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Abstract: Combustion engine control depends strongly on the availability and the quality of
the signals involving in the controller construction. In general, not all signals are available
through measurement, and therefore an observer is necessary to realize the controller. This paper
proposes an observer design for a combustion engine test bench. The observer is used to estimate
the torque and the rotation angle of the engine, based on the measurement of the engine and
the dynamometer speeds. The convergence of the observer is proved, and separation principle is
also shown. The observer is then used to construct an output feedback controller for set point
tracking of the test bench. Numerical simulations are performed, showing the performance of
the observer and comparing the performance of the output feedback with the state feedback
controller. Moreover, the effect of combustion oscillation which causes a vibration noise is taken
into account, and the use of internal model based filter to handle the noise is presented.
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Setpoint tracking.

1. INTRODUCTION

Most of the feedback stabilization problems for nonlin-
ear systems are solved using state feedback approach,
assuming that all states are available from measurement.
However, this assumption is often unrealistic in practice. In
this situation, state feedback cannot be realized and hence
output feedback or dynamic feedback control becomes nec-
essary. While design tools mainly aim at designing a state
feedback controller [8], designing an observer is a useful
solution to provide the estimates of the unmeasured states
to be used for constructing an output feedback controller.

In other cases even when the states may be available
from measurement, observer may be useful in reducing the
number of sensors applied to the plant, and hence reducing
the data acquisition complexity and the cost especially
when the required sensors are complicated and expensive.
Another problem in real control implementation is the
measurement noise. While in theory we often assume all
signals involve in the operation are ideal, in reality noise
commonly appears and affects the measurement signals.

In this paper, we study an output feedback control design
for a combustion engine test bench. As combustion engines
are widely used in automotive as well as industrial appli-
cations, the topic has attracted many researchers to study
the control problems of the engine as well as the engine
test bench (see [1, 5, 10] and references therein).

The issue of partially available state measurements and the
noise are addressed. To handle the problem of unmeasured
signals, an observer design is proposed in this paper. The
observer is a partial state nonlinear observer, and the

? This work was performed under the grant of 230100-LCM.

design follows the Luenberger observer approach, applied
to nonlinear systems. We prove the convergence of the
observer by showing the convergence of the observation
error. We also show that separation principle holds. This
is very important as we will use the observer to build an
output feedback controller for the test bench.

In practice, the batch behavior of the combustion, which
depends on the crankshaft angle [11] causes the combus-
tion oscillation which is considered as a periodic noise to
the engine speed. An internal model based filter is also
designed to get rid of the effect of this periodic noise.
Some simulations are done to test the performance of the
observer and the filter to solve a setpoint tracking problem
of the speed and the torque of the test bench.

2. NOTATION AND DEFINITIONS

The set of real numbers is denoted respectively by R. A
function γ : R≥0 → R≥0 is of class K if it is continuous,
strictly increasing and zero at zero. It is of class K∞ if it
is of class K and unbounded. Functions of class K∞ are
invertible. A function β : R≥0 ×R≥0 → R≥0 is of class KL
if β(·, t) is of class K for each t ≥ 0 and β(s, ·) is decreasing
to zero ∀s > 0. We often drop the arguments of a function
whenever they are clear from the context.

Consider a general input affine nonlinear system

ẋ = f(x) + g(x)u , y = h(x) , (1)

where x ∈ R
n is the state, u ∈ R

m is the control input and
y ∈ R

p is the output. The functions f , g and h are smooth
and f is zero at zero. If the input u is a state feedback
controller, we write the closed loop system of (1) as

ẋ = f̃(x) (2)
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We use the following definitions throughout the paper.

Definition 2.1. (Asymptotic stability): A continuous and
differentiable function V : R

n → R is called an asymptotic
stability (AS) Lyapunov function for the continuous-time
system (2) if there exist class K∞ functions α1(·), α2(·)
and α3(·) such that the following holds

α1(|x|) ≤ V (x) ≤ α2(|x|) , (3)

∂V

∂x
f̃(x) ≤ −α3(|x|) , (4)

for all x ∈ R
n. �

Definition 2.2. (Asymptotic stabilizability): A nonlinear
system (1) is asymptotically stabilizable by means of a
state feedback if there exists a state feedback controller
u = u(x), such that the closed-loop system (2) with control
u is asymptotically stable. �

Consider another dynamical system

ż = ΓT (z, y, u); x̂ = γ(z) , (5)
where z ∈ R

l.

