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Abstract: This work presents the design of continuous and discontinuous output regulators
for a magnetic levitation (MAGLEV) system, for asymptotic output trajectory tracking and
disturbance rejection. The nonlinear full information case is considered for both regulators.
Then by numerical simulations one compares the performance of both control strategies, under
criteria as transient response, steady-state accuracy, feasibility of control implementation and
parameter sensitivity. The superior performance of the discontinuous regulator is then put in
evidence by the obtained results.
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1. INTRODUCTION

Magnetic levitation systems are used in several applica-
tions such as frictionless bearings (Allaire et al. (1998)),
high-speed maglev passenger trains (Ono et al. (1998)),
levitation of wind tunnel models (Muscroft et al. (2006)),
levitation of molten metal (Im et al. (2005)) and the
levitation of metal slabs during manufacture (Jayawant
et al. (1965)) in industrial process. These systems have in-
trinsical unstable nonlinear dynamics, requiring of closed–
loop control designs for the stabilization of such systems.
Several control techniques has been applied to the sta-
bilization of MAGLEV systems, for example, feedback
linearization (Barie et al. (1996)), sliding mode control
(Muthairi et al. (2004)), backstepping (Mahmoud (2003)),
among others. In the case of tracking sinusoidal signals,
feedback linearization (Barie et al. (1996), Hajjaji et al.
(2001)), and backstepping (Pranayanuntana et al. (2000))
are reported in literature. Although the tracking of si-
nusoidal signal is more natural for the output regulation
technique, there are not works reported in the literature
about output regulation for MAGLEV systems.

Recently, output regulation has been combined with other
control techniques such sliding modes (Utkin et al. (2004)),
fuzzy control (Castillo et al. (2004)) and artificial neural
networks (Castillo et al. (2005)), in order to improve the
output regulation strategy. The output regulation problem
consist in finding if possible a control law for which the out-
put can asymptotically track a signal and at the same time
reject perturbations signals. The main feature that distin-
guishes the output regulation problem from conventional
tracking and disturbance rejection problems is that in the
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output regulation problem, the class of reference signals
and disturbances consists of solutions of some autonomous
system of differential equations. This system is called an
exosystem. Reference signals and/or disturbances gener-
ated by the exosystem are called exosignals. The control
law must also asymptotically stabilize the system even if
the exosystem is absent.

In the linear setting a complete solution of the problem
was presented in Francis (1977), based on the existence
of a solution for a set of algebraic matrix equations. In
the nonlinear framework, it was shown in Isidori (1990)
that the solution can be posed in terms of the solution of
a set of nonlinear differential equations, which represents
a generalization of the Francis conditions. This set of
equations become known as the Francis-Isidori-Byrnes
(FIB) equations. Basically, the regulator solution can be
viewed as finding a steady-state surface on which the
output tracking error map is zero, and which can be made
attractive and invariant by feedback.

An alternative approach to deal with this problem is the
use of the sliding mode technique to decompose and sim-
plify the regulator design procedure and impose robustness
properties as in Utkin (1992) and Elmail (1992). The
underlying idea is to design a sliding surface on which
the dynamics of the system are constrained to evolve by
means of a discontinuous control law, instead of designing
a continuous stabilizing feedback, as in the case of the
classical regulator problem. The sliding manifold contains
the steady-state surface, where the dynamic of the system
tends asymptotically along the sliding manifold to the
steady-state behavior.

In the full information case, a static state feedback sliding
mode regulator design have been investigated in Elmail
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(1992), Gopalswamy et al. (1993) and Castillo et al. (1995).
To overcome the limitation of the full information knowl-
edge, a dynamic discontinuous error feedback strategy
have been designed in Edwards et al. (1998) for linear
systems, and in Sira (1993) for a certain class of nonlinear
systems. Considering that the state of the exosystem is
accessible, a dynamic error feedback regulator has been
proposed in Bonivento et al. (2000) for a class of nonlinear
systems with unitary relative degree. In Utkin et al. (2004),
it is considered that the exosystem is not accessible, there-
fore proposing a dynamic discontinuous error feedback reg-
ulator for the general case of linear and nonlinear systems,
including as well a class of dynamic systems presented in
the so-called Regular and Block Controllable forms.

