with 

controlled complexity is proposed to learn online the 

dynamics of the process in a recursive formulation and with 

application to develop a soft sensor for fermentation 

processes. After a brief review of SLT and KL, the basic 

form of OKL is given in section 2. The criterion to add a new 

sample is presented, and two main stages of OKL are 

formulated, including the forward incremental learning stage 

and the backward pruning stage. Application of OKL to a 

fed-batch penicillin fermentation process is illustrated in 

section 3 and the conclusions are drawn in the final section. 

 

2. MODEL DEVELOPMENT 

The soft sensor model based on KL framework is such a 

problem where the goal is to learn a mapping f: X→R using a 

sample sequence S = {(x1, y1), …, (xl, yl)}⊂X×R. Generally, it 

can always assume that the functional f∈H that H is a 

Reproducing Kernel Hilbert Space (RKHS) endowed with a 

dot product 〈⋅⋅⋅⋅,⋅⋅⋅⋅〉H. Therefore, as a temporal step of KL based 

method, one can consider that the input data xi∈X is first 

“mapped” implicitly into the feature space H by φ: X→H, 

where φ is a nonlinear operator associated with some positive 

definite kernel which satisfies the Mercer theorem, i.e., the so 

called kernel trick: K(xi, xj)=<φ(xi),φ(xj)>H (Schölkopf and 
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Smola, 2002). The functional f is then determined in some 

optimal sense to yield the soft sensor model wanted. 

2.1  Regularized Kernel Learning for Regression 

A general form of the “kernelized” nonlinear MIMO model 

proposed by Wang et al. (2006) can be formulated as: 

        
, , , , ,

( , ) ( )
T

k m k m k k m k m k k m
y f e eφ= + +w x w x====     (1) 

where f∈H is the wanted model; yk,m denotes the m
th

 output 

measurement of the wanted model at k instance with m=1, 

…,M, and M is the number of outputs; and xk is a general 

input vector that is usually composed of several measured 

variables at time k, probably combined with their 

corresponding delayed forms, and with the delayed outputs. 

The symbols wk,m and ek,m denote model parameter vector and 

process noise of the m
th

 subsystem, respectively. 

The problem of inference of a model based on a finite set of 

observational data is often ill-posed. Typically, a form of 

capacity control is introduced which is often expressed 

mathematically in the form of regularization. Thus, 

regularized cost functions have been applied in SVM and 

related methods (Schölkopf and Smola, 2002). 

Based on the philosophy of SLT and kernel methods 

(Schölkopf and Smola, 2002), the following optimization 

problem, which uses Tihonov regularization, is proposed here 

to get the solution f in (1): 
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where 
, 1, 2, ,

[ , , , ]
T

k m m m k m
e e e=e ⋯ ; γ>0 is the regularization 

parameter to control the smoothness of the solution, and 

Ω(||f||) is the regularization term (also referred as a penalty 

term), which is chosen to be convex, such as ||wk,m||
2
/2. 

The dual problem is derived for solving the optimization 

problem above. The Lagrangian for the problem is 
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where , , ,1 , ,, ,
T

k m k m k m kα α =  α ⋯  are Lagrange multipliers. 

The conditions for optimality are given by 
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After elimination of the variables wk,m and ek,m, one gets the 

following solution 

          [ ] , ,k k k m k m
γ + =K I α y                   (5) 

where , 1, ,, ,
T

k m m k my y =  y ⋯  and R k k

k

×∈I  is a unit 

matrix; Kk is a kernel matrix, and the “kernel trick” 

(Schölkopf and Smola, 2002) applied here is 

        ( ) ( ) ( ), , , , 1, ,
k i j

i j i j kφ φ= ∀ =Κ x x ⋯      (6) 

Then the KL model estimation of the m
th

 subsystem at time 

k+1 can be obtained 
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where ( ) ( ) ( )1 1, , 1, ,k i ki i kφ φ+ += ∀ =k x x ⋯  is a kernel 

vector. 

In summary, the development of a soft sensor model amounts 

to solving a set of linear equations in the high dimensional 

feature space introduced by the kernel transform, which is 

similar to some basic SVM methods, e.g., LS-SVM (Suykens 

et al., 2002). Nevertheless, noting that the KL regression 

model is not sparse, this adverse factor may cause the solving 

of (7) troublesome, just as remarked by Wang et al. (2006). 

The length of parameter vectors wk,m, which can be 

considered as the order of the KL-based soft sensor model, is 

equal to the number of the sampling data used. It means that, 

with the identification continuing online, it may become 

computationally infeasible during learning and lead to 

excessive computation times when making prediction for the 

new sample. Furthermore, the projections of the input 

samples at different time might be linear dependent in the 

feature space and thus may cause the solving of αk,m 

numerical unstable (Wang et al., 2006).  