Definition 2.3. (Asymptotically stable observer): The sys-
tem (5) is an asymptotic observer for (1) if for any x ∈ Rn

and z ∈ Rl the estimation state x̂ asymptotically converges
to the estimated state x. If x̂ = z, the system (5) is called
an identity observer. Moreover, the system (1) is called
asymptotically observable if it possesses an asymptotic
observer. �

3. OBSERVER DESIGN FOR THE ENGINE TEST
BENCH

3.1 Engine test bench model

A simple schematic diagram of the combustion engine test
bench is illustrated in Figure 1.

Figure 1. The combustion engine test bench system

The main parts of such a dynamical engine test bench are
the dynamometer, the connection shaft and the combus-
tion engine itself. One of the control design objectives for
a dynamical engine test bench control is to stabilize the
engine torque and the engine speed.

Considering the torque of the combustion engine and the
air gap torque of the dynamometer as the inputs to the
mechanical part of the engine test bench system, the
dynamical model of the engine can be represented by a
two mass oscillator

ψ̇∆ = ωE − ωD (6)

ω̇E =
1

θE

(TE − cψ∆ − d(ωE − ωD)) (7)

ω̇D =
1

θD

(cψ∆ + d(ωE − ωD) − TDSet) , (8)

where ψ∆ is the torsion angle, ωE and ωD are respectively
the engine and the dynamometer angular velocity, TE is
the engine’s torque, TDSet is the air gap torque of the
dynamometer, θE and θD are the inertia of the engine and
the dynamometer, respectively. The dynamical model of
the combustion engine test bench is described by

ṪE = −ρ(TEstat, ωE)TE + ρ(TEstat, ωE)TEstat ,

where TEstat is the output of the static engine map and
ρ(TEstat, ωE) is the nonlinear state and input depending
eigenvalue. Under some assumptions this dynamical model
is approximated by the class of the extended Hammerstein
systems (see [3] for more details)

ṪE = −(c0 + c1ωE + c2ω
2
E)TE +m(ωE , TE , α) . (9)

with c0, c1 and c2 are some positive coefficients and
m(ωE , TE, α) is a continuous nonlinear function. From the
continuity of m, without lose of generality, we assume that
it is locally Lipschitz with respect to TE.

3.2 Observer design

From the previous subsection we have obtained the dy-
namic model of the test bench (6)-(9), which is a fourth
order system. In practice, from the four state variables of
the system, only the engine angular velocity ωE and the
dynamometer angular velocity ωD are available through
measurement. Hence, we can write the output equation
for the system as

y1 = ωE y2 = ωD . (10)

As the control problem of the test bench usually involves
the torque control, in order to design a feedback controller
the knowledge of the torque TE becomes necessary as
it is needed for constructing the feedback controller. For
that, an observer is required to estimate the unmeasured
states TE , as well as ψ∆. In this subsection, we propose
an observer design that functions to estimate these two
quantities. The constructed observer is a reduced order
observer instead of a full order one.

The following theorem provides the observer construction,
and the procedure of how to construct the observer is given
in the proof of the theorem.

Theorem 3.1. Given a continuous-time model of an engine
test bench (6)-(9), with measured output (10). The follow-
ing reduced order observer

˙̂
TE = −(c0 +c1ωE +c2ω

2
E)T̂E+m(ωE, T̂E , α)+L1e1

˙̂
ψ∆ = ωE − ωD + L2e2

(11)

where L1 > 0, L2 > 0 and

e1 = θEω̇E + θDω̇D + TDSet − T̂E

e2 =
1

c
(θDω̇D − d(ωE − ωD) + TDSet − cψ̂∆)

(12)

is an asymptotically stable observer for the system. �

Proof of Theorem 3.1: Given the system (6)-(9) with
output (10) and the observer (11). We define the estima-

tion errors as e1 := TE − T̂E and e2 := ψ∆ − ψ̂∆. First, we
will show that the error terms satisfy (12). It is straight
forward that from (8) we can obtain

ψ∆ =
1

c

(

θDω̇D − d(ωE − ωD) + TDSet

)

. (13)
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Moreover, from (7) and (13) we have

TE = θEω̇E + cψ∆ + d(ωE − ωD)

= θEω̇E+θDω̇D−d(ωE−ωD)+TDSet+d(ωE−ωD)

= θEω̇E + θDω̇D + TDSet .