The objective of this work is then to compare the design
and performance of the classical output regulator and
sliding mode output regulator by means of simulations for
asymptotic output trajectory tracking where the nonlinear
full information case is considered. Then, issues like tran-
sient response, steady-state accuracy, feasibility of control
implementation and parameter sensitivity are discussed.

The rest of this work is organized as follows. In Section 2
the classical and discontinuous output regulation theories
are briefly revisited. In Section 3, the continuous and
discontinuous output regulation for the MAGLEV system
are designed. Section 4 deals with simulations where the
results of both regulators are compared, and finally some
commentaries conclude the work in Section 5.

2. RECALLS ON OUTPUT REGULATION THEORY

In this section the main ideas behind classical output reg-
ulation theory are briefly revisited. For the discontinuous
output regulator only conditions are stated where details
can be found in Utkin et al. (2004).

2.1 Classical Output Regulation

Let us consider a nonlinear system with error signal as
output:

ẋ = f(x) + g(x)u + d(x)w (1)

e = h(x) − q(w) (2)

ẇ = s(w) (3)

where x is the state vector defined on a neighborhood X
of the origin of ℜn, with u ∈ ℜm as input and e ∈ ℜp as
the output tracking error signal. The vectors f(x), h(x),
q(w), s(w) and the columns of g(x) and d(x) are smooth
vector fields of class C∞

[t,∞}, and in addition it is assumed

that f(0) = 0 and h(0) = 0. The output tracking error e is
the difference between the output h(x) of the system and
a reference signal q(w) generated by a given exosystem
(3) with state w, defined on a neighborhood W of the
origin of ℜs. This system is characterized by the following
assumption.

(H1) The Jacobian matrix S =
[

∂s
∂w

]

w=0
at the equilibrium

point w = 0 has all its eigenvalues on the imaginary
axis.

Now, the formal characterization of the output regulation
problem will be presented as in Isidori (1990).

Problem 1. State Feedback Output Regulation Problem
(SFORP). Given a nonlinear system of the form (1)-(2)
and a neutrally stable exosystem (3), find, if possible, a
mapping u = α(x, w) such that

(SSF ) the equilibrium x = 0 of

ẋ = f(x) + g(x)α(x, 0)

is asymptotically stable in the first approximation,

(RSF ) there exists a neighborhood V ⊂ X × W of (0, 0)
such that, for each initial condition (x(0), w(0)) ∈ V , the
solution of the closed-loop system

ẋ = f(x) + g(x)α(x, w) + d(x)w

ẇ = s(w)

satisfies

lim
t→∞

h(x) − q(w) = 0.

The solvability of the SFORP under assumption (H1), can
be stated in terms of the existence of a pair of mappings
x = π(w) and u = c(w), with π(0) = 0 and c(0) = 0, that
solve the FIB equations

∂π(w)

∂w
s(w) = f(π(w)) + g(π(w))c(w) + d(π(w))w (4)

0 = h(π(w)) − q(w). (5)

The continuous controller α(x, w) can be chosen as follows

α(x, w) = c(w) + K
(

x − π(w)
)

(6)

where K is a matrix which places the eigenvalues of the
linear approximation of the closed–loop system (1) and (6)
at the equilibrium point x = 0, namely (A + BK) ∈ C−

whith A =
[

∂f
∂x

]

0
, B = g(0).

2.2 Sliding Mode Output Regulator

Analogously to the SFORP, the State Feedback Sliding
Mode Output Regulator Problem (Utkin et al. (2004)) is
defined as the problem of finding a sliding manifold

σ(x, w) = 0, σ =
(

σ1, · · · , σm

)T

(7)

and a discontinuous controller

ui =

{

u+
i (x, w) if σi(x, w) > 0

u−
i (x, w) if σi(x, w) < 0

i = 1, · · · , m (8)

where u =
(

u1 · · · um

)T

.

Here u+
i (x, w), u−

i (x, w) and the sliding manifold (7) are
chosen such that the following conditions holds

• (SMSSF ) (Sliding Mode Stability). The control (8) is
designed to induce sliding mode motion on the sliding
manifold (7) in finite time;

• (SSF ) The equilibrium (x, ξ) = (0, 0) of the sliding mode
dynamic

ẋ = f(x) + g(x)ueq |σ(x,w)=0

is asymptotically stable, where ueq is the equivalent
control defined as solution of σ̇ = 0;
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• (RSF ) There exists a neighborhood V ⊂ X×W of (0, 0)
such that, for each initial condition (x0, w0) ∈ V , the
output tracking error (2) goes asymptotically to zero,
i.e. lim

t→∞
e(t) = 0.