Notice that the number of support vectors in SVM learning 

can be kept as low as possible to avoid the over-fitting 

problem. And sparseness is generally regarded as good 

practice in the learning machine. Once the KL regression 

model has sparse solution, the predictions for the new inputs 

depend only on the kernel function evaluated at a subset of 

the training samples. 

2.2  Sparseness: Combining the Prior Knowledge 

A simple sparsity strategy that can adaptively control the 

complexity of the KL based soft sensor model is formulated 

in this section to overcome the embarrassment mentioned 

above. In this paper, the samples adopted into the KL 

regression model are referred to as “nodes”, just as proposed 

by Wang et al. (2006). The main motivation is to find as few 

key nodes as possible, which can be utilized to establish a 

suitable soft sensor model with good generalization ability. 

There are two main strategies to obtain the sparsity: 

pre-sparsity and post-sparsity. The former is to control the 

complexity of the learning machine and suitable for online 

learning; and the latter is to increase the speed/efficiency of 

later testing, which is always adopted in batch learning. An 

interesting pre-sparsity strategy for online KL has been 

proposed recently by Wang et al. (2006), which used a 
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so-called “space angle index” to judge whether the mapped 

features are approximately linear independent. 

A simpler sparsity approach is proposed here. The criterion 

for adding a new pair of sample [xk, yk] to the learning 

machine is as follows: 

    , , 1,( , ) , 1, ,k m k m k m k me y f m Mδ−= − > =w x ⋯       (8) 

where δm is a predefined small positive value, named as 

Prediction Error Bound (PEB). The basic idea of this 

complexity-controlled strategy for the learning machine (that 

is also the soft sensor model) has the advantage of simplicity 

and intuition. 

If , , 1, ,k m me m Mδ> = ⋯  holds, which means that the 

approximation error between the actual output and the 

prediction of the learning machine is significant (for all 

output measurements of the wanted model at time k), the KL 

based soft sensor model is not accurate enough and should be 

improved, so [xk, yk] will be introduced as a new node, and in 

this scenario the soft sensor model will be updated. 

Otherwise, the soft sensor model of the wanted model at time 

k is always satisfied, and there is not necessary to add the 

node in accordance with the well-known “Parsimony 

Principle”. Consequently, the soft sensor model is unaltered. 

The criterion for adding a new node does not adopt the 

colinearity concept as used in Wang et al. (2006), however, it 

directly utilizes the prediction error. 

Generally speaking, the scales of M outputs of the process are 

different. Further, for a special subsystem, the output scale at 

different period of time is probably not the same. 

Consequently, another advantage of this criterion is that it is 

easier to combine the prior knowledge of the process into the 

learning machine. Each output will choose a predefined PEB 

δm according to prior knowledge of the process, that is 

[ ]1
, ,

T

M M
δ δ=δ ⋯ . If the prediction of process variable 

requires more precision, δm can be set smaller and vice versa. 

A smaller δm gets more nodes, and a larger one yields a more 

parsimonious but less precise model. Thus the value of δm can 

be easily selected for the general modeling problems. 

This simple sparsity approach makes the complexity of the 

learning machine restrained; furthermore, from a practical 

point of view, the computation load is usually very small. 

Note that this sparsity belongs to pre-sparsity approach 

(Wang et al., 2006) and is different from the basic idea of 

SVM, where the sparsity is obtained after optimization and 

the SVM solutions are known as non-maximally sparse  

(Schölkopf and Smola, 2002). 

2.3  Growing: Forward Recursive Learning 

The forward learning stage is to grow the nodes with new 

incoming process information. The initial model only has one 

node that is the first sample pair. Then assume at time k the 

OKL based soft sensor model has Nk (at least one) nodes due 

to the sparsity criterion, and then gets the following equation 

             , ,k k k kN N N m N mγ + = K I α y            (9) 

Note that the above equation has related terms similarly 

defined in (5), however, the nodes are different. For 

simplicity, the quantities are defined as 
k k kN N Nγ= +H K I  

and 
1

k kN N

−=P H , then the solution can be expressed as 

               , ,k k kN m N N m=α P y                  (10) 

When a new node is added into the OKL model, (9) becomes 
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1 1 1 1
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k k k k
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N N N N N
K K γ

+ + +

 =  V x x x x⋯  is the 

corresponding kernel vector of the new node, and 

( )
1 1 1

, 1
k k kN N N

v K γ
+ + +

= +x x  is a scalar. 