(14)

Therefore using (14) we obtain

e1 = TE − T̂E = θEω̇E + θDω̇D + TDSet − T̂E ,

and using (13), we obtain

e2 = ψ∆ − ψ̂∆ =
1

c

(

θDω̇D − d(ωE − ωD) + TDSet − cψ̂∆

)

.

Now, we can write the error dynamics

ė1 = ṪE −
˙̂
TE = −(c0 + c1ωE + c2ω

2
E)e1

+m(ωE , TE , α) −m(ωE , T̂E, α) − L1e1 ,
(15)

and ė2 = −L2e2. To show the asymptotic stability of
the error system, we choose V = 1

2
e>e as the Lyapunov

function. The derivative of V is

V̇ = e1ė1 + e2ė2 . (16)

From the local Lipschitzity of m w.r.t TE , we can write

m(ωE , TE , α) −m(ωE , T̂E, α) ≤ Lm(TE − T̂E) = Lme1 ,

with Lm > 0. Hence, we can write

V̇<−(c0 + c1ωE + c2ω
2
E)e21 + Lme

2
1 − L1e

2
1 − L2e

2
2

=−
(

C(ωE) + L1 − Lm

)

e21 − L2e
2
2<−Le

2
1 − L2e

2
2.

(17)

The existence of L > 0 is guaranteed by choosing L1 large
enough so that C(ωE) + L1 > Lm for all ωE . Therefore
the Lyapunov derivative is negative definite. Hence, it is
proved that the observer (11) is an asymptotically stable
observer for the system (6)-(9) with output (10). �

3.3 Separation Principle

Separation principle needs to hold when an observer is
used for designing an output feedback controller. For
the separation principle to hold, we require asymptotic
stabilizability and uniform observability of the system with
respect to the observer.

Given a state feedback control uk for the system (6)-(9). To

guarantee that the estimated state T̂E and ψ̂∆ can be used
to replace the unmeasured state TE and ψ∆ in a feedback
control construction, the separation principle must hold.
The separation principle required to solve the stabilization
problem is stated in the following result.

Proposition 1. (Separation Principle) Consider the sys-
tem (6)-(9). Suppose there exists a controller uk =
uk(TE, ψ∆, ωE , ωD) that asymptotically stabilizes the sys-
tem. Assume that uk is continuous, and zero at zero. The
asymptotic stabilization for the system using an output

feedback uk = ûk(T̂E , ψ̂∆, ωE, ωD) from the observer (11)
is solvable if the closed-loop system is uniformly observ-
able. �

Remark 3.1. Note that in practice the signals ω̇E and ω̇D

are not measured. Although theoretically it is possible to
use a differentiator to obtain these signals from the output
ωE and ωD, it is not practical as a differentiator needs two
input signals. The common practice is by approximating
the derivatives as follows

ω̇E ≈
ωE(t) − ωE(t− T )

T
, ω̇D ≈

ωD(t) − ωD(t− T )

T
,

with T > 0 sufficiently small. For digital implementation
of the observer using computer, T may be taken equal to
the sampling period of the process. �

4. SET POINT TRACKING USING OUTPUT
FEEDBACK

4.1 Output feedback controller design

As separation principle is valid for the state feedback
controller and the observer, we can use the state estimate
to substitute the original state to construct an output
feedback controller for the engine. In [9] we have designed
a controller that guarantees asymptotic stability for a
setpoint tracking problem of the engine. The controller
is designed via a model transformation approach as briefly
describe in the followings.

We define the state normalization as follows

x1 =
TE − TE0

∆TE

, x2 =
ψ∆ − ψ∆0

max(ψ∆)
,

x3 =
ωE − ωE0

∆ωE

, x4 =
ωD − ωD0

∆ωD

,

(18)

with TE0, ψ∆0, ωE0 and ωD0 defines the operating point
and ∆TE , max(ψ∆), ∆ωE and ∆ωD the maximum ex-
pected distance from the equilibrium point. With this
scaling and taking cmax(ψ∆) = ∆TE , the system (6)-(9)
can now be represented in its normalized model as follows

ẋ1 = − (c̃0 + c̃1x3 + c̃2x
2
3)x1 − γ1x3 − γ2x

2
3 + u1

ẋ2 =b(x3 − x4)

ẋ3 =
1

θE

(c

b
x1 −

c

b
x2 − d(x3 − x4)

)

ẋ4 =
1

θD

(c

b
x2 + d(x3 − x4)

)

+ u2 ,

(19)

with the inputs

u1 =
m(x1, x3, α) −m(0, 0, α0)

∆TE

, u2 = −
TDSet − TD0

θD∆ωD

,

and c̃0, c̃1, c̃2, b, γ1, γ2 are positive constants.