3. OUTPUT REGULATION OF A MAGLEV SYSTEM

In the following, the mathematical model of a maglev sys-
tem is presented in sub–section 3.1, the classical regulator
is designed in sub–section 3.2, while in sub–section 3.3 the
proposed discontinuous regulator is designed.

3.1 Mathematical model and problem formulation for the
MAGLEV system

Figure 1 shows an schematic diagram of a maglev system.

Fig. 1. Schematic diagram of a MAGLEV system.

The mathematical model of the MAGLEV system is given
by the following equations (Barie et al. (1996)):

ẋ1 = x2

ẋ2 = g − km

M

x2
3

x2
1

ẋ3 = −R

L
x3 +

1

L
v (9)

y = x1

with state vector defined as x = (x1, x2, x3)
T , where x1

represents the position of the steel ball of mass M which
is positively incrementing in the downward position, x2 is
the velocity of the steel ball, x3 is the current trough the
coil, v is the input voltage applied to the coil, y the output
of the system. The constant parameters are the resistance
of the coil denoted by R, the inductance denoted by L, g
is the gravitational constant and is considered as a known
perturbation term, finally km is the magnetic constant of
the electromagnet.

The control problem consist in forcing the output y = x1

to track a reference signal x1,r. Therefore one can consider
the following output tracking error

e = x1 − x1,r. (10)

The reference and perturbation signals are supposed to be
generated by an autonomous exosystem (3) given by

ẇ1 =−αw2

ẇ2 = αw1

ẇ3 = 0

ẇ4 = 0 (11)

with initial conditions w1(0) = w2(0) = a, w3(0) = b and
w4(0) = c and outputs

x1,r = q(w) = w1 + w3, g = d(w) = w4. (12)

3.2 Continuous Regulation of a Maglev System

To design the classical continuous regulator (6), the map-
pings x = π(w) and u = c(w) are calculated from the FIB
equations (4) and (5). Using the mathematical model of
the MAGLEV (9), (10) and the proposed exosystem (11),
the FIB equations takes the following form:

∂π1(w)

∂w
s(w) = π2(w) (13)

∂π2(w)

∂w
s(w) = d(w) − km

M

π2
3(w)

π2
1(w)

(14)

∂π3(w)

∂w
s(w) =−R

L
π3(w) +

1

L
c(w) (15)

0 = π1(w) − q(w) (16)

with s(w) = (−αw2, αw1, 0, 0)
T
.

The steady state mappings π(w) = (π1(w), π2(w), π3(w))
T

and c(w) are obtained from the previous equations, yield-
ing to the following expressions

π1(w) = w1 + w3

π2(w) =−αw2

π3(w) = (w1 + w3)

√

M

km

(w4 + α2w1)

c(w) = (R(w1 + w3) − αLw2)

√

M

km

(w4 + α2w1)

− MLα3

2km

w2(w1 + w3)
√

M
km

(w4 + α2w1)
. (17)

Finally the control action can be chosen as in (6), with c(w)
defined in (17) and K such that the matrix (A + BK) is
Hurwitz.

3.3 Discontinuous Regulation of a Maglev System

Let us define the steady state error as

z = x − π(w) =

(

z1

z2

z3

)

=

(

x1 − π1(w)
x3 − π3(w)
x3 − π3(w)

)

(18)

the dynamic equation for (18) with tracking error e (10)
can be obtained from (9) as

ż1 = z2 + π2(w) − ∂π1(w)

∂w
s(w) (19)

ż2 = d(w) − km

M

(z3 + π3(w))2

(z1 + π1(w))2
− ∂π2(w)

∂w
s(w) (20)
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ż3 =−R

L
(z3 + π3(w)) +

1

L
u − ∂π3(w)

∂w
s(w) (21)

e = z1 + π1 − q(w).

where π1, π2 and π3 are solutions of equations (16), (13)
and (14) respectively.