Applying the Sherman-Morrison-Woodbury formula (Golub 

and Van Loan, 1996) to (11) yields the following inverse 

relation between matrices computation of the inverse 
1kN +

P  

and 
kNP  

            
1 1 1 1
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N T
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+ + + +

 
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where 
1 1 1

, 1
k k k

T
T

N N N+ + +
 = − r V P  is a column vector and 

( )
1 1 1 1 1

1
N N N N Nk k k k k

T
z v

+ + + + +

= − V P V  is a scalar. 

The updated algorithm of the forward incremental learning 

stage is efficient. Whenever a new node is available, the 

direct computation of the inverse of the matrix 
1kN +

H requires 

about ( )
1

3

k
O N

+
 operations, whereas the recursive algorithms 

only need ( )
1

2

k
O N

+
 operations. The improvement on 

computing speed is extremely noticeable when the number of 

nodes Nk+1 becomes large. 

2.4  Pruning: Backward Recursive Learning 

Most chemical processes, especially the fermentation 

processes, are time-variant in nature. The soft sensor model 

should be able to capture the time-variant characteristic of 

process by deleting the nodes with old information of the 

model. Another intention is to keep the model as simple as 

possible in order to improve the learning speed and save 

memory space. 

The aim of backward decremental learning, also referred as 

pruning, is to recursively delete the old information (Suykens 

et al., 2002; Wang et al., 2006). The issue of pruning 

methods in batch learning of SVM has received a great deal 

of attention, however, with little research for online learning 

(Suykens et al., 2002). Let the symbol N as the node length. 

Assume at time k the node growth of the OKL-based soft 

sensor model is finished and Nk is larger than N. The simplest 

pruning approach is to delete the first node, for it is 
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considered as the oldest one and with the least information 

for learning machine (Wang et al., 2006). However, there is 

no guarantee on the rationality of this intuitional pruning 

approach. From the optimality conditions in (11) one can 

infer that the nodes with small Lagrange multipliers also have 

small error. 

Similar with the pruning method proposed by Suykens et al.  

(2002), the nodes with small Lagrange multipliers are deleted. 

However, Suykens et al. (2002) removed the support vectors 

with small Lagrange multipliers (less than some threshold 

value) and retrained the learning machine, thus it is not 

suitable for online learning due to the intensive computations. 

In our approach, only one node is pruned at a time, 

furthermore, a recursive update algorithm is adopted to avoid 

the computation of the matrix inverse 
kNP . The pruning 

procedure includes two steps. Once Nk > N holds, first find 

out the smallest Lagrange multiplier as follows 

      ,1, , ,arg min , 1, ,
k kN i N M i ki Nα α =⋯ ⋯           (13) 

where , , ,1, , ,, ,
k k k

T

N m i N i N M iα α =  α ⋯ . Then, when the l
th

 node 

is pruned from the OKL identification model, the update rule 

is formulated as  

     

1

, , , , , ,

1

, 1, 1 , , , ,

, 1, , 1

, 1, ,

N i j i j l l i l l j

N i j i j l l i l l j k

P P P P P i j l

P P P P P i j l N

−

−

− −

 ← − ∀ = −


← − ∀ = +

⋯

⋯

  (14) 

where 
,i j

P  and 
, ,N i j

P  stands for the item at the i
th

 row and 

j
th

 column of 
kNP  and PN, respectively. If l equals one, only 

the second formula of (14) is applied. This updated procedure 

has been performed for the incremental SVM algorithm 

(Cauwenberghs and Poggio, 2001). According to (14), PN can 

be efficiently updated from 
kNP  without explicitly 

computing the matrix inverse. 

In summary, the modeling algorithmic includes a forward 

growing stage and a backward deleting stage, both of which 

perform the recursive algorithms to avoid the direct 

computation of the inverse of the matrix; consequently, the 

OKL-based soft sensor model has small computation scale. 

 

3. CASE STUDY: PENICILLIN FERMENTATION 

PROCESS 

3.1  Biomass and Penicillin Concentrations Estimation 

The production of secondary metabolites such as antibiotics 

has been the subject of many studies due to its academic and 

industrial importance. However, a main obstacle to the 

implementation of control strategies is the lack of reliable 

sensors for online measurement of the key variables (Alford, 

2006). Thus, the proposed OKL based modeling method is 

applied here to the soft sensor development of a benchmark 

process, the fed-batch penicillin fermentation process 

(PenSim) (Birol et al., 2002) to investigate its validity. 