In [9] a continuous-time controller has been constructed
to satisfy some robust optimal design criteria. The control
Lyapunov function used for designing the controller is

V (x1, x2, x3, x4)=k1x
2
1 + k2x

2
2 + k3x

2
3 + k4x

2
4 + k5x2x4 ,

with ki ∈ R
+, i = 1 · · · 4 and k5 ∈ R − {0}. The positive

definiteness of V (·) is guaranteed for some k5 with |k5|
sufficiently small. The controller takes form

u = −[R(x)g(x)]>
[

∂V (x)

∂x

]>

= −

[

2r1k1x1

r2(2k4x4 + k5x2)

]

(20)

with a positive matrix R = diag[r1, 0, 0, r2]. The controller
has been proved to asymptotically stabilized the system.

Note that the controller (20) is designed to asymptotically
stabilize the normalized model (19) of the engine. As our
main objective is to apply the controller to the engine test
bench, we need to transform back the normalized model
of the test bench and test the stability of tracking of the
original system. From the state transformation (18), we
have the following relations

m(ωE , TE , α) = u1∆TE + TE0(c0 + c1ωE0 + c2ω
2
E0)

TDSet = −u2θD∆ωD + TD0 ,
(21)
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where we have chosen ψ∆0 = TE0

c
, TD0 = TE0 and

ωE0 = ωD0. The setpoint tracking aims to follow the
changing of operating points (TE0, ωE0) of the engine.

Replacing the unmeasured states with their estimate value,
and applying the transformation (18), the output feedback
controller takes the form

m(ωE,T̂E , α)=−2r1k1(T̂E−TE0)+TE0(c0+c1ωE0+c2ω
2

E0)

TDSet=2k4r2θD(ωD−ωD0)+k5r2θD∆ωD
cψ̂∆−TE0

∆TE
+TD0.

(22)

4.2 Simulation results

In this subsection, by simulation we first show the conver-
gence of the observer in estimating the states TE and ψ∆.
Further, we will apply the output feedback controller (22)
to control the engine test bench (6)-(9). The performance
of the output feedback controller (22) is compared to
the state feedback controller (20) for a setpoint tracking
assignment. The parameters of the test bench are given

Table 1. The engine’s parameters

Parameter Value Unit

Engine inertia (θE) 0.32 kgm2

Dynamometer inertia (θD) 0.28 kgm2

Damping constant (d) 3.5505 Nms/rad
Stiffness of the shaft (c) 1.7441 × 103 Nm/rad

on Table 1. The engine parameters are based on a dy-
namic test bench with a production BMW M47D diesel
engine. The coefficients of the approximate dynamic model
after scaling are c̃0 = 6.3466, c̃1 = 3.2096, c̃2 = 2.7744,
b = 1.8264 × 103, γ1 = 4.8143 and γ2 = 4.1616. For the
controller we have chosen the parameters k1 = 1.5686,
k2 = 0.00174, k3 = 0.88, k4 = 1.05, k5 = −0.0145 and
R = diag[1, 2]. We apply the controller for a setpoint
tracking when changing the operating point (TE , ωE) of
the engine each following a square wave reference signal.
The initial condition of the engine (50, 50/c, 3000, 3000)
and the initial condition of the observer (100, 100/c). We
have assumed that ω̇E and ω̇D are not measured, and we
use the dirty derivative as in Remark 3.1 with T = 0.1 sec.
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e2 = ψ∆ − ψ̂∆Figure 2. Convergence test of the observer.

Figure 2 shows that the observer can estimate the unmea-
sured states TE and ψ∆ very well as the observer converges
very quickly to the engine system, even when the initial
condition of the observer is very different from the initial
condition of the engine. The response of the system with
the output feedback is shown in Figure 3 which appears
almost overlapped with the response with state feedback.
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Figure 3. Tracking using output feedback controller.

5. FILTERING THE PERIODIC NOISE

Although it has been shown that the observer can con-
verge quickly and it performs well to construct an output
feedback controller for the engine test bench, this has
not fully solved the implementation problem. In fact the
combustion engine model is just an approximation of a
highly nonlinear system, that the performance limits of
the actuators have to be considered and furthermore that
the measured signals, i.e. ωE and ωD are affected by the
batch behavior of the combustion, which depends on the
crankshaft angle [11]. Since each cylinder fires every 720◦

crankshaft angle (720◦CA), it means for a four strokes en-
gine a combustion occurs in every 180◦CA that causes the
combustion oscillation which is considered as a periodic
noise to the engine speed.