Now, one defines the sliding function and control as

u = −kLsign(σ), σ = z3 + Σ1z
1, k > 0 (22)

with Σ1 = (Σ1,1 Σ1,2) and z1 = (z1, z2)
T .

In order to prove the convergence of the state-vector of the
closed loop system (19)-(21) to σ = 0, let us consider the
following Lyapunov candidate function

V =
1

2
σ2 (23)

and let us define the level sets

Ωc = {σ ∈ ℜ|V ≤ c}, c > 0

which contain the origin. For any given closed bounded
set Ω ⊂ ℜ one can find a c̄ such that Ω ⊂ Ωc̄. Taking the
derivative of (23) along the trajectories of the closed-loop
system (19)-(21)

V̇ = σ(−ksign(σ) + fv) = −k|σ| + σfv

where fv = −(1/L)veq. If the control gain k is chosen such
that k > |(1/L)veq(z, w)|, where veq(z, w) is a solution of
σ̇ = 0, namely

veq = R(z3 + π3) + L(∂π3/∂w)s(w)

−LΣ1,1 (z2 + π2 − (∂π1/∂w)s(w))

−LΣ1,2

(

d(w) − (km/M)(z3 + π3)
2/(z1 + π1)

2

−(∂π2/∂w)s(w)

)

then

V̇ ≤ −|σ|(k − |fv|) = −λ|σ| = −λ
√

2V

with λ = k − supΩc̄
|fv|. Therefore, condition (SMSSF )

holds, i.e., the sliding mode exists, and the convergence in
finite time of the state vector of the closed loop system
(19)-(21) to σ = 0 is guaranteed.

Making use of the comparison principle (Khalil (2002)),
one can consider the following differential equation

V̇ = −λ
√

2V (24)

with V (t0) = (1/2)σ2(t0) ≤ V(t0). Therefore,

V (t) ≤ V(t) =

{

(

√

V(t0) − λ√
2
(t − t0)

)2

for t0 ≤ t ≤ ts

0 for t > ts

with ts = t0 +
√

2V(t0)/λ, and thus σ = 0 is reached in
finite time, forcing sliding mode motion in the system, with
a region of attraction Ωc̄ containing Ω (See Utkin (1992)
for more details). After the sliding mode occurs, one has
z3 = −Σ1z

1 (see (22)), and considering only the linear
part of (19) and (20), then, the motion of the linearized
closed–loop system (sliding mode motion) will be governed
by

ż1 = (A11 − A12Σ1)z
1 + R1w + φ1,s(z, w) (25)

ẇ = Sw

e = z1 + π1(w) − q(w)

with φ1,s(z, w) as a function of higher order terms that
vanish at the origin with their first derivative,

R1 = A11Π1 + A12Π2 − Π1S + D

where

Πi =

[

∂πi

∂w

]

(0,0)

, i = 1, 2 , S =

[

∂s(w)

∂w

]

(0)

,

D =

[

∂d(w)

∂w

]

(0)

.

In the work of Utkin et al. (1978) has been demonstrated
that if the pair (A, B) is controllable, then, the pair
(A11, A12) is controllable as well. In such case, one can
always find Σ1 such that the matrix (A11 − Σ1A12) is
Hurwitz.

Moreover if equations (13) and (14) holds, then,

R1w + φ1,s(z, w) =

(

π2 − ∂π1

∂w
s(w)

d(w) − km

M

π2

3
(w)

π2

1
(w)

− ∂π2

∂w
s(w)

)

= 0

that under the property of centre manifolds, we have
zi(t) → 0 ⇒ xi(t) → πi(w(t)), i = 1, 2, and z3 → 0 ⇒
x3(t) → π3(w(t)) with t → ∞. Thus, the requirement
(SSF ) is fulfilled. By continuity, if condition (16) holds,
then the output tracking error (10) converges to zero and
condition (RSF ) holds too.

It is worth to mention that in this case, the term c(w) is
not required, so, equation (15) is not necessary.