Taking both the previous studies (Li and Yuan, 2006; 

Massimo et al., 1992) and PenSim (Birol et al., 2002) into 

consideration, the four process variables can provide the 

pertinent information: dissolved oxygen concentration (note 

as CL), carbon dioxide concentration (CO2), biomass 

concentration (X) and penicillin production concentration (P). 

The fermentation age (note as t) is also of relevance due to 

the fermentation process is operated as a fed-batch form 

(Massimo et al., 1992). Consequently, the inputs and outputs 

of the OKL model are below: 

         
[ ]

[ ]

L 1 2 1 1 1, , , ,

,

T

k k k k k

T

k k k

t C CO X P

X P

− − − −
 =


=

x

y
         (15) 

The soft sensor model can be elaborately constructed when 

the prior knowledge is integrated into the sparsity criterion. 

The penicillin fermentation process is characterized by 

nonlinear dynamics and multistage characteristics. Typically, 

penicillin cultivation process has two operational phases. The 

first phase is conducted as batch operation while the other 

phase is conducted as fed-batch operation. In general, the 

system switches to the fed-batch mode after about 45 h, and 

then a constant glucose feed is used during the fed-batch 

operation (Birol et al., 2002). Another prior knowledge is that 

the scales of biomass and penicillin production 

concentrations are different. Note δX and δP as the PEB of the 

outputs yk=[Xk, Pk]
T
, respectively. Hence, a simple sparsity 

criterion is formulated in (16). 

      [ ]
[ ]

[ ]

1 1

2 2

, 0 45
,

, 45

T

T X P

X P T

X P

t h

t h

δ δ
δ δ

δ δ

 ≤ ≤
= 

>

          (16) 

To investigate the effect of the sparsity criterion on the model 

precision, different values of δX and δP are considered in the 

simulation. Three scenarios, noting as small, normal and 

large, are expressed as follows 

    [ ]

[ ]

[ ]

[ ]
1 2 1 2

0.02,0.05,0,0.002 small

, , , 0.05,0.1,0,0.005 normal

0.1,0.15,0,0.05 large

X X P P
δ δ δ δ




= 



   (17) 

Notice that δP1 is always set zero because in the batch mode 

there is no penicillin production. A smaller PEB can achieve 

a more accurate soft sensor model, however, the value of 

PEB would not set too small due to the complexity of model. 

A total of 10 reference batches are generated under the 

nominal operations except that the duration time (Birol et al., 

2002). The duration time is set 300 h but not 400 h. This is in 

accord with the industrial penicillin fermentation process (Li 

and Yuan, 2006). Various operating conditions are 

considered to exhibit batch-to-batch variation in the 

fermentation process. Further, to investigate the modeling 

performance of OKL with small samples, the samples are 

available only every 2 h. Thus the learning machine can only 

be fed with about 150 sample pairs at each batch. 

3.2  Results and Discussion 
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The simulation environment is Matlab V7.1 with CPU main 

frequency 2.4GHz and 256M memory. The Gaussian kernel: 
2

1 2 1 2
( , ) exp[ / ]K σ= − −x x x x  is utilized in all simulations 

below (Schölkopf and Smola, 2002). 

After PEB is predefined, only two additional parameters: [γ, 

σ2
] are to be chosen. The regularization parameter γ=10

-5
 and 

the kernel parameter σ2
=50 adopted here are chosen by 

simulation. Note that there is no rigorous parameter selection 

theory aiming for industrial application available. Fortunately, 

these two parameters both work well in a wide range. The 

regularization parameter γ can be first set because it is much 

smaller than σ. Thus, the parameters can be easily tuned, and 

the value provided here is just one of many parameter pairs 

that turn out satisfied results and no optimality is guaranteed. 

At first, the first three batches are taken into consideration for 

simplicity. Thus altogether 450 sample pairs (150*3) are fed 

into the learning machine. When PEB is set normal, the 

running time of the whole procedure is only 0.344 s, and 

altogether 49 nodes are selected out, about 10.9% of the total 

training data. The prediction of biomass concentration is 

shown in Fig. 1. Once the prediction error is over the upper 

bound or under the lower bound, the nodes are increasing by 

adding the new sample pair. In this case, the node length 

N=100, thus no pruning strategy is necessary. The prediction 

of penicillin production concentration is not shown here due 

to the limitation of the length of the paper. For details about 

this soft sensor model are tabulated in Tab. 1. 
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Fig. 1. Online prediction of biomass concentration (1
st
 batch 

to 3
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 batch) with normal PEB 

Table 1.  Effect of PEB on the performance of OKL modeling 

Con. PEB RMSE MAE Nodes 

(Sparsity) 

Time 

(s) 