For the considered control task the latter is much more
complicated. In order to achieve a robust estimator it
is necessary to increase the observer gains L1 and L2,
whereas this will also increase the effect of the noisy speed
measurement to the estimated signals, particularly as the
error terms (15) depend on the derivatives of the measured
speed signals. Neglecting this noise will cause the gener-
ated output feedback very noisy and not implementable
due to the performance limits of the actuators. As a result
the full control loop will not perform well. To get rid of
this periodic noise, we use a fast filter. The frequency of
the fundamental oscillation of the noise is directly related
to the engine speed and therefore it is known.

For the control point of view we are only interested in the
mean value of the signals (TE and ψ∆), hence we have to
separate the periodical part and the mean value part of the
signal. We apply a frequency varying internal model filter
to reconstruct the estimated signal including the periodical
signals. From the state of the internal model it is then
possible to calculate the mean value of the reconstructed
signals. In the following we will only sketch the method
and for further details we refer to [4].

5.1 Modeling the combustion oscillation via parameter
varying exosystem

It can be seen that the combustion oscillations can be
described by linear but frequency depending harmonic
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oscillators

ω̇i = Si(η(t))ωi , dhi = c′Siωi (23)

where

Si(η) =

(

0 −iη(t)
iη(t) 0

)

∀i = 1 · · · 6 (24)

and η(t) defines the frequency of the first harmonic of the
combustion oscillations. The output map is

cSi = (αi 0) or cSi = (0 αi) . (25)

For a simple integrator we can assume the following
offset ω̇0 = 0 and dh0 = α0ω0. Hence the full periodic
signal (considering up to the 6th harmonics) with ω =
(ω0 ω11 ω12 · · · ω61 ω62)

′ becomes

ω̇ = S(η(t))ω , dh = c′Sω (26)

with

S(η(t)) =









0 0 · · · 0
0 S1(η(t)) · · · 0
...

...
. . .

...
0 0 · · · S6(η(t)









(27)

and from the second output map

c′S = (α0 0 α1 0 α2 · · · 0 α6) . (28)

Note that we have chosen the second output map given by
(25) for the same reason as given in [2, proof of Lemma 1].

The internal model principle will be utilized to reconstruct
the combustion oscillation. Commonly the internal model
principle is only considered for constant frequencies [7],
thus the structure of the internal model description of the
actual problem has to be rearranged slightly, by taking
the exosystem to be parameter dependent and the internal
model controller to be parameter varying. The structure
of the internal model based filter is shown by Figure 4. In
our case, the observer is acting as the exosystem as shown
by Figure 5, when using G(s) = 1.

−
Internal
Modelexosystem K G(s)

PSfrag replacements
ŷ ỹ

Figure 4. Internal model based filter structure

−
Internal
ModelKobserver

PSfrag replacements
T̂E , ψ̂∆ T̃E , ψ̃∆

Figure 5. Connection of the observer and the internal
model filter

Remark 5.1. Note that in reality the estimate T̂E and ψ̂∆

contain the oscillation component dh which involves the
periodical part. As we are interested in the mean value of
the signals, in the rest of the discussion we only consider
the periodic combustion oscillation dh since TE and ψ∆

are not periodic. Also, as T̂E and ψ̂∆ are treated in the
same way, due to limited space, we only present the result

for filtering T̂E . �

5.2 Design of the frequency dependent internal model

In the standard case when the oscillation frequency is
constant, the error T̂E − T̃E tends to zero if the poles
of the internal model includes all the eigenvalues of the
exosystem and it is controllable. If the exosystem is a

nonlinear oscillator, the internal model is constructed by
searching for the normal form of the exosystem in order
to get the observable modes of the nonlinear exosystem
which would be necessary for designing the control input
and therefore also to design the (controllable) internal
model. However for this application a normal form is not
necessary, since the oscillation model (26) can be simply
extended to get a controllable system which has the same
eigenvalues (IM principle) as the exosystem (26) itself.

Therefore the integrator subsystem has to be extended by
the control input u0

ξ̇0 = u0 , d̂h0 = ξ0 (29)

and to the oscillator subsystems we add an input vector
b = (0 1)′ such that the internal submodel takes the form

ξ̇i = Ai(η)ξ + biui =

(

0 −iη(t)
iη(t) 0

)

ξi +

(

0
1

)

ui

d̂hi = cIMi
ξ = (0 1)ξ .