4. SIMULATION RESULTS

Simulations are carried out in order to compare the
performance of both regulators. The nonlinear model
(9) is linearized around the operating point xop =
(

b, 0,
√

gM/kmb
)

, vop = R
√

gM/kmb. The initial con-

ditions for the MAGLEV are set as ( 0.045, 0, 0 )
T

and
for the exosystem (11), a = 0.0070716, b = 0.05, c = 9.8.
Taking the nominal parameters of the MAGLEV system
as km = 3 kgm

3/s2A2, M = 0.14 Kg, g = 9.8m/s2,
R = 1.2 Ω, L = 1×10−3 H ; and b = 0.05 m, the following
pairs of matrices are reckoned:

A =

(

0 1 0
392 0 −579.6551
0 0 −1200

)

, B =

(

0
0

1000

)

,

A11 =

(

0 1
392 0

)

, A12 =

(

0
−579.6551

)

.

The matrix K in (6) and the matrix Σ1 in (25) are
calculated using the LQR function provided in Matlab,
resulting as follows

K = (−19.2903 −10.0346 9.4335 ) ,

Σ = (−12.9423 −12.2492 ) .

To verify the robustness properties, some plant parameter
variations are introduced as can be appreciated in Figure
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2, where R and km may change up to 100 % from
their nominal values. It is worth to mention that the
perturbation term generated by the variation of R satisfies
the matching condition (Utkin (1992)), but not the
variations on km.

0 5 10 15 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

a)                                         s

Ω

0 5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

6

6.5

b)                                         s

k
g

3
/(

s
2
A

2
)

Fig. 2. a) Resistance variation. b) Magnetic constant
variation

Figure 3 compares the tracking of the output signal for the
continuous output regulator (COR) and the discontinuous
output regulator (DOR), where can be appreciated that for
0 ≤ t < 5 both output signals shows a good performance,
but for 5 ≤ t < 10 where the perturbation term due to
the variation in R is present, the DOR shows superior
performance over the COR due to the matching condition.
Finally, the unmatched perturbation term due to the
variation of km, appearing at t ≥ 10 affects adversely the
maglev system in both cases, but the DOR still performs
better than the COR.

0 2 4 6 8 10 12 14 16 18 20
0.035

0.04

0.045

0.05

0.055

0.06

0.065

s

m

π
1

x
1
 COR

x
1
 DOR

Fig. 3. Comparison of the output signals.

Figure 4 shows the output tracking error for both regula-
tors, where can be appreciated the transient and steady–
state responses.

Figure 5 shows π3, which represents the ideal steady-state
behavior of the current. Note that the current obtained
with the COR is not equal to π3 for t ≥ 5 yielding
to unsatisfactory results. With respect to the current

0 2 4 6 8 10 12 14 16 18 20
−14

−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

s

m

z
1
 COR

z
1
 DOR

Fig. 4. Comparison of the output error signals.

obtained with the DOR, it becomes different to π3 for
t ≥ 10, but it is more approximated to π3, therefore
yielding to more satisfactory results with respect to the
COR.

0 2 4 6 8 10 12 14 16 18 20
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

s

A

π
3

x
2
 COR

x
2
 DOR

Fig. 5. Comparison of the current signals.

Finally, Figure 6 shows the voltage input signals where the
continuous and discontinuous natures of the COR and the
DOR can be appreciated. The main advantage of having
discontinuous control signals is that it avoids the use of
PWM as mentioned in Utkin (1992), therefore, facilitating
a straightforward implementation of the control action. In
the case of the COR, a PWM is still needed, implying
an additional stage in the control–loop that can introduce
unmodeled dynamics. Moreover in the case of the COR,
an undesirable peak voltage appears at time t = 0 .

5. CONCLUSIONS

In this work two related control laws were designed and
compared on a simulation basis for a MAGLEV system.
Table I summarizes the main results. From the simula-
tions, one can conclude that both controllers performs well
under ideal conditions, but the DOR has demonstrated a
superior performance over the COR when parameter vari-
ations are introduced to the MAGLEV system. Another
advantage of the DOR is that the control design requires
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Fig. 6. Comparison of the voltage signals.

of less calculations than the COR, as one can see that
c(w) is not required in the DOR design and that the pair to
stabilize the system in the first approximation in the DOR
is one dimension lower than in the COR case. Moreover,
sliding mode control has the advantage of not requiring
PWM by generating a discontinuous control action signal
capable of driving switching power devices.

Table 1. Comparison of DOR and COR

Comparison criteria DOR COR

Transient response Good Good

Steady-State accuracy Good Bad

Parameter sensitivity Low High

Implementation complexity Less equations More equations

and no PWM and PWM
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