X 0.2846 0.9563 

P 

Large 

0.0199 0.1015 

20 (4.4%) 0.226 

X 0.0796 0.3957 

P 

Normal 

0.0040 0.0337 

49 (10.9%) 0.344 

X 0.0602 0.3662 

P 

Small 

0.0036 0.0325 

98 (21.8%) 0.578 

 

Root Mean Square Error (RMSE) and Maximum Absolute 

Error (MAE) provided here are two main performance 

indices of the model precision. As can be seen from Fig. 1 

and Tab. 1, the OKL based soft sensor is accurate and has 

fast learning ability. When PEB is set large, the estimation of 

biomass concentration is depicted in Fig. 2. Based on Fig. 2 

and Tab. 1, we can draw that even a relatively large PEB is 

adopted, the soft sensor model is accepted to some extent; 

only 20 nodes (4.4% of the training data) are selected out, 

which means an extremely sparse model. 

0

5

10

B
io

m
a
s
s
 C

o
n
c
e
n
tr

a
ti
o
n
 (

g
/l
)

 

 

Actual

Nodes

OKL

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Sample Number

P
e
n
ic

ill
in

 C
o
n
c
e
n
tr

a
ti
o
n
 (

g
/l
)

 

 

Actual

Nodes

OKL

 

Fig. 2. Biomass and penicillin production concentration 

prediction (1
st
 batch to 3

rd
 batch) with large PEB 

To simulate the industrial environment, the corresponding 

magnitude (2%) of the super-imposed Gaussian noise is 

added into the process in addition. The parameters adopted 

here is γ=10
-3

 and σ2
=50. Compared with the former cases, γ 

is set larger here due to the noise. PEB should be also set a 

relatively larger one to get rid of the effect caused by noise, 

and in this scenario [ ] [ ]1 2 1 2
, , , 0.2,0.5,0,0.05

X X P P
δ δ δ δ = . 

The result of biomass estimation is shown in Fig. 3, where 

only 29 nodes are selected out, about 6.4% of the total 

samples, clearly demonstrating a very concise model; further, 

the estimation is precise under this noise environment. 
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Fig. 3. Biomass prediction in noisy environment 

With the batch increasing (e.g., 10 batches), the nodes 

selected out are larger than the node length N (Suppose 
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N=100.). Thus the pruning stage is performed in this scenario. 

The PEB is set normal and the parameters γ=10
-5

 and σ2
=50 

are the same with the first case. 

Detailed performance indices of different pruning approaches 

are provided in Tab. 2. Compared with no pruning (Only 

consider the forward learning.) and another method that 

deletes the first node, the pruning strategy proposed here has 

the smallest RMSE. Pruning deletes the old information to 

capture the time-varying characteristic, thus the modeling 

performance can be generally improved. 

Table 2.  Different pruning methods and the corresponding 

modeling performance 

RMSE MAE Pruning 

Method X P X P 

Nodes 

Proposed  0.0840 0.0042 0.6222 0.0360 100 

Delete 1st node 0.0932 0.0044 0.6309 0.0360 100 

No pruning 0.0853 0.0043 0.6205 0.0360 161 

The biomass estimation (10 batches) is shown in Fig. 4. The 

nodes only marked with asterisk are the one pruned, noting as 

forward nodes; and the nodes marked with asterisk and 

square are the actual nodes after modeling of 10 batches. 

From Fig. 4, we conclude that the OKL based soft sensor 

model can capture the nonlinear and time-varying 

characteristics despite of the batch-to-batch variation in 

operating conditions of the fermentation process. 

0 500 1000 1500
0

5

10

15

Sample Number

B
io

m
a
s
s
 C

o
n
c
e
n
tr

a
ti
o
n
 (

g
/l
)

 

 

Actual Forward Nodes Nodes OKL

 

Fig. 4. Biomass prediction (10 batches) with pruning 

 

4.  CONCLUSIONS 

A novel online modeling method for nonlinear MIMO 

processes is proposed and applied to soft sensor development 

for fermentation processes. The OKL based soft sensor model 

can adaptively control its complexity, which means that the 

learning machine will be sparse. Furthermore, it can learn 

forward when a new node is introduced and prune an old one, 

both with recursively updating forms. The ability of OKL to 

learn process characteristics with small sample set is a 

desirable trait that eases its implementation and heightens its 

modelling potential. Further, only few parameters of OKL are 

to be determined. The OKL based soft sensor model can 

perform well when presented with new “unseen” samples. 

The ability of integrating with prior knowledge of the process 

makes further OKL appealing to modeling the fermentation 

processes. 
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