(30)

Note that in (30) the gains α0 to α6 are set equal to
1 since for the modeling purpose the magnitudes of the
oscillations may be assumed constant. The magnitude of
the oscillation can also be defined by the initial states of
the exosystem. Thus the composite internal model is

ξ̇ = A(η)ξ +Bu = A(η)ξ +B(u1 · · · u6)
′

d̂h = cIM ξ
(31)

with

A(η) =









0 0 · · · 0
0 A1(η) · · · 0
...

...
. . .

...
0 0 · · · A6(η)









, B =









b0 0 · · · 0
0 b1 · · · 0
...

...
. . .

...
0 0 · · · b6









,

cIM = (1 cIM1
· · · cIM6

)′ .

5.3 Stabilizing parameter varying feedback controller

We will design a converging, stabilizing controller for the
internal model, aiming to get the steady state response of
the internal model equal to the measured oscillation [6].
For a static but parameter varying feedback control law
u = K(η)e the closed loop system becomes

ξ̇ = A(η)ξ+BK(η)e = (A(η)−BK(η)c̃′IM ) ξ+BK(η)dh.

Referring to [2], convergence is achieved if and only if the
parameter varying closed loop system is asymptotically
stable. With c̃′IMi

= (0 1) and K = (k0(η) . . . k6(η))
′ the

closed loop of the oscillator subsystems becomes

ξ̇i = (Ai(η) − biki(η)c̃IMi
)ξi + ki(η)c̃IMi

dh. (32)

For stability analysis dh is set equal to zero and the system
matrix of the closed loop oscillator subsystems is

Aicl
(η) =

(

0 −iη
iη −ki(η)

)

∀i = 1, . . . , 6 . (33)

For the second order subsystems we further choose a
constant controller ki = k̃i, ∀i = 1, . . . , 6, and Aicl

(η)
in (33) becomes

Aicl
(η) =

(

0 −η

η −k̃i

)

∀i = 2, . . . , 6 . (34)

For the integrator subsystem the constant feedback u0 =
k̃0e is used, such that the subsystem becomes

ξ̇0 = −k̃0ξ0 + k0dh . (35)
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Hence the controller that stabilizes the internal model is

K = (k̃0η k̃1 · · · k̃6)
′ (36)

where k̃1 to k̃6 are positive constants. These constants
influence the convergence rate of the oscillator and some-
one might desire fast convergence without overshoot. Here
the characteristic polynomial ∆i(s) = s2 + k̃is + (iη)2 of
the closed loop subsystem (34) will be considered. One
possibility for fastest convergence without overshoot is at
k̃i = 2iη. However for a general application where the
measured signal is always noisy and the output of the
observer (and particularly the predicted output) is noisy
too, if ki has too high values and the convergence rate is
too fast (the observer tends to learn the noise).

It is well known for LPV systems that fast changing
parameters can cause stability problems. Therefore, we
need to make sure that the filter is stable in a given
parameter range. The proof of stability of the filter follows
exactly the same steps as in [4] and due to limited space
is not presented in this manuscript.

5.4 Simulation results

The final control structure now consists of the observer
of the noise filter and of the controller. In Figure 6 we
can see the engine torque, the engine speed, the control
input 1 and the control input 2 for the test bench control
problem. In Figure 7 we show the comparison of the filtered
signal using the internal model observer and a comparable
Butterworth filter. Hence it can be seen that even in
dynamic operation the estimation error of the mean value
combustion engine test bench is quite small.
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Figure 6. Tracking using output feedback and noise filter.

6. SUMMARY

In this paper we have presented a partial state observer
design for a combustion engine test bench system. We have
shown that the observer is asymptotically convergent to
the system. We have also shown that separation principle
is satisfied. We have demonstrated some simulation results
showing the performance of an output feedback controller
developed using the proposed observer.
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Figure 7. Comparison of the measured and the filtered
estimated torque.

Moreover, as noise always involves in the real measure-
ment, we also discuss the issue on vibration noise. The
effect of the noise to the estimation and the use of filter
to solve the problem is also presented. Some simulation
results are also provided.

As this study is done only based on simulation, the next
step will be to implement the observer and output feedback
controller as well as the filter design to the real engine test
bench for solving the setpoint tracking problem.